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Denote by P} ; = P(Xy—1 = j|X¢ = 4) the transition matrix for
the time-reversed chain.

It seems clear that a Markov chain will be reversible if and only
if P = P! so that any particular transition occurs with equal
probability in forward and reverse directions.

Theorem.
(I) If there is a probability mass function 7 (7),7 € § satisfying

(i) > 0, > ;eqm(i) =1 and
“Detailed balance”: 7(:)P; ; = w(j)Pj; for all pairs 2,7 € (2,

then m = wP so 7 is stationary for P.

(II) If in addition p(O) = 7 then P/ = P and the chain is reversible
with respect to .



Proof of (I): sum both sides of detailed balance equation over
i € Q2. Now > ; P, =1s0 3, m(i)P;; = m(j).

Proof of (II), we have 7 a stationary distribution of P so P(X; =
i) = m(2) for all t = 1,2, ... along the chain. Then

P!, = P(Xi—1 =j|X¢ = 1)
P(X¢—1=17)
P( X+ = 1)
P; ;m(j)/m(i) (stationarity)

P; ; (detailed balance).

= P(X¢t =1 X¢_1=17) (Bayes rule)




Convergence and the Ergodic Theorem

If the (finite state space) MC is irreducible and aperiodic then
the stationary distribution is unique and p(t) — mast— oo. If
we simulate the MC X, X1, ...Xn to large enough n from any
start Xg = xg then since X3 ~ pt and pt ~ 7 at large ¢, 'most’
of the samples are 'nearly’ distributed according to .

We will use {Xt}?’z_ol to estimate E,(¢(X)). The ‘obvious’ es-
timator is

A 1 n—1
an — Z Qb(Xt),
=0

but the X; are correlated and only converge in distribution to .



Theorem. If {X;}7°, is an irreducible and aperiodic Markov
chain on a finite space of states {2, with stationary distribution
m then, as n — oo, for any bounded function ¢ : 2 — R,

P(Xn=1) —7(t) and ¢, — Ep(o(X)).
We refer to such a chain as ergodic with equilibrium 7.
In Part A Probability the Ergodic theorem asks for positive recur-

rent Xqg, X1, X9,.... It is simpler here because we are assuming
a finite state space for the Markov chain.

We would like a CLT for ¢y, and confidence intervals j:\/var(qgn).
A CLT does hold for all the examples discussed later but this is
a little beyond us at this point.



The Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm determines a Markov
Chain ergodic for your given target distribution (p say).

MCMC is an algorithm for simulating X;y1 given X;. The algo-
rithm determines the transition probabilities P(X¢11 = 7| Xt =
i) and the transition matrix P. We have to choose the algo-
rithm so that the MC is ergodic for p. The transition matrix it
simulates should satisfy pP = p.

Let p(x) = p(x)/Zp be the pmf on finite state space =
{1,2,...,m}. We will call p the (pmf of the) target distribu-
tion.

To set things up, first choose a ‘proposal’ transition matrix
q(y|x) which is simple to simulate, easy to calculate, irreducible,
and satisfying q(z|y) > 0 = q(y|x) > 0.



Claim: The following algorithm simulates a Markov chain. If
the the chain is irreducible and aperiodic then it is ergodic with
equilibrium distribution p.

Let Xy = x. X411 is determined in the following way.

[1] Draw y ~ q(:|z) and u ~ U|0, 1].
2] If

"p(x)q(y|z)

ﬁ(y)Q(xly)}

u < a(y|r) where a(y|r) = min {1
set X;411 = y, otherwise set X;,1 = .

We initialise this with X = xq, p(xg) > 0 and iterate for t =
1,2,3,...n to simulate the samples X, X1, X9, ...X; we need.



Proof: By the ergodic theorem it is sufficient to show that the
Markov chain determined by the random MCMC update has p
as a stationary distribution.

We will compute the transition matrix P and show it satisfies
detailed balance,

Px7y p(az) — Py,x p(y)a
since that implies p = pP.

We don’'t need to calculate Pry when x = y as DB is clear.
Suppose y # xz. If Xy = x, then the probability Py, to move
to Xt+1 — y at the next step is the probability to propose y at
step 1 times the probability to accept it at step 2, so

Pry = P(Xt+1 = ?J|Xt = 5’3) — q(y|w)oz(y|a:).



Now check DB:

p()Pr,y

and we are done.

= p(x)q(y|z)a(y|x)

p(y)Q(xly)}

p(x)q(y|r) min {1’ p(x)q(ylx)

min {p(x)q(y|z), p(y)q(z|y) }

p(y)q(x|y) min {p(w)qwlx) 1)}

p(y)q(z|y)’

p(y)q(z|y)a(z|y)

p(y)Py,w



Example: Simulating a Discrete Distribution
Let p(2) = 1/Zp with Zp =371 | 4.
Give a MH MCMC algorithm ergodic for p(i),7 = 1,2, ..., m.

Step 1: Choose a proposal distribution ¢(j|i). It needs to be
easy to simulate and determine a irreversible chain.

A simple distribution that 'will do’ is Y ~ U{1,2, ..., m}, so
q(t1) =1/m, i=1,2,...,m.

This proposal scheme is clearly irreducible (we can get from A
to B in a single hop) and satisfies q(x|y) > 0 = q(y|x) > 0
(since q is constant).



Step 2: write down the algorithm.

If Xy = x, then X;41 is determined in the following way.
[1] Simulate y ~ U{1,2,...,m} and u ~ U[0, 1].

2] If
< min{l ﬁ(y)Q(wa)}
- 'p(z)q(y|x)

= min {1, g}
x

set Xy41 =y, otherwise set X;11 = x.




#MCMC simulate X_t according to p=[1:m]/sum(1l:m).
m<-30
n<-10000; X<-rep(NA,n); X[1]<-1
for (t in 1:(n-1)) {
x<-X[t]
y<-ceiling(m*runif (1))
a<-min(1,y/x)
U<-runif (1)
if (U<=a) A
X[t+1]<-y
} else {
X[t+1]<-x
+



Left: x-axis is Markov chain step counter t = 1,2, 3...200 and
y-axis is Markov chain state X; for p(i) = 4,2 = 1,2,...,m,
m = 30.

Right: histogram of Xy, Xo, ..., Xy for n = 1000.
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Example: Simulating a Poisson Distribution
We want to simulate p(z) = e % /z! oc A% /!

Step 1: Define the proposal. We want something simple to

simulate with a simple density. We use
1

5 fory=x=x1
— 2
q(ylz) { 0 otherwise,

i.e. toss a coin and add or subtract 1 to x to obtain y.



Step 2: Write down the algorithm, giving the acceptance prob-
ability a(y|x) in closed form.

If Xy = x, then X;;1 is determined in the following way.
[1] Simulate y ~ U{xz — 1,z + 1} and u ~ U|0, 1].

[2] The acceptance probability is a(y|r) = min{l ﬁ(y)q(ww)}.

> p(x)q(ylz)
If y = —1 then a = 0. Otherwise,
1, %_H) ify=x+1

min 1,%) ify—=x—1

min
a(ylr) =

If u < a(y|r), set X¢11 =y, otherwise set X311 = .



MCMC for state spaces which are not finite Does this work for
continuous rv? Computers use the “computer measure”. The
reals are discretised.

Let ™ be the computer truncation of z and dx = {y : z* = = }.
The length |dx| of the cell containing x is not constant. Roughly
6x|/x ~ 10719, 7(x) is approximated by [m(x)]*.

The Hastings ratio we compute is

P la(zly)]" _ [pW)I*0yllg(z]y)]*[0x]
p(z)]*[q(y|x)]* p(z)]*|6z|[q(y|z)]*[dy|
Pr(Y € éy) Pr(X € dz|Y = y)
Pr(X € éx) Pr(Y € dy|X = x)
since Pr(X € dx) ~ [p(x)]*|dx| etc. If we apply this to densi-
ties, we simulate the approximate distribution. Our discussion
of Markov chains on finite spaces is relevant.
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MCMC for the Normal distribution

Suppose want to simulate the standard normal distribution X ~
N(0,1). The target density is

~ 2

p(x) o< exp(—z~/2).
Step 1: Choose the proposal distribution. We need something
simple and irreducible. Fix a constant a > 0 and choose a new
point uniformly at random in a window of length 2a centred at
x. The proposal density is

(y|z) L
rT) = —Illr_
q\y 2% r—a<y<z+a

Notice that q(y|x) = q(x|y).



Step 2: give the MCMC algorithm. If Xy = x then X;i1 is
determined in the following way:

[1] Simulate Y ~ U(xz —a,z +a) and U ~ U(0, 1).
2] If U < a(y|z) set X¢y1 = y and otherwise set X¢11 = .

Here
a(yle) = min (l ﬁ@)q(wiy))

- (z)q(ylz)
min (1, exp(—y?/2 + :132/2)> .




#MCMC simulate X_t ~ N(O0,1)
a=3; n=2000
X=numeric(n); X[1]=0;
for (t in 1:(n-1)) {
x<-X[t]
y<-x+(2*runif (1)-1)*a
if (runif (1)<exp((x~2-y~2)/2)) {
X[t+1]<-y
} else {
X[t+1]<-x
}
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(see the associated R-file for plotting commands)
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MH example: an equal mixture of bivariate normals

m(0) = (2m) <0,5€—(9—u1)21_1(9—u1)/2 4 0_56—(9—u2)251(0—u2)/2>

with 8 = (61,03). Use u1 = (1,1)T, Uy = (5,5)T and X1 =
>.9 = I9 for this illustration.

Step 1. For a proposal distribution g we want something simple
to sample. The simplest thing I can think of is the same as
before:

Q,ENU(HZ'—CL,QZ'—FCL)

with a a fixed constant. Note that this time we are proposing in
a box of side 2a. That is easy to sample, and certainly q(6’|0) >

0 < q(0]6") > 0 since q(0'|0) = q(0|0") = 1/4a?.



Step 2. The algorithm is, given 9(n) — 0,
[1] for ¢ = 1,2 simulate 0, ~ U(6; — a, 6; + a)
[2] with probability

(6"

a(6'|0) = min {1, M}

set (1) — 9/ otherwise set 9+ = g,

This algorithm is ergodic for any a > 0 but we will see that the
choice of a makes a difference to efficiency.



#MCMC simulate X_t according to a mixture of normals
f<-function(x,mul,mu2,S1i,S2i,p1=0.5) {

#mixture of normals, density up to constant factor

cl<-exp (-t (x-mul) %*%S1i%*% (x-mul) )

c2<-exp (-t (x-mu?2) %*%S2i%*% (x-mu?2) )

return(pl*cl+(1-pl)*c2)
+
a=3; n=2000
mul=c(1,1); mu2=c(5,5); S=diag(2); S1i=S2i=solve(S);
X=matrix(NA,2,n); X[,1]=x=mul
for (t in 1:(n-1)) {

y<-x+(2*runif (2)-1)*a

MHR<-f (y,mul,mu2,S1i,S2i)/f (x,mul,mu2,S1i,S2i)

if (runif (1)<MHR) x<-y

X[,t+1]<-x



First component, X[1,]

(see the associated R-file for plotting commands)
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