Part A Simulation and Statistical programming HT14

Geoff Nicholls

Lecture 11: Solving Linear Systems. Optimization.

Overview for lecture 11

1. R commands for matrices and vectors (reference slides)
2. Solving linear systems $A x=b$.
(a) Forwards and Backwards substitution
(b) Solving $A x=b$ for full rank A using $L U$ factorization
(c) Regression.
(d) Over-determined systems. Numerical stability and QR factorization.

Solving linear systems
Suppose A is a real $n \times p$ matrix of rank p with $p \leq n$, and entries $a_{i, j}$, and b is an $n \times 1$ real vector.

Many important numerical problems reduce to

$$
\text { solve } A x=b \text { for } x
$$

If $p<n$, then the system is over-determined. We come back to this case later. We will look at how the equations $A x=b$ may be solved when $p=n$ so that A^{-1} exists and $x=A^{-1} b$.

R has a function solve (A) returning A^{-1} so we could compute

$$
x=\operatorname{solve}(A) \% * \% b .
$$

We will see that this is inefficient and numerically unstable, and find that the best method depends on the properties of A.

Forward and Backward elimination

Suppose A is lower triangular so that $a_{i, j}=0$ for $i>j$. Solve $A x=b$ for x using forward substitution. Chop the n equations in $A x=b$ into blocks

$$
A=\left(\begin{array}{cc}
a_{11} & 0_{1 \times(n-1)} \\
A_{21} & A_{22}
\end{array}\right)
$$

Here $A_{21}=A_{2: n, 1}$ is $(n-1) \times 1$ and $A_{22}=A_{2: n, 2: n}$ is itself lower triangular and $(n-1) \times(n-1)$. Now $A x=b$ is

$$
\left(\begin{array}{cc}
a_{11} & 0_{1 \times(n-1)} \\
A_{21} & A_{22}
\end{array}\right)\binom{x_{1}}{x_{2: n}}=\binom{b_{1}}{b_{2: n}}
$$

The top row of the matrix says $a_{11} x_{1}=b_{1}$ so $x_{1}=b_{1} / a_{11}$.

The bottom block of the matrix has $(n-1)$ rows

$$
\begin{aligned}
\left(\begin{array}{ll}
A_{21} & A_{22}
\end{array}\right)\binom{x_{1}}{x_{2: n}} & =b_{2: n} \\
A_{21} x_{1}+A_{22} x_{2: n} & =b_{2: n} \\
A_{22} x_{2: n} & =b_{2: n}-A_{21} x_{1} \\
\tilde{A} \tilde{x} & =\tilde{b} \quad \text { now }(n-1) \times(n-1)
\end{aligned}
$$

We are left with a smaller version of the problem we started with.
It took $2(n-1)+1$ additions, subtractions, multiplications and divisions (called 'flops') to solve for x_{1} and calculate \tilde{A} and \tilde{b}. Since $\sum_{i=1}^{n}(2 i-1)=n^{2}$, forward solving is n^{2} flops.

R has forwardsolve(A, b) for forward elimination for $n \times n$ lower triangular A and $n \times 1 \mathrm{~b}$. There is backsolve(A,b) for backward elimination on upper triangular A .

LU factorization

The most efficient method for solving $A x=b$ for a general full rank $n \times n$ square matrix is to factorize

$$
A=L U
$$

into a lower L and upper U triangular matrices * at a cost of $2 n^{3} / 3+O\left(n^{2}\right)$ flops (we havn't proven this, it's just assertion) and then solving $L U x=b$ by setting $y=U x$ and then

$$
\text { solving } L y=b \text { (forwards) }
$$

and then

$$
\text { solving } U x=y \text { (backwards). }
$$

The function solve(A, b) uses this method. The two elimination steps take $2 n^{2}$ flops so the leading term in the number of flops is $2 n^{3} / 3$.

[^0]
Normal linear models

Consider the aids data
> d = read.table("AIDS.txt")
> head(d)
cases time time.sq
$1 \quad 185 \quad 1 \quad 1$
$2 \quad 200 \quad 2 \quad 4$
$3 \quad 293 \quad 3 \quad 9$
$\begin{array}{llll}4 & 374 & 4 & 16\end{array}$
$\begin{array}{llll}5 & 554 & 5 & 25\end{array}$
$6 \quad 713 \quad 6 \quad 36$
> ($\mathrm{n}<-\operatorname{dim}(\mathrm{d})[1])$
[1] 25

Suppose we want to fit the normal linear regression model

$$
y_{i}=\alpha+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\varepsilon_{i}, \quad i=1,2, \ldots, n
$$

with y_{i} the number of cases in month x_{i}, and $\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)$ iid normal errors. In vector form the model is

$$
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\cdot \\
\cdot \\
\cdot \\
y_{n}
\end{array}\right)=\left(\begin{array}{ccc}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
1 & x_{n} & x_{n}^{2}
\end{array}\right)\left(\begin{array}{c}
\alpha \\
\beta_{1} \\
\beta_{2}
\end{array}\right)+\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\cdot \\
\cdot \\
\cdot \\
\varepsilon_{n}
\end{array}\right)
$$

or

$$
y=X \theta+\varepsilon
$$

with $\theta=\left(\alpha, \beta_{1}, \beta_{2}\right)^{T}$ etc.

The R commands to fit this normal linear model are
d.lm=lm(cases \sim time+time.sq,data=d)
summary (d.lm)
Here $\mathrm{d} . \mathrm{lm}$ is a list full of results from the model fit output by $\operatorname{lm}()$. Notice the R formula notation cases \sim time+time.sq.

The columns of summary (d.lm) output give $\hat{\theta}_{i}$, an estimate $\hat{\sigma}_{i}$ of the error in $\hat{\theta}_{i}$, and columns for the test $\mathrm{HO}: \theta_{i}=0$.

If the model is good, the regression should interpolate the data with normal residuals $y-X \hat{\theta}$. We can check this using a normal qq-plot for the residuals, qqnorm(residuals(d.lm)); qqline(residuals(d.lm)).

What's inside the lm() box?
The equations $X \theta=y$ are over-determined (more equations than variables, $n>p$, we cant expect a solution), so minimize $R(\theta)=(y-X \theta)^{T}(y-X \theta)$; get $X \theta$ as close as we can to y.

$$
\begin{aligned}
R(\theta) & =\sum_{i=1}^{n}\left(y_{i}-\alpha-\beta_{1} x_{i}-\beta_{2} x_{i}^{2}\right)^{2} \\
& =(y-X \theta)^{T}(y-X \theta) \\
& =(X \theta)^{T} X \theta-2 y^{T} X \theta+y^{T} y
\end{aligned}
$$

Taking partial derivatives wrt θ and imposing $\frac{\partial R}{\partial \theta}=0$ (p equations) leads to the p normal equations

$$
X^{T} X \theta=X^{T} y
$$

for θ in this over-determined system. This is $A x=b$ with $A=$ $X^{T} X, x=\theta$ and $b=X^{T} y$.

Solving the normal equations using $Q R$ factorization

We could use LU factorization to solve the normal equations. However QR factorization is usually best as it is more stable numerically.

$$
X=\left(\begin{array}{cc}
1 & -1 \\
0 & 10^{-10} \\
0 & 0
\end{array}\right) \quad X^{T} X=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1+10^{-20}
\end{array}\right)
$$

At machine precision $1+10^{-20}$ and 1 are equal so $X^{T} X$ appears to be singular. Any method (like LU) that solves $\left(X^{T} X\right) \theta=$ $X^{T} y$ by first computing $X^{T} X$ will fail on this problem.

Instead, factorize $X=Q R$ (Q is $n \times p$ and orthogonal, so $Q^{T} Q=I_{p \times p}$, and R is $p \times p$, upper triangular, and has positive
entries on the diagonal). This takes $2 n p^{2}$ flops (assertion). Since

$$
X^{T} X=R^{T} Q^{T} Q R,
$$

the normal equations

$$
X^{T} X \theta=X^{T} y
$$

are

$$
R^{T} R \theta=R^{T} Q^{T} y
$$

We can solve these by

$$
\text { solving } R \theta=Q^{T} y \text { (backwards) }
$$

($n p+p^{2}$ flops) for an overall leading order cost of $2 n p^{2}$ flops. The functions qr.solve (X,y) and $\operatorname{lm}()$ use this method. LU would take $n p^{2}$ but may fail.

In R,

$$
\mathrm{X}=\mathrm{cbind}(\mathrm{rep}(1, \mathrm{n}), \mathrm{d} \$ \text { time }, \mathrm{d} \$ \mathrm{time} . \mathrm{sq})
$$

followed by
d.theta=qr.solve(X,d\$cases)
to give the regression parameters.

[^0]: *if there is no $L U$ factorization we seek $A=P L U$ with P a permutation.

