Part A Simulation and Statistical Programming HT14

Lecturer: Geoff Nicholls

University of Oxford

Lecture 13: MCMC for Bayesian Inference; The Ising Model

Notes and Problem sheets are available at
www.stats.ox.ac.uk $\backslash \sim$ nicholls \backslash PartASSP

Bayesian Inference

If $\lambda \sim \pi(\lambda)$ is a parameter and $x \sim p(x \mid \lambda)$ is data then it is natural to consider the posterior distribution of λ,

$$
\pi(\lambda \mid x)=\frac{p(x \mid \lambda) \pi(\lambda)}{m(x)}
$$

Here $m(x)=\int p(x \mid \lambda) \pi(\lambda) d \lambda$ is a normalizing constant.
We learn about the unknown true value of the parameter, Λ say, by combining our prior knowledge $(\pi(\lambda))$ with what we learn from the data (in the likelihood $L(\lambda ; x)=p(x \mid \lambda)$).

If $\lambda \sim \pi(\lambda)$ is a repeatable process then there is nothing much new here. However, in Bayesian inference, the prior $\pi(\lambda)$ often describes a state of knowledge: λ-values where $\pi(\lambda)$ is larger are a priori more likely to be the true values.

We can answer questions about Λ using $\pi(\lambda \mid x)$. If A is a set of λ-values then the probability that λ is in A (given the prior and observation models) is

$$
\operatorname{Pr}(\Lambda \in A \mid x)=\int_{A} \pi(\lambda \mid x) d \lambda
$$

The expected value of λ (given ...) is

$$
E(\Lambda \mid x)=\int \lambda \pi(\lambda \mid x) d \lambda
$$

As we can see, many objects of importance for Bayesian inference are expectations.

Example Suppose Λ is the mean of a Poisson distribution, and we want to know if $\Lambda>1$. Suppose the prior for λ is $\lambda \sim$ $\operatorname{Gamma}(a, b)$ with $a, b>0$ given, and we observe $x \sim \operatorname{Poisson}(\lambda)$.

The prior for λ is

$$
\pi(\lambda) \propto \lambda^{a-1} e^{-b \lambda}
$$

The likelihood is

$$
L(\lambda ; x) \propto \lambda^{x} e^{-\lambda}
$$

and the posterior is

$$
\begin{aligned}
\pi(\lambda \mid x) & \propto L(\lambda ; x) \pi(\lambda) \\
& =\lambda^{a+x-1} e^{-(b+1) \lambda}
\end{aligned}
$$

so the posterior distribution of λ is $\lambda \sim \operatorname{Gamma}(a+x, b+1)$.

We want to estimate $\operatorname{Pr}(\Lambda>1 \mid x)$. We need to compute

$$
\operatorname{Pr}(\Lambda>1 \mid x)=\frac{\int_{1}^{\infty} \tilde{\pi}(\lambda \mid x)}{\int_{0}^{\infty} \tilde{\pi}(\lambda \mid x)}
$$

where $\lambda^{a+x-1} e^{-(b+1) \lambda}$,
This is quite tractable in this example, but in general these integrals will be a dead end for pencil and paper work.

MCMC and Bayesian inference

Bayesian inference is widely applied to complex multivariate priors and likelihoods. The posterior expectations $E(\phi(\Lambda) \mid X)$ are hopelessly complex to evaluate.

We run MCMC targeting the posterior $\pi(\lambda \mid x)$ and simulate

$$
\Lambda_{1}=\lambda_{1}, \ldots, \Lambda_{n}=\lambda_{n}
$$

ergodic for $\pi(\lambda \mid x)$. Our estimate for $E(\phi(\Lambda) \mid X)$

$$
n^{-1} \sum_{t=1}^{n} \phi\left(\Lambda_{t}\right) \longrightarrow E(\phi(\Lambda) \mid X)
$$

converges as $n \rightarrow \infty$ by the ergodic theorem for Markov Chains.

Example...(cont)

In our example above

$$
\pi(\lambda \mid x) \propto \lambda^{a+x-1} e^{-(b+1) \lambda}
$$

Suppose $a=3, b=4.2$, we observe $x=0$ and we want to estimate $\operatorname{Pr}(\Lambda>1 \mid x)$. Give an MCMC algorithm targeting $\pi(\lambda \mid x)$ and use the simulation to form the estimate.
[Step 1] Choose a proposal density $q\left(\lambda^{\prime} \mid \lambda\right)$ for the candidate state λ^{\prime}. I will use

$$
\lambda^{\prime} \sim U(\lambda-d, \lambda+d)
$$

I will start with $d=1$ but may need to adjust d to get an efficient algorithm, as we have seen. Since $q\left(\lambda^{\prime} \mid \lambda\right)>0=q\left(\lambda \mid \lambda^{\prime}\right)$ we clearly have $q\left(\lambda^{\prime} \mid \lambda\right)>0 \Leftrightarrow q\left(\lambda \mid \lambda^{\prime}\right)>0$.
[Step 2] Write down the Metropolis Hastings MCMC algorithm. Let $\Lambda_{t}=\lambda . \Lambda_{t+1}$ is determined in the following way.
[1] Simulate $\lambda^{\prime} \sim U(\lambda-d, \lambda+d)$ and $u \sim U(0,1)$.
[2] If $u<\alpha\left(\lambda^{\prime} \mid \lambda\right)$ set $\Lambda_{t+1}=\lambda^{\prime}$ else set $\Lambda_{t+1}=\lambda$.
[Step 3] Calculate $\alpha\left(\lambda^{\prime} \mid \lambda\right)$. If $\lambda^{\prime}<0, \alpha\left(\lambda^{\prime} \mid \lambda\right)=0$, so we reject if we leave $[0, \infty)$. Otherwise, if $\lambda^{\prime}>0$,

$$
\begin{aligned}
\alpha\left(\lambda^{\prime} \mid \lambda\right) & =\min \left\{1, \frac{\pi\left(\lambda^{\prime} \mid x\right) q\left(\lambda \mid \lambda^{\prime}\right)}{\pi(\lambda \mid x) q\left(\lambda^{\prime} \mid \lambda\right)}\right\} \\
& =\min \left\{1,\left(\lambda^{\prime} / \lambda\right)^{a+x-1} e^{-(b+1)\left(\lambda^{\prime}-\lambda\right)}\right\}
\end{aligned}
$$

There is a [step 4]: check irreduciblity (in computer measure, at least). If this is not obvious (as here, where the random-walk proposal can reach any part of $[0, \infty)$, and α is never zero in the space) then check carefully.

```
bayes.example<-function(n,a,b,x,lm0=1,d=1) {
    Lambda<-numeric(n)
    lm<-lm0
    for (k in 1:n) {
        lm.p<-runif(1,lm-d,lm+d)
        MHR<-(lm.p/lm)^ (x+a-1)*exp (- (b+1)*(lm.p-lm))
        if (runif(1)<MHR*(lm.p>0)) lm<-lm.p
        Lambda[k]<-lm
    }
    return(Lambda)
}
> Lm<-bayes.example(n=1000,a=3,b=4.2,x=0)
> #convert boolean to numeric
v<-as.numeric(Lm>1);
> mean(v)
[1] 0.077
#see file for std error & checking
```

The Ising Model Let

$$
X=\left(X_{i_{1}, i_{2}}\right)_{i_{1}=1: n}^{i_{2}=1: n}, \quad X_{i_{1}, i_{2}} \in\{0,1\}
$$

be a collection of binary rv . The set C of cell indices is

$$
C=\left\{\left(i_{1}, i_{2}\right): i_{1}, i_{2} \in\{1,2, \ldots, n\}\right\}
$$

These variables live on an $n \times n$ square lattice so we can represent X by a black and white image. If $i, j \in C$ are two cells on the lattice, $i \sim j$ indicates the relation "cell i is a neighbor of cell j on the lattice".

Two neighboring cells $i \sim j$ agree if $X_{i_{1}, i_{2}}=X_{j_{1}, j_{2}}$ and otherwise they disagree.

Let $X=x$ be a particular realization of X. Let

$$
\# x=\sum_{i \in C} \sum_{j \sim i} \mathbb{I}\left(X_{i_{1}, i_{2}} \neq X_{j_{1}, j_{2}}\right)
$$

$\# x$ is a function of x giving the number of disagreeing neighbours in the image x. For example, in this realization of $X, \# x=12$.

Denote by $\Omega=\{0,1\}^{n^{2}}$ the set of all binary images X. The Ising model is the following distribution over Ω :

$$
\pi(x)=\exp (-\theta \# x) / Z
$$

Here θ is a smoothing parameter which is usually taken to be greater than zero. Z is a normalizing constant, given by

$$
Z=\sum_{x \in \Omega} \exp (-\theta \# x)
$$

Expectations in $X \sim \pi(x)$ are typically hopelessly intractable and Z can not be evaluated for large n on the lattice we have here (it can be evaluated for certain special "boundary conditions").

Here is a sample $x \sim \pi(x)$, from the Ising model distribution $\pi(x)=\exp (-\theta \# x) / Z$ with $n=32$ and $\theta=0.8$.

MCMC for the Ising Model

Here is an MCMC algorithm simulating the Ising Model. We will simulate a sequence $X^{(1)}, X^{(2)}, \ldots$ of "Ising" images, targeting $\pi(x) \propto \exp (-\theta \# x)$. Suppose $X^{(t)}=x$.
[Step 1] Choose an update. Here is something simple. Choose a cell $i=\left(i_{1}, i_{2}\right)$ at random from C. Set $x_{i_{1}, i_{2}}^{\prime}=1-x_{i_{1}, i_{2}}$ and $x_{j_{i}, j_{2}}^{\prime}=x_{j_{i}, j_{2}}$ for $j \neq i$. Notice that $q\left(x^{\prime} \mid x\right)=q\left(x \mid x^{\prime}\right)=1 / n^{2}$ for x^{\prime}, x differing at exactly one cell.
[Step 2] Write down the algorithm. Let $X^{(t)}=x . X^{(t+1)}$ is determined in the following way.
[1] Simulate $x^{\prime} \sim q\left(x^{\prime} \mid x\right)$ as above, and $u \sim U(0,1)$.
[2] If $u<\alpha\left(x^{\prime} \mid x\right)$ set $X^{(t+1)}=x^{\prime}$ and otherwise set $X^{(t+1)}=x$.
[Step 3] Calculate α. The q 's cancel as usual, so

$$
\begin{aligned}
\alpha\left(x^{\prime} \mid x\right) & =\min \left\{1, \frac{\pi\left(x^{\prime}\right) q\left(x \mid x^{\prime}\right)}{\pi(x) q\left(x^{\prime} \mid x\right)}\right\} \\
& =\min \left\{1, \exp \left(-\theta\left(\# x^{\prime}-\# x\right)\right)\right\}
\end{aligned}
$$

It is clear the algorithm is irreducible (q is irreducible and α is never zero) and aperiodic (rejection is possible), so it is ergodic for $\pi(x)$.

```
n<-32; theta<-0.8
X<-matrix(runif(n^2)>1/2,n,n) #random start state
hashX<-sum(abs(diff(X))+abs(diff(t(X))))
N<-20000
for (j in 1:N) {
    i<-1+floor(runif(1)*n`2)
    Xp<-X
    Xp[i]<-1-X[i]
    hashXp<-sum(abs(diff(Xp))+abs(diff(t(Xp))))
    if (runif(1)<exp(theta*(hashX-hashXp))) {
        X<-Xp
        hashX<-hashXp
    }
    image(X,col=gray(0:255/255), axes=F); box()
}
```

