
Part A Simulation and Statistical Programming HT14

Lecturer: Geoff Nicholls

University of Oxford

Lecture 2: simulation

Notes and Problem sheets are available at

www.stats.ox.ac.uk\ ∼nicholls\PartASSP

Transformation Methods (continued)

Say Y ∼ Q, Y ∈ ΩQ we can simulate (for example Y ∼ U(0, 1))

X ∼ P , X ∈ ΩP we want to simulate (eg X ∼ Exp(1)).

If we can find a function f : ΩQ → ΩP with the property that

f(Y) ∼ P

then we can simulate X by simulating

Y ∼ Q and setting X = f(Y)

(for example, set f(y) = − log(y) and we know from above that

if X = f(Y) then X ∼ Exp(1)).

Example: Suppose we want to simulate X ∼ Exp(1) and we

can simulate Y ∼ U(0, 1). Try setting X = − log(Y). Does

that work?

Ans: recall that if Y has density q(y) and X = f(Y) then the

density of X is p(x) = q(y(x))|dy/dx|. Now q(y) = 1 (the

density of U(0, 1)) and y(x) = exp(−x), so p(x) = exp(−x)
and so X has the density of an Exp(1) rv.

Example: Inversion is a transformation method: Q is U(0, 1); Y
is U ; and X = f(Y) with f(y) = F−1(y) and F the CDF of

the target distribution P .

We can generalize the idea. We can take functions of collections

of variables.

Example: Suppose we want to simulate X ∼ Γ(a, β) with a ∈
1, 2, 3, ... and we can simulate Y ∼ Exp(1) (the Γ(a, β) density

is p(x) = βα

Γ(α)
xα−1e−βx for x > 0).

Simulate Yi ∼ Exp(1), i = 1, 2, ..., a and set X =
∑a

i=1 Yi/β.

Then X ∼ Γ(a, β).

Proof: Use moment generating functions. The MGF of the

Exp(1) rv Y is

E
(

etY
)

= (1 − t)−1

so the MGF of X is

E
(

etX
)

=
a
∏

i=1

E
(

etYi/β
)

= (1 − t/β)−a

which is the MGF of a Γ(a, β) variate.

Transformation: Box-Muller algorithm for a scalar normal

We often need to simulate iid X ∼ N(0, 1) rv. The cdf Φ(x) is

not available in closed form so inversion is not straightforward.

Here is a simple algorithm.

Box-Muller algorithm (simulates X, Y ∼ N(0, 1) iid)

Simulate U1, U2 ∼ U [0, 1] iid and set

R2 = −2 log(U1)

Θ = 2πU2 ∼ U [0, 2π]

and

X = R cosΘ

Y = R sin Θ.

Proposition: The X, Y -values simulated by the the Box-Muller

algorithm are iid standard normal.

Proof: First, R2 and Θ are clearly independent with Θ ∼ U [0, 2π].
Also, R2 ∼ Exp(1

2) since −2 log(U1) is just the inversion rule

for Exp(1/2). The joint density of R2, Θ is

fR2,Θ(r2, θ) =
1

2
exp

(

−r2/2
) 1

2π
, 0 ≤ R2, 0 ≤ θ ≤ 2π

To compute the joint density of X and Y we use the change of

variables rule for densities. We have

fX,Y (x, y) = fR2,Θ(r2, θ)

∣

∣

∣

∣

∣

det
∂(r2, θ)

∂(x, y)

∣

∣

∣

∣

∣

, r2 = r2(x, y), θ = θ(x, y)

∣

∣

∣

∣

∣

∂(r2, θ)

∂(x, y)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∂x
∂r2

∂x
∂θ

∂y
∂r2

∂y
∂θ

∣

∣

∣

∣

∣

∣

−1

=

∣

∣

∣

∣

∣

(

cos θ
2r −r sin θ

sin θ
2r r cos θ

)∣

∣

∣

∣

∣

−1

= 2,

and so

fX,Y (x, y) =
1

2
exp

(

−(x2 + y2)/2
) 1

2π
× 2

= exp(−x2/2)/
√

2π × exp(−y2/2)/
√

2π.

Since fX,Y (x, y) = fX(x)fY (y) factorizes into standard normal

densities, we have X, Y ∼ N(0, 1) iid as supposed.

Comment: This still requires evaluating log, cos and sin. The

algorithm can be modified to avoid this (problem sheet).

Simulating Multivariate Normal

Let consider X ∈ R
d, X ∼ N(µ, Σ) where µ is the mean and Σ

is the (positive definite) covariance matrix.

fX(x) = (2π)−d/2|Σ|−1/2 exp

(

−1

2
(x − µ)T Σ−1 (x − µ)

)

.

Proposition: Let Z = (Z1, ..., Zd) be a collection of d indepen-

dent standard normal random variables. Let L be a real d × d
matrix satisfying

LLT = Σ.

If

X = LZ + µ.

then X ∼ N(µ, Σ).

Proof: We have fZ(z) = (2π)d/2 exp
(

−1
2zTz

)

. The joint den-

sity of the new variables is

fX(x) = fZ(z)

∣

∣

∣

∣

∂z

∂x

∣

∣

∣

∣

, z = z(x).

In terms of x,

zTz = (x − µ)T
(

L−1
)T

L−1 (x − µ)

= (x − µ)T Σ−1 (x − µ) .

and ∂z
∂x = L−1 which does not depend on x. It follows that

fX(x) ∝ N(x; µ, Σ). If two densities are proportional on the

same sample space then they are equal, so X ∼ N(µ, Σ).

There are many matrices L satisfying LLT = Σ. If Σ = V DV T

is the eigenvector decomposition of Σ, we can pick L = V D1/2.

The Cholesky factorization with Σ = LLT with L lower trian-

gular is favored, as faster to compute than eigenvectors.

#Example dimension d=2, mu=(-1,1), covariance matrix s

#s=| 5 -3|

|-3 4|

> mu<-c(-1,1)

> s<-matrix(c(5,-3,-3,4),2,2)

> u<-chol(s)

> (X<-t(u)%*%rnorm(2)+mu)

[,1]

[1,] 1.769832

[2,] -2.094927

−5 0 5

−
5

0
5

10

x=Lz+mu, (z1..zd)~N(0,1)

x1

x2

Rejection sampling

Suppose I want to sample X ∼ p(x). If I throw darts uniformly

at random ’under the curve’ of p(x) then the x − values are

distributed like p(x). We do this by throwing darts UAR under

a function q(x) that sits over p(x), and keeping the darts that

fall under p(x).

Example: suppose I want to sample X ∼ p with pX(x) =
2x, 0 ≤ x ≤ 1. If I sample Y ∼ U(0, 1) and U ∼ U(0, 1)
then (Y, 2U) is uniform in the box [0, 1] × [0, 2]. The points

under the curve are the ones we want since Y |2U < 2Y ∼ pX.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

y

u

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

The Rejection algorithm

Say Y ∼ q(y), y ∈ Ω is a rv we can simulate.

X ∼ p(x), x ∈ Ω is a rv we want to simulate.

Suppose there exists M such that Mq(x) > p(x) for all x ∈ Ω.

Rejection Algorithm simulate X ∼ p(x):
[1] Simulate y ∼ q(y) and u ∼ U(0, 1).
[2] If u < p(y)/Mq(y) return X = y (’accept y’) and stop, and

otherwise goto [1] (reject y).

This algorithm works because (y, uMq(y)) is simulated UAR

’under’ q(y). We keep trying until we get a point with V =
uMq(y) ’under’ p(y). This point is UAR under p(y) so its y-

component is distributed according to p.

Proposition: The rejection algorithm simulates X ∼ p(x).

Proof (for a univariate continuous rv): Let F (x) =
∫ x
−∞ p(y)dy

be the cdf of X. We want to show that the algorithm returns

values X = x with cdf F . What is the cdf of X? The joint

density of a generic pair u and y is pU,Y (u, y) = q(y) because

U and Y are independent, Y ∼ q and U ∼ U [0, 1] so...

Pr(X < x) = Pr(Y < x | Y is accepted)

= Pr(Y < x | U < p(Y)/Mq(Y))

=
Pr(Y < x, U < p(Y)/Mq(Y))

Pr(U < p(Y)/Mq(Y))
.

Integrate the joint distribution of (u, y) to get these probabilities:

Pr(Y < x, U < p(Y)/Mq(Y)) =

∫ x

−∞

∫ p(y)/Mq(y)

0
pU,Y (u, y)dudy

=

∫ x

−∞

∫ p(y)/Mq(y)

0
q(y)dudy

=

∫ x

−∞
p(y)/Mdy;

similarly

Pr(U < p(Y)/Mq(Y)) =

∫ ∞

−∞
p(y)/Mdy.

The M ’s will cancel. Now
∫∞
−∞ p(y)dy = 1 so

Pr(X < x) =

∫ x

−∞
p(y)dy

= F (x)

and we are done.

See you on Friday

Our next meeting is the Evenlode room in the OUCS facility at

13 Banbury road.

The first problem sheet is online at

http://www.stats.ox.ac.uk/~nicholls/PartASSP/

and due Monday 9am of Week 3 at 1 South Parks Road (see

tray by mailboxes).

Homework: (same as last week) install R and run the code from

this lecture.

