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Recall the Metropolis Hastings MCMC algorithm

MCMC targeting p(x) = p̃(x)/Zp using proposal Y ∼ q(y|x).

Let Xt = x. Xt+1 is determined in the following way.

[1] Draw y ∼ q(·|x) and u ∼ U [0, 1].
[2] If

u ≤ α(y|x) where α(y|x) = min

{

1,
p̃(y)q(x|y)

p̃(x)q(y|x)

}

set Xt+1 = y, otherwise set Xt+1 = x.

We initialise this with X0 = x0, p(x0) > 0 and iterate for t =
1, 2, 3, ...n to simulate the samples X0, X1, X2, ...Xn we need.



MCMC for the Normal distribution

Suppose want to simulate the standard normal distribution X ∼
N(0, 1). The target density is

p̃(x) ∝ exp(−x2/2).

Step 1: Choose the proposal distribution. We need something

simple and irreducible. Fix a constant a > 0 and choose a new

point uniformly at random in a window of length 2a centred at

x. The proposal density is

q(y|x) =
1

2a
Ix−a<y<x+a

Notice that q(y|x) = q(x|y).



Step 2: give the MCMC algorithm. If Xt = x then Xt+1 is

determined in the following way:

[1] Simulate Y ∼ U(x − a, x + a) and U ∼ U(0, 1).

[2] If U ≤ α(y|x) set Xt+1 = y and otherwise set Xt+1 = x.

Here

α(y|x) = min

(

1,
p̃(y)q(x|y)

p̃(x)q(y|x)

)

= min
(

1, exp(−y2/2 + x2/2)
)

.



#MCMC simulate X_t ~ N(0,1)

a=3; n=2000

X=numeric(n); X[1]=0;

for (t in 1:(n-1)) {

x<-X[t]

y<-x+(2*runif(1)-1)*a

if (runif(1)<exp((x^2-y^2)/2)) {

X[t+1]<-y

} else {

X[t+1]<-x

}

}



(see the associated R-file for plotting commands)
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MH example: an equal mixture of bivariate normals

π(θ) = (2π)−1
(

0.5e−(θ−µ1)Σ
−1
1 (θ−µ1)/2 + 0.5e−(θ−µ2)Σ

−1
2 (θ−µ2)/2

)

with θ = (θ1, θ2). Use µ1 = (1, 1)T , µ2 = (5, 5)T and Σ1 =
Σ2 = I2 for this illustration.

Step 1. For a proposal distribution q we want something simple

to sample. The simplest thing I can think of is the same as

before:

θ′i ∼ U(θi − a, θi + a)

with a a fixed constant. Note that this time we are proposing in

a box of side 2a. That is easy to sample, and certainly q(θ′|θ) >
0 ⇔ q(θ|θ′) > 0 since q(θ′|θ) = q(θ|θ′) = 1/4a2.



Step 2. The algorithm is, given θ(n) = θ,
[1] for i = 1, 2 simulate θ′i ∼ U(θi − a, θi + a)
[2] with probability

α(θ′|θ) = min

{

1,
π(θ′)

π(θ)

}

set θ(n+1) = θ′ otherwise set θ(n+1) = θ.

This algorithm is ergodic for any a > 0 but we will see that the

choice of a makes a difference to efficiency.



a=3; n=2000
mu1=c(1,1); mu2=c(5,5); S=diag(2); S1i=S2i=solve(S);
X=matrix(NA,2,n); X[,1]=x=mu1
for (t in 1:(n-1)) {

y<-x+(2*runif(2)-1)*a
MHR<-f(y,mu1,mu2,S1i,S2i)/f(x,mu1,mu2,S1i,S2i)
if (runif(1)<MHR) x<-y
X[,t+1]<-x

}

#MCMC simulate X_t according to a mixture of normals
f<-function(x,mu1,mu2,S1i,S2i,p1=0.5) {

#mixture of normals, density up to constant factor
c1<-exp(-t(x-mu1)%*%S1i%*%(x-mu1))
c2<-exp(-t(x-mu2)%*%S2i%*%(x-mu2))
return(p1*c1+(1-p1)*c2)

}



(see the associated R-file for plotting commands)
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Convergence and mixing

We want to estimate Ep(f(X)) using our MCMC samples X0, X1, X2, ..., Xn

targeting p(x) and calculate the estimate f̄n = n−1∑
t f(Xt).

The ergodic theorem tells us this estimate converges in proba-

bility to Ep(f(X)).

How large should we take n? There are two issues.

First, suppose p(0)(x) = p(x), so we start the chain in equi-

librium. The variance, var(f̄n), of f̄n will get smaller as n in-

creases. We should choose n large enough to ensure var(f̄n) is

small enough so that f̄n has useful precision. However, calcu-

lating var(f̄n) wont be completely straightforward as the MCMC

samples are correlated.



Second, we dont start the chain in equilibrium. The samples in

the first part of the chain are biased by the initialization. It is

common practice to drop the first part of the MCMC run (called

“burn-in”) to reduce the initialization bias. We know p(t) → p
as → ∞ and want to choose a cut-off T beyond which p(t) ≃ p
to a good approximation. We need n ≫ T so that most of the

samples are representative of p.

Note that if n ≫ T then the bias from burn-in will be slight

anyway. One observation here is that if you need to drop states

from the start of the chain to reduce this bias, you probably

havnt run the chain long enough.

The following figures show autocorrelations for two MCMC runs

of the N(0,1) sampler above, with different values of the jump

size a = 0.5, 3.
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MCMC variance in equilibrium

X0, X1, X2, ... are correlated so var(f̄n) 6= var(f(X))/n in gen-

eral.

Correlation at lag s

ρ
(f)
s =

cov(f(Xi), f(Xi+s))

var(f(Xi))

(so ρ0 = 1). Let σ2 = var(f(Xi)). This doesnt depend on i
because the chain is stationary, because it was started in equi-

librium.

Express var(f̄n) in terms of ρ
(f)
s . This gives insight and leads to

an estimator for var(f̄n), since we can estimate ρ
(f)
s .



var(f) = n−2
n
∑

i=1

n
∑

j=1

cov(f(Xi), f(Xj))

= σ2n−2
n
∑

i=1

n
∑

j=1

ρ|i−j|

= σ2n−1



1 + 2
n−1
∑

s=1

(

1 −
s

n

)

ρs





≃ σ2n−1



1 + 2
n−1
∑

s=1

ρs





= σ2τf/n,

if as usual ρs is small when s is large. τf is called the integrated

autocorrelation time. The quantity ESS= n/τf is called the

effective sample size - the number of independent samples that

would give the same precision for f as the n correlated samples

we actually have.



MCMC convergence

There is no simple generic sufficient condition we can test for

convergence. Here some checks we can run to detect poor mix-

ing and identify a burn-in and run length.

[1] Make multiple runs from different start states and check

marginal distributions agree.

[2] Calculate the ESS and check it is reasonably large.

[3] Plot MCMC traces of the variables and key functions. The

chain should be stationary after burn-in.

Here is an example of the plots I would use for convergence

checking on the N(x; 0, 1) MCMC sampler.
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