Part A Simulation and Statistical Programming HT14

Lecturer: Geoff Nicholls

University of Oxford

Lecture 2: simulation

Notes and Problem sheets are available at
www.stats.ox.ac.uk $\backslash \sim$ nicholls \backslash PartASSP

Transformation Methods (continued)
Say $Y \sim Q, Y \in \Omega_{Q}$ we can simulate (for example $Y \sim U(0,1)$)
$X \sim P, X \in \Omega_{P}$ we want to simulate (eg $X \sim \operatorname{Exp}(1)$).

If we can find a function $f: \Omega_{Q} \rightarrow \Omega_{P}$ with the property that

$$
f(Y) \sim P
$$

then we can simulate X by simulating

$$
Y \sim Q \quad \text { and setting } \quad X=f(Y)
$$

(for example, set $f(y)=-\log (y)$ and we know from above that if $X=f(Y)$ then $X \sim \operatorname{Exp}(1))$.

Example: Suppose we want to simulate $X \sim \operatorname{Exp}(1)$ and we can simulate $Y \sim U(0,1)$. Try setting $X=-\log (Y)$. Does that work?

Ans: recall that if Y has density $q(y)$ and $X=f(Y)$ then the density of X is $p(x)=q(y(x))|d y / d x|$. Now $q(y)=1$ (the density of $U(0,1)$) and $y(x)=\exp (-x)$, so $p(x)=\exp (-x)$ and so X has the density of an $\operatorname{Exp}(1) \mathrm{rv}$.

Example: Inversion is a transformation method: Q is $U(0,1) ; Y$ is U; and $X=f(Y)$ with $f(y)=F^{-1}(y)$ and F the CDF of the target distribution P.

We can generalize the idea. We can take functions of collections of variables.

Example: Suppose we want to simulate $X \sim \Gamma(a, \beta)$ with $a \in$ $1,2,3, \ldots$ and we can simulate $Y \sim \operatorname{Exp}(1)$ (the $\Gamma(a, \beta)$ density is $p(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$ for $\left.x>0\right)$.

Simulate $Y_{i} \sim \operatorname{Exp}(1), i=1,2, \ldots, a$ and set $X=\sum_{i=1}^{a} Y_{i} / \beta$. Then $X \sim \Gamma(a, \beta)$.

Proof: Use moment generating functions. The MGF of the $\operatorname{Exp}(1) \mathrm{rv} Y$ is

$$
E\left(e^{t Y}\right)=(1-t)^{-1}
$$

so the MGF of X is

$$
E\left(e^{t X}\right)=\prod_{i=1}^{a} E\left(e^{t Y_{i} / \beta}\right)=(1-t / \beta)^{-a}
$$

which is the MGF of a $\Gamma(a, \beta)$ variate.

Transformation: Box-Muller algorithm for a scalar normal

We often need to simulate iid $X \sim N(0,1) \mathrm{rv}$. The cdf $\Phi(x)$ is not available in closed form so inversion is not straightforward. Here is a simple algorithm.

Box-Muller algorithm (simulates $X, Y \sim N(0,1)$ iid) Simulate $U_{1}, U_{2} \sim U[0,1]$ iid and set

$$
\begin{aligned}
R^{2} & =-2 \log \left(U_{1}\right) \\
\Theta & =2 \pi U_{2} \sim U[0,2 \pi]
\end{aligned}
$$

and

$$
\begin{aligned}
X & =R \cos \Theta \\
Y & =R \sin \Theta
\end{aligned}
$$

Proposition: The X, Y-values simulated by the the Box-Muller algorithm are iid standard normal.

Proof: First, R^{2} and Θ are clearly independent with $\Theta \sim U[0,2 \pi]$. Also, $R^{2} \sim \operatorname{Exp}\left(\frac{1}{2}\right)$ since $-2 \log \left(U_{1}\right)$ is just the inversion rule for $\operatorname{Exp}(1 / 2)$. The joint density of R^{2}, Θ is

$$
f_{R^{2}, \Theta}\left(r^{2}, \theta\right)=\frac{1}{2} \exp \left(-r^{2} / 2\right) \frac{1}{2 \pi}, \quad 0 \leq R^{2}, 0 \leq \theta \leq 2 \pi
$$

To compute the joint density of X and Y we use the change of variables rule for densities. We have

$$
f_{X, Y}(x, y)=f_{R^{2}, \Theta}\left(r^{2}, \theta\right)\left|\operatorname{det} \frac{\partial\left(r^{2}, \theta\right)}{\partial(x, y)}\right|, \quad r^{2}=r^{2}(x, y), \theta=\theta(x, y)
$$

$$
\left|\frac{\partial\left(r^{2}, \theta\right)}{\partial(x, y)}\right|=\left|\left(\begin{array}{ll}
\frac{\partial x}{\partial r^{2}} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r^{2}} & \frac{\partial y}{\partial \theta}
\end{array}\right)\right|^{-1}=\left|\left(\begin{array}{ll}
\frac{\cos \theta}{2 r} & -r \sin \theta \\
\frac{\sin \theta}{2 r} & r \cos \theta
\end{array}\right)\right|^{-1}=2
$$

and so

$$
\begin{aligned}
f_{X, Y}(x, y) & =\frac{1}{2} \exp \left(-\left(x^{2}+y^{2}\right) / 2\right) \frac{1}{2 \pi} \times 2 \\
& =\exp \left(-x^{2} / 2\right) / \sqrt{2 \pi} \times \exp \left(-y^{2} / 2\right) / \sqrt{2 \pi}
\end{aligned}
$$

Since $f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)$ factorizes into standard normal densities, we have $X, Y \sim N(0,1)$ iid as supposed.

Comment: This still requires evaluating \log , \cos and \sin. The algorithm can be modified to avoid this (problem sheet).

Simulating Multivariate Normal

Let consider $X \in \mathbb{R}^{d}, X \sim N(\mu, \Sigma)$ where μ is the mean and Σ is the (positive definite) covariance matrix.

$$
f_{X}(x)=(2 \pi)^{-d / 2}|\Sigma|^{-1 / 2} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
$$

Proposition: Let $Z=\left(Z_{1}, \ldots, Z_{d}\right)$ be a collection of d independent standard normal random variables. Let L be a real $d \times d$ matrix satisfying

$$
L L^{T}=\Sigma
$$

If

$$
X=L Z+\mu
$$

then $X \sim N(\mu, \Sigma)$.

Proof: We have $f_{Z}(z)=(2 \pi)^{d / 2} \exp \left(-\frac{1}{2} z^{T} z\right)$. The joint density of the new variables is

$$
f_{X}(x)=f_{Z}(z)\left|\frac{\partial z}{\partial x}\right|, \quad z=z(x)
$$

In terms of x,

$$
\begin{aligned}
z^{T} z & =(x-\mu)^{T}\left(L^{-1}\right)^{T} L^{-1}(x-\mu) \\
& =(x-\mu)^{T} \Sigma^{-1}(x-\mu)
\end{aligned}
$$

and $\frac{\partial z}{\partial x}=L^{-1}$ which does not depend on x. It follows that $f_{X}(x) \propto N(x ; \mu, \Sigma)$. If two densities are proportional on the same sample space then they are equal, so $X \sim N(\mu, \Sigma)$.

There are many matrices L satisfying $L L^{T}=\Sigma$. If $\Sigma=V D V^{T}$ is the eigenvector decomposition of Σ, we can pick $L=V D^{1 / 2}$.

The Cholesky factorization with $\Sigma=L L^{T}$ with L lower triangular is favored, as faster to compute than eigenvectors.
\#Example dimension $\mathrm{d}=2$, $\mathrm{mu}=(-1,1)$, covariance matrix s \#s=| 5 -3|
\# |-3 4|
$>m u<-c(-1,1)$
$>\mathrm{s}<-\operatorname{matrix}(\mathrm{c}(5,-3,-3,4), 2,2)$
$>\mathrm{u}<-\mathrm{chol}(\mathrm{s})$
$>$ (X<-t(u) \% $\% \%$ rnorm(2) +mu)
[,1]
[1,] 1.769832
[2,] -2.094927

Suppose I want to sample $X \sim p(x)$. If I throw darts uniformly at random 'under the curve' of $p(x)$ then the x-values are distributed like $p(x)$. We do this by throwing darts UAR under a function $q(x)$ that sits over $p(x)$, and keeping the darts that fall under $p(x)$.

Example: suppose I want to sample $X \sim p$ with $p_{X}(x)=$ $2 x, 0 \leq x \leq 1$. If I sample $Y \sim U(0,1)$ and $U \sim U(0,1)$ then $(Y, 2 U)$ is uniform in the box $[0,1] \times[0,2]$. The points under the curve are the ones we want since $Y \mid 2 U<2 Y \sim p_{X}$.

The Rejection algorithm
Say $Y \sim q(y), y \in \Omega$ is a $r v$ we can simulate.
$X \sim p(x), x \in \Omega$ is a rv we want to simulate.
Suppose there exists M such that $M q(x)>p(x)$ for all $x \in \Omega$.
Rejection Algorithm simulate $X \sim p(x)$:
[1] Simulate $y \sim q(y)$ and $u \sim U(0,1)$.
[2] If $u<p(y) / M q(y)$ return $X=y$ ('accept y ') and stop, and otherwise goto [1] (reject y).

This algorithm works because $(y, u M q(y))$ is simulated UAR 'under' $q(y)$. We keep trying until we get a point with $V=$ $u M q(y)$ 'under' $p(y)$. This point is UAR under $p(y)$ so its y component is distributed according to p.

Proposition: The rejection algorithm simulates $X \sim p(x)$.
Proof (for a univariate continuous rv): Let $F(x)=\int_{-\infty}^{x} p(y) d y$ be the cdf of X. We want to show that the algorithm returns values $X=x$ with cdf F. What is the cdf of X ? The joint density of a generic pair u and y is $p_{U, Y}(u, y)=q(y)$ because U and Y are independent, $Y \sim q$ and $U \sim U[0,1]$ so...

$$
\begin{aligned}
\operatorname{Pr}(X<x) & =\operatorname{Pr}(Y<x \mid Y \text { is accepted }) \\
& =\operatorname{Pr}(Y<x \mid U<p(Y) / M q(Y)) \\
& =\frac{\operatorname{Pr}(Y<x, U<p(Y) / M q(Y))}{\operatorname{Pr}(U<p(Y) / M q(Y))}
\end{aligned}
$$

Integrate the joint distribution of (u, y) to get these probabilities:

$$
\begin{aligned}
\operatorname{Pr}(Y<x, U<p(Y) / M q(Y)) & =\int_{-\infty}^{x} \int_{0}^{p(y) / M q(y)} p_{U, Y}(u, y) d u d y \\
& =\int_{-\infty}^{x} \int_{0}^{p(y) / M q(y)} q(y) d u d y \\
& =\int_{-\infty}^{x} p(y) / M d y
\end{aligned}
$$

similarly

$$
\operatorname{Pr}(U<p(Y) / M q(Y))=\int_{-\infty}^{\infty} p(y) / M d y
$$

The M 's will cancel. Now $\int_{-\infty}^{\infty} p(y) d y=1$ so

$$
\begin{aligned}
\operatorname{Pr}(X<x) & =\int_{-\infty}^{x} p(y) d y \\
& =F(x)
\end{aligned}
$$

and we are done.

See you on Friday

Our next meeting is the Evenlode room in the OUCS facility at 13 Banbury road.

The first problem sheet is online at http://www.stats.ox.ac.uk/~nicholls/PartASSP/ and due Monday 9am of Week 3 at 1 South Parks Road (see tray by mailboxes).

Homework: (same as last week) install R and run the code from this lecture.

