
Part A Simulation and Statistical Programming HT14

Lecturer: Geoff Nicholls

University of Oxford

Lecture 13: MCMC for Bayesian Inference; The Ising Model

Notes and Problem sheets are available at

www.stats.ox.ac.uk\ ∼nicholls\PartASSP

Bayesian Inference

If λ ∼ π(λ) is a parameter and x ∼ p(x|λ) is data then it is

natural to consider the posterior distribution of λ,

π(λ|x) =
p(x|λ)π(λ)

m(x)
.

Here m(x) =
∫

p(x|λ)π(λ)dλ is a normalizing constant.

We learn about the unknown true value of the parameter, Λ say,

by combining our prior knowledge (π(λ)) with what we learn

from the data (in the likelihood L(λ; x) = p(x|λ)).

If λ ∼ π(λ) is a repeatable process then there is nothing much

new here. However, in Bayesian inference, the prior π(λ) often

describes a state of knowledge: λ-values where π(λ) is larger are

a priori more likely to be the true values.

We can answer questions about Λ using π(λ|x). If A is a set of

λ-values then the probability that λ is in A (given the prior and

observation models) is

Pr(Λ ∈ A|x) =

∫

A
π(λ|x)dλ.

The expected value of λ (given ...) is

E(Λ|x) =

∫

λπ(λ|x)dλ.

As we can see, many objects of importance for Bayesian inference

are expectations.

Example Suppose Λ is the mean of a Poisson distribution, and

we want to know if Λ > 1. Suppose the prior for λ is λ ∼
Gamma(a, b) with a, b > 0 given, and we observe x ∼ Poisson(λ).

The prior for λ is

π(λ) ∝ λa−1e−bλ.

The likelihood is

L(λ; x) ∝ λxe−λ,

and the posterior is

π(λ|x) ∝ L(λ; x)π(λ)

= λa+x−1e−(b+1)λ,

so the posterior distribution of λ is λ ∼ Gamma(a + x, b + 1).

We want to estimate Pr(Λ > 1|x). We need to compute

Pr(Λ > 1|x) =

∫∞
1 π̃(λ|x)

∫∞
0 π̃(λ|x)

where λa+x−1e−(b+1)λ,

This is quite tractable in this example, but in general these in-

tegrals will be a dead end for pencil and paper work.

MCMC and Bayesian inference

Bayesian inference is widely applied to complex multivariate pri-

ors and likelihoods. The posterior expectations E(φ(Λ)|X) are

hopelessly complex to evaluate.

We run MCMC targeting the posterior π(λ|x) and simulate

Λ1 = λ1, ..., Λn = λn

ergodic for π(λ|x). Our estimate for E(φ(Λ)|X)

n−1
n

∑

t=1

φ(Λt) −→ E(φ(Λ)|X)

converges as n → ∞ by the ergodic theorem for Markov Chains.

Example...(cont)

In our example above

π(λ|x) ∝ λa+x−1e−(b+1)λ.

Suppose a = 3, b = 4.2, we observe x = 0 and we want to esti-

mate Pr(Λ > 1|x). Give an MCMC algorithm targeting π(λ|x)
and use the simulation to form the estimate.

[Step 1] Choose a proposal density q(λ′|λ) for the candidate

state λ′. I will use

λ′ ∼ U(λ − d, λ + d)

I will start with d = 1 but may need to adjust d to get an efficient

algorithm, as we have seen. Since q(λ′|λ) > 0 = q(λ|λ′) we

clearly have q(λ′|λ) > 0 ⇔ q(λ|λ′) > 0.

[Step 2] Write down the Metropolis Hastings MCMC algorithm.

Let Λt = λ. Λt+1 is determined in the following way.

[1] Simulate λ′ ∼ U(λ − d, λ + d) and u ∼ U(0, 1).
[2] If u < α(λ′|λ) set Λt+1 = λ′ else set Λt+1 = λ.

[Step 3] Calculate α(λ′|λ). If λ′ < 0, α(λ′|λ) = 0, so we reject

if we leave [0,∞). Otherwise, if λ′ > 0,

α(λ′|λ) = min

{

1,
π(λ′|x)q(λ|λ′)

π(λ|x)q(λ′|λ)

}

= min
{

1, (λ′/λ)a+x−1e−(b+1)(λ′−λ)
}

.

There is a [step 4]: check irreduciblity (in computer measure, at

least). If this is not obvious (as here, where the random-walk

proposal can reach any part of [0,∞), and α is never zero in the

space) then check carefully.

bayes.example<-function(n,a,b,x,lm0=1,d=1) {
Lambda<-numeric(n)
lm<-lm0
for (k in 1:n) {
lm.p<-runif(1,lm-d,lm+d)
MHR<-(lm.p/lm)^(x+a-1)*exp(-(b+1)*(lm.p-lm))
if (runif(1)<MHR*(lm.p>0)) lm<-lm.p
Lambda[k]<-lm

}
return(Lambda)

}
> Lm<-bayes.example(n=1000,a=3,b=4.2,x=0)
> #convert boolean to numeric
> v<-as.numeric(Lm>1);
> mean(v)
[1] 0.077
#see file for std error & checking

The Ising Model Let

X = (Xi1,i2)
i2=1:n
i1=1:n, Xi1,i2 ∈ {0, 1}

be a collection of binary rv. The set C of cell indices is

C = {(i1, i2) : i1, i2 ∈ {1, 2, ..., n}}.

These variables live on an n×n square lattice so we can represent

X by a black and white image. If i, j ∈ C are two cells on the

lattice, i ∼ j indicates the relation “cell i is a neighbor of cell j
on the lattice”.

Two neighboring cells i ∼ j agree if Xi1,i2 = Xj1,j2 and other-

wise they disagree.

Let X = x be a particular realization of X. Let

#x =
∑

i∈C

∑

j∼i

I(Xi1,i2 6= Xj1,j2).

#x is a function of x giving the number of disagreeing neighbours

in the image x. For example, in this realization of X, #x = 12.

Denote by Ω = {0, 1}n2
the set of all binary images X. The

Ising model is the following distribution over Ω:

π(x) = exp(−θ#x)/Z.

Here θ is a smoothing parameter which is usually taken to be

greater than zero. Z is a normalizing constant, given by

Z =
∑

x∈Ω

exp(−θ#x).

Expectations in X ∼ π(x) are typically hopelessly intractable and

Z can not be evaluated for large n on the lattice we have here

(it can be evaluated for certain special “boundary conditions”).

Here is a sample x ∼ π(x), from the Ising model distribution

π(x) = exp(−θ#x)/Z with n = 32 and θ = 0.8.

MCMC for the Ising Model

Here is an MCMC algorithm simulating the Ising Model. We will

simulate a sequence X(1), X(2), ... of “Ising” images, targeting

π(x) ∝ exp(−θ#x). Suppose X(t) = x.

[Step 1] Choose an update. Here is something simple. Choose

a cell i = (i1, i2) at random from C. Set x′i1,i2
= 1 − xi1,i2 and

x′ji,j2
= xji,j2 for j 6= i. Notice that q(x′|x) = q(x|x′) = 1/n2

for x′, x differing at exactly one cell.

[Step 2] Write down the algorithm. Let X(t) = x. X(t+1) is

determined in the following way.

[1] Simulate x′ ∼ q(x′|x) as above, and u ∼ U(0, 1).

[2] If u < α(x′|x) set X(t+1) = x′ and otherwise set X(t+1) = x.

[Step 3] Calculate α. The q’s cancel as usual, so

α(x′|x) = min

{

1,
π(x′)q(x|x′)

π(x)q(x′|x)

}

= min
{

1, exp(−θ(#x′ − #x))
}

It is clear the algorithm is irreducible (q is irreducible and α is

never zero) and aperiodic (rejection is possible), so it is ergodic

for π(x).

n<-32; theta<-0.8

X<-matrix(runif(n^2)>1/2,n,n) #random start state

hashX<-sum(abs(diff(X))+abs(diff(t(X))))

N<-20000

for (j in 1:N) {

i<-1+floor(runif(1)*n^2)

Xp<-X

Xp[i]<-1-X[i]

hashXp<-sum(abs(diff(Xp))+abs(diff(t(Xp))))

if (runif(1)<exp(theta*(hashX-hashXp))) {

X<-Xp

hashX<-hashXp

}

image(X,col=gray(0:255/255),axes=F); box()

}

