
Part A Simulation and Statistical Programming HT14

Lecturer: Geoff Nicholls

University of Oxford

Lecture 14: MCMC, convergence; Implementing Bayesian infer-

ence using MCMC

Notes and Problem sheets are available at

www.stats.ox.ac.uk\ ∼nicholls\PartASSP

Recall the Metropolis Hastings MCMC algorithm

MCMC targeting p(x) = p̃(x)/Zp using proposal Y ∼ q(y|x).

Let Xt = x. Xt+1 is determined in the following way.

[1] Draw y ∼ q(·|x) and u ∼ U [0, 1].
[2] If

u ≤ α(y|x) where α(y|x) = min

{

1,
p̃(y)q(x|y)

p̃(x)q(y|x)

}

set Xt+1 = y, otherwise set Xt+1 = x.

We initialise this with X0 = x0, p(x0) > 0 and iterate for t =
1, 2, 3, ...n to simulate the samples X0, X1, X2, ...Xn we need.

Recall the Ising model:

Denote by Ω = {0, 1}n2
the set of all binary images X =

(X1, X2, ..., Xn2), Xi ∈ {0, 1}, where i = 1, 2, ..., n2 is the cell

index on the square lattice of image cells. Let #x give the

number of disagreeing neighbors in the binary image X.

The Ising model is the following distribution over Ω:

π(x) = exp(−θ#x)/Z.

Here θ is a smoothing parameter which is usually taken to be

greater than zero and Z is a normalizing constant.

MCMC for the Ising Model

Recall the algorithm we wrote down earlier this week. Let X(t) =
x. X(t+1) is determined in the following way.

[1] Chose i ∼ U{1, 2, ..., n2} and set x′ = x except x′i = 1− xi.

[2] With probability α(x′|x) set X(t+1) = x′ and otherwise set

X(t+1) = x.

Here α(x′|x) is

α(x′|x) = min

{

1,
π(x′)q(x|x′)

π(x)q(x′|x)

}

= min
{

1, exp(−θ(#x′ − #x))
}

(refer R-file for implementation)

Remarks on implementation and monitoring MCMC

We work on a log scale if possible, to avoid overflow errors.

Worst

if (runif(1)<exp(-theta*hashXp)/exp(-theta*hashX)) { ...

Better

if (runif(1)<exp(theta*(hashX-hashXp))) { ...

Best

if (log(runif(1))<theta*(hashX-hashXp)) { ...

How do we monitor convergence for a multivariate problem like

the Ising model? We monitor a few summary statistics - for

example, #x, or maybe w(x) =
∑

i xi, the number of white

pixels. We want to see this statistic converging to a stationary

process. We repeat the run from different starting points and

check we get essentially the same histogram of sampled values.

0 50 100 150 200

0
50

10
0

15
0

20
0

25
0

MCMC step count

w

hi
te

 p
ix

el
s

0 50 100 150 200 250

0.
00

0
0.

00
5

0.
01

0
0.

01
5

N = 177 Bandwidth = 9.716

D
en

si
ty

We usually sub-sample the output - this is just for practical rea-

sons. The large densely sampled arrays don’t add any interesting

detail and are unwieldy to plot and compute on.

This code samples w(x) every SS steps, and plots w(x) and the

current state if show=TRUE.

if (!(j%%SS)) {
wp[j/SS+1]=sum(X)
if (show) {
par(mfrow=c(1,2));
plot(wp,xlim=c(0,N/SS),ylim=c(0,n^2)); abline(h=n^2/2)
image(X,col=gray(0:255/255),axes=F); box()

}
}

Plotting is time consuming so if we just want to gather a sample

of X and a w(x)-time series we switch it off.

Bayesian image recovery

Let X be an unknown true image. Suppose

X ∼ Ising(θ)

with θ known. The prior for X is π(x) ∝ exp(−θ#x).

Suppose we observe X through a ’noisy channel’. At pixel i =
1, 2, ..., n2 we observe

Yi = Xi + ǫi, with ǫi ∼ N(0, σ2)

iid, and σ known. The likelihood for xi is L(xi; yi) = N(yi; xi, σ
2)

so

L(x; y) ∝
n2
∏

i=1

exp(−(xi − yi)
2/2σ2).

If we observe Y = y the probability that the unknown true image

X equals x is

π(x|y) ≡ Pr(X = y|Y = y)

∝ L(x; y)π(x)

∝ exp(−|x − y|2/2σ2) exp(−θ#x)

where |x − y|2 =
∑

i(xi − yi)
2.

We will simulate X ∼ π(x|y) and use the samples to estimate

E(Xi|Y = y) for each cell, i = 1, 2, ..., n2.

(refer to R file for implementation)

Modify our MCMC for π(x) to target π(x|y).

Essentially all we have to do is replace the acceptance probability

in the algorithm targeting π(x),

α(x′|x) = min

{

1,
π(x′)q(x|x′)

π(x)q(x′|x)

}

= min
{

1, exp(−θ(#x′ − #x))
}

by the acceptance probability in the algorithm targeting π(x|y),

α(x′|x) = min

{

1,
π(x′|y)q(x|x′)

π(x|y)q(x′|x)

}

= min
{

1, exp(−θ(#x′ − #x)

× exp(−(|x′ − y|2 − |x − y|2)/2σ2)
}

.

True 0/1 noisy sigma=1

mcmc sample X|Y post mean

