
Part A Simulation and Statistical Programming HT14

Lecturer: Geoff Nicholls

University of Oxford

Lecture 3: Statistical Programming and R: an introduction

Notes and Problem sheets are available at

www.stats.ox.ac.uk\ ∼nicholls\PartASSP

Today: Statistical Programming in R

• an introduction to basic use of R

• some examples from the simulation part of the course

• 1 hour of me doing R demos and lecturing

• 1 hour of you doing a practical at the computers

R is an open-source package for Statistical Computing

It is freely available - http://cran.r-project.org/

What is Statistical Programming?

There are three elements: statistics, algorithms and carrying out

statistical analysis on a computer.

In a typical study we begin by loading the data into the computer,

and making an exploratory analysis of the data (EDA).

We look at the raw numbers, and visualize them by plotting

graphs that reveal patterns in the data. We may have a model

we wish to fit to the data, and a hypothesis we wish to test.

Statistics tells us what objects we need to calculate in order to

make the fit and carry out the test.

An algorithm tells us how to calculate those objects. It is a

sequence of operations that carry out a given task. An algorithm

is a mathematical object, with properties we can prove. We give

an (informally stated) algorithm to convert a decimal to binary

later in this lecture.

Finally we go back to the computer and implement the algorithm

(or use an implementation someone else has written). This is

a computer programme and it should carry out the calculations

dictated by the algorithm. Two correct implementations of the

same algorithm can differ, for example in efficiency and in the

range of cases they handle correctly.

Getting started

Begin by selecting Start > all programmes > R The R Graph-

ical User Interface RGui opens, with an internal window, the R
Console, into which you type commands.

You will often want to keep a record of your work from an R

session. You can do this by starting an R script: File > New
Script. This opens a new file in an R editor window.

You can type R commands in the script, which can then be

selected (using the mouse) and evaluated (using Ctrl-R) in the

R Console.

You also make notes in the script and save the script for the

future File > Save (you need to select the R editor window for

the script you want to save using the mouse).

Arithmetic Operators

• Arithmetic operators: +, -, /, *, ^ where x^y is xy.

• %% for modulo reduction, %/% for integer division, %*% for

matrix multiplication

Example

• Type 2 + 3 <return>

• Type 6 * 9 + 3 / 5 <return>

• Type 3^4 <return>

• Type 5^(-5.6+3) <return>

• Type 143 %% 6 <return>

Mathematical functions

Many mathematical functions are available e.g.

exp(x), log(x), log10(x), sqrt(x)

sin(x), cos(x), tan(x)

asin(x), acos(x), atan(x)

sinh(x), cosh(x), tanh(x)

asinh(x), acosh(x), atanh(x)

abs(x), min(x), max(x)

• Type exp(-4 * 4 / 2) / sqrt(2 * pi)<return>

• Type log(4)<return>

Functions arguements

Functions can have more than one argument. These can identi-

fied by their names, or by order.

• Type choose(6,3)<return>

• Type choose(3,6)<return>

• Type choose(n=6,k=3)<return>

• Type choose(k=3,n=6)<return>

The first two differ, the last two give the same answer.

Functions for familiar distributions

rDBN(),dDBN(),pDBN(),qDBN() are random numbers, the pdf/pmf,

the cdf and quantiles for the distribution DBN.

rexp(n=10,rate=1) gives 10 Exp(1) rv.

pnorm(q,mean=0,sd=1) is P (Z ≤ q) for Z ∼ N(0, 1)

dpois(x,lambda) is exp(−λ)λx/x!

If q=qt(p=0.975,df=4) then 0.975 = P (X ≤ q), X ∼ t(4).

What does this return? rchisq(n=10,df=5)

Getting Help

• help(command) or ?command if you know the command

name

• Type help.search("subject") or ??subject for a subject

• ?‘&&‘ for operators or words such as if

• help.start() for R online documentation

• Help menu in Windows gives still more options

Vectors and sequences Vectors or sequences of numbers can also

be created, stored and manipulated

• They can be created manually

x1 = c(0.1, 0.2, 0.3, 0.4, 0.5) <return>

• Functions apply to vectors element by element

Example

if x = (1, 2, 3, 4) and y = (5, 6), then

x + 3 = (4, 5, 6, 7)

x + y = (6, 8, 8, 10)

x^2+max(x)=(5,8,13,20)

Logical Operators

• == (equal), != (not equal), >, <, >=, <=

Example

3 < 4 <return>

c(0.1,0.3,0.6) > 0.23 <return>

• ! (not), | (or), || (or), & (and) && (and)

• Note difference between |,& and ||,&&: former work on

vectors, latter (a) only consider first element and (b) stop as

soon as the outcome is known.

Example (a)

if x = (TRUE, FALSE, TRUE)

and y = (FALSE, TRUE, TRUE)

x | y = (TRUE, TRUE, TRUE), x || y = (TRUE), then

x & y = (FALSE, FALSE, TRUE), x && y = (FALSE)

Example (b)

If b=2 and we execute (a=1)<0 & (b=-1)<0 then b=-1 but if

b=2 and we execute (a=1)<0 && (b=-1)<0 then b=2 (still). In

the first case we have a sideffect (b changes value). It is usually

a bad idea to allow them in your code so we would not typically

include an assignment b=-1 in a test (b=-1)<0 irrespective of

whether we used & or &&. The && form saves time evaluating

later tests when the result is already known.

Error messages

• The R commands you enter will sometimes contain errors.

• R will either report an Error message or prompt you to com-

plete the command.

Example

Incomplete brackets i.e. (4+8<return>
prints a + which means you need to enter the remaining brackets.

Example

Too many brackets i.e. (4+8))<return>
results in an error message.

Example

Using the wrong type of brackets i.e. exp{4}<return>
results in an error message.

Computer representation of numbers

• On a computer numbers are stored in binary rather than

decimal.

• Consider the number 1197.625.

In decimal we write

103 102 101 100 10−1 10−2 10−3

1 1 9 7 6 2 5

In binary, the number is

210 29 28 27 26 25 24 23 22 21 20 2−1 2−2 2−3

1 0 0 1 0 1 0 1 1 0 1 1 0 1

To convert from a base-10 integer to base-2 (binary), the num-

ber is divided by two, and the remainder is the least-significant

bit. The (integer) result is again divided by two, its remainder

is the next most significant bit. This process repeats until the

result of further division becomes zero.

1197 = 2 ∗ 598 + 1 → 1

598 = 2 ∗ 299 + 0 → 0

299 = 2 ∗ 149 + 1 → 1

149 = 2 ∗ 74 + 1 → 1

74 = 2 ∗ 37 + 0 → 0

37 = 2 ∗ 18 + 1 → 1

18 = 2 ∗ 9 + 0 → 0

9 = 2 ∗ 4 + 1 → 1

4 = 2 ∗ 2 + 0 → 0

2 = 2 ∗ 1 + 0 → 0

1 = 2 ∗ 0 + 1 → 1 → 10010101101

To convert from a base-10 fraction to base-2 (binary), the num-

ber is multiplied by two, if the result is > 1 the most-significant

bit is 1 otherwise 0. The (fractional) remainder is again multi-

plied by two and compared to 1. This process repeats until the

remainder is zero.

0.625 ∗ 2 = 1.25 → 1

0.25 ∗ 2 = 0.5 → 0

0.5 ∗ 2 = 1 → 1 → .101

So, 1197.62510 = 10010101101.1012

• In decimals, some fractions are recurring. The same can be

true in binary. Consider 0.8

0.8 ∗ 2 = 1.6 → 1

0.6 ∗ 2 = 1.2 → 1

0.2 ∗ 2 = 0.4 → 0

0.4 ∗ 2 = 0.8 → 0

etc

So, 0.810 = 0.11002

• Fractions in binary only terminate if the denominator has 2

as the only prime factor.

• Modern computers use 64 bits to represent numbers so some

numbers (like 0.8) must be approximated.

• Care is needed when testing whether 2 numbers are the same:

– x <- seq(0, 0.5, 0.1) ##generate a sequence from

0 to 0.5 in steps of 0.1

– type x ##Look at x

– is x equal to (0, 0.1, 0.2, 0.3, 0.4, 0.5)?

– To find out, type

x==c(0, 0.1, 0.2, 0.3, 0.4, 0.5)

[1] TRUE TRUE TRUE FALSE TRUE TRUE

Rounding problems Tiny inaccuracies can accumulate:

• the sample variance of a vector x is often calculated as

var(x) = (
∑

x2 − nx̄2)/(n − 1)
or, in R

(sum(x^2) - n * mean(x)^2) / (n - 1)

• Try it with x <- seq(1:100)

• Now with x <- seq(1:100) + 10000000000

• compare with var(x)

• Can you see why there was a problem?

Moral ”Worry, but, if you use R, don’t worry too much, because

R has worried for you.”

Try it yourself

Begin by selecting Start > all programmes > R

The R Graphical User Interface RGui opens, with an internal

window, the R Console, into which you type commands.

You can open the lecture script: File > Open Script. The

script you want is L1.R on the H: drive.

After 5 minutes we will continue with the lecture.

Basic Types of Variables Variables are the equivalent of mem-

ories in your calculator. But you can have unlimited (almost!)

quantities of them and they have names of your choosing. And

different types. The basic types are

• integer

• double

• character

• logical: these take one of the two values TRUE or FALSE (or

NA, see later)

• factor or categorical

More Specialised Classes

As well as the basic types of variables, R recognises many more

complicated objects such as

• vectors, matrices, arrays: groups of objects all of the same

type. The practical will show you how to use these.

• lists of other objects which may be of different types

• Specialised objects such as Linear Model fits

Special values of objects

There are some types of data which need to be treated specially

in calculations:

• NA The value NA is given to any data which R knows to be

missing. This is not a character string, so a character string

with value ‘NA’ will be treated differently from one with the

value NA.

• Inf The result of e.g. dividing any non-zero number by zero

• NaN The result of the operation isnt defined (eg 0/0, Inf-Inf,

log(-1))

Factors: Factors are variables which can only take one of a finite

set of discrete values. They naturally occur as vectors, and can

be

• numeric e.g. drug doses with values 1mg, 2mg, 5 mg

• or character e.g. voting intention with values Liberal Demo-

crat, Conservative, Labour, Other

Although factors are stored as numbers, along with the label

corresponding to each number, they cannot be treated as nu-

meric. Would it make sense to ask R to calculate mean(voting
intention)?

A more useful function for factors is table which will count how

many of each value occur in the vector.

More about Factors

• Ordered Factors

Some factor variables have a natural ordering. Drug doses

do, but voting intentions usually do not. R will treat the

two types differently. It is important not to allow R to treat

non-ordered factors as ordered ones, since the results could

be meaningless.

• Creating factors

Use cut to create factor variables from continuous ones:

Example

age <- runif(100) * 50

table(cut(age, c(0, 10, 20, 30, 40, 50)))

(0, 10] (10, 20] (20, 30] (30, 40] (40, 50]

17 19 19 24 21}

Data frames

• For storing data which is a collection of observations (rows)

of a set of variables (columns). E.g. book titles and prices.

• Similar to a matrix but variables in different columns can

have different types.

• Always the same number of entries in each row, although

some may be missing (NA).

• Can be formed by reading in data e.g. from a spreadsheet,

or constructed using the function data.frame.

Chick weights data frame

weight feed

1 179 horsebean

2 160 horsebean

3 136 horsebean

4 227 horsebean

.

.

.

Lists A data frame is a kind of list, which is a vector of objects of

possibly different types. For example, an employee record might

be created by

Empl <- list(employee = "Anna", spouse = "Fred", children

= 3, child.ages = c(4, 7, 9))

Components are always numbered and may be referred to by

number. e.g. Empl[[2]]. If they are named, can also be re-

ferred to by name using the $ operator eg. Empl$spouse

Note that Empl[4] is a list of length 1, while Empl[[4]] is a

numeric vector of length 3.

Keeping track of objects

• Once you have created some objects, how do you remind

yourself what you called them?

• Use a function such as ls() or str().

• ls() lists the names of all the objects in your workspace.

• str(Empl) gives a little information about the object Empl.

str(Empl)
List of 4
$ employee : chr "Anna"
$ spouse : chr "Fred"
$ children : num 3
$ child.ages : num [1:3] 4 7 9

More functions paste

• paste adds together character vectors: paste(c(1, 2),

c(’x’, ’y’, ’z’)) is a character vector of length 3

[1] "1 x" "2 y" "1 z"

Notice the recycling of the first argument.

• The pieces of the result can be joined together using the

argument collapse:

paste(c(1, 2), c(’x’, ’y’, ’z’), collapse=’ ’) is

a character vector of length 1,

"1 x 2 y 1 z"

Yet more functions sort,table

• sort(x) sorts the vector x into increasing order

• sort(x, decreasing=TRUE) sorts the vector x into de-

creasing order

• table(x) creates a table showing the count of elements

equal to each value. Most useful where x is a vector of

factors or integers

• e.g. table(rpois(20, 5)) gives

2 3 4 5 6 7 8
3 2 2 6 3 3 1

Installing R on your own machine

• Visit CRAN at http://cran.r-project.org/

• Find the appropriate binary
– Windows:

http://cran.r-project.org/bin/windows/base/release.htm

– Mac: select as appropriate

– Linux: select as appropriate.

• After installation, create a shortcut which starts in your folder

(using right-click/properties)

• Update packages via the packages menu or using update.packages()

Books

In addition to the extensive documentation and help system that

is included in R there are three main books that we recommend.

‘A First Course in Statistical Programming with R’ by W. John

Braun and Duncan Murdoch, ISBN 0-521-69424-8

‘Introductory Statistics with R’ by Peter Dalgaard, ISBN 0-387-

95475-9

- a very good introduction to R that includes many biostatistical

examples and covers most of the basic statistics covered in this

course.

‘Modern Applied Statistics with S’ by Bill Venables and Brian

Ripley, ISBN 0- 387-95457-0

- a comprehensive text that details the S-PLUS and R imple-

mentation of many statistical methods using real datasets.

Practical

• Practical is a mixture of getting you to enter commands and

solving problems

• If you use the same computer each week the files from your

last session will be available. So note down the number of

the computer you have used.

• Use a script and save the script to the H: drive. Save it with

a file name that includes your name.

• May want to bring a memory stick to make a copy of your

script or email the script to yourself.

• Web browsing, facebook etc are banned from practical ses-

sions.

• To quit R type q(). Then select No when asked if you want

to save the session.

Transformation Methods (continued)

See you on Monday

Our next meeting is in the lecture theatre in the Statistics De-

partment SPR1.

The first problem sheet is online at

http://www.stats.ox.ac.uk/~nicholls/PartASSP/

and due Monday morning at 9am (see tray by mailboxes in

SPR1).

Homework: install R and complete the practical in your own

time.

