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Denote by P ′
i,j = P(Xt−1 = j|Xt = i) the transition matrix for

the time-reversed chain.

It seems clear that a Markov chain will be reversible if and only

if P = P ′, so that any particular transition occurs with equal

probability in forward and reverse directions.

Theorem.

(I) If there is a probability mass function π(i), i ∈ Ω satisfying

π(i) ≥ 0,
∑

i∈Ω π(i) = 1 and

“Detailed balance”: π(i)Pi,j = π(j)Pj,i for all pairs i, j ∈ Ω,

then π = πP so π is stationary for P .

(II) If in addition p(0) = π then P ′ = P and the chain is reversible

with respect to π.



Proof of (I): sum both sides of detailed balance equation over

i ∈ Ω. Now
∑

i Pj,i = 1 so
∑

i π(i)Pi,j = π(j).

Proof of (II), we have π a stationary distribution of P so P(Xt =
i) = π(i) for all t = 1, 2, ... along the chain. Then

P ′
i,j = P(Xt−1 = j|Xt = i)

= P(Xt = i|Xt−1 = j)
P(Xt−1 = j)

P(Xt = i)
(Bayes rule)

= Pj,iπ(j)/π(i) (stationarity)

= Pi,j (detailed balance).



Convergence and the Ergodic Theorem

If the (finite state space) MC is irreducible and aperiodic then

the stationary distribution is unique and p(t) → π as t → ∞. If

we simulate the MC X0, X1, ...Xn to large enough n from any

start X0 = x0 then since Xt ∼ pt and pt ≃ π at large t, ’most’

of the samples are ’nearly’ distributed according to π.

We will use {Xt}
n−1
t=0 to estimate Ep(φ(X)). The ‘obvious’ es-

timator is

φ̂n =
1

n

n−1
∑

t=0

φ(Xt),

but the Xt are correlated and only converge in distribution to π.



Theorem. If {Xt}
∞
t=0 is an irreducible and aperiodic Markov

chain on a finite space of states Ω, with stationary distribution

π then, as n → ∞, for any bounded function φ : Ω → R,

P (Xn = i) → π(i) and φ̂n → Ep(φ(X)).

We refer to such a chain as ergodic with equilibrium π.

In Part A Probability the Ergodic theorem asks for positive recur-

rent X0, X1, X2, .... It is simpler here because we are assuming

a finite state space for the Markov chain.

We would like a CLT for φ̂n, and confidence intervals ±
√

var(φ̂n).
A CLT does hold for all the examples discussed later but this is

a little beyond us at this point.



The Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm determines a Markov

Chain ergodic for your given target distribution (p say).

MCMC is an algorithm for simulating Xt+1 given Xt. The algo-

rithm determines the transition probabilities P (Xt+1 = j|Xt =
i) and the transition matrix P . We have to choose the algo-

rithm so that the MC is ergodic for p. The transition matrix it

simulates should satisfy pP = p.

Let p(x) = p̃(x)/Zp be the pmf on finite state space Ω =
{1, 2, ..., m}. We will call p the (pmf of the) target distribu-

tion.

To set things up, first choose a ‘proposal’ transition matrix

q(y|x) which is simple to simulate, easy to calculate, irreducible,

and satisfying q(x|y) > 0 ⇒ q(y|x) > 0.



Claim: The following algorithm simulates a Markov chain. If

the the chain is irreducible and aperiodic then it is ergodic with

equilibrium distribution p.

Let Xt = x. Xt+1 is determined in the following way.

[1] Draw y ∼ q(·|x) and u ∼ U [0, 1].
[2] If

u ≤ α(y|x) where α(y|x) = min

{

1,
p̃(y)q(x|y)

p̃(x)q(y|x)

}

set Xt+1 = y, otherwise set Xt+1 = x.

We initialise this with X0 = x0, p(x0) > 0 and iterate for t =
1, 2, 3, ...n to simulate the samples X0, X1, X2, ...Xn we need.



Proof: By the ergodic theorem it is sufficient to show that the

Markov chain determined by the random MCMC update has p
as a stationary distribution.

We will compute the transition matrix P and show it satisfies

detailed balance,

Px,y p(x) = Py,x p(y),

since that implies p = pP .

We don’t need to calculate Px,y when x = y as DB is clear.

Suppose y 6= x. If Xt = x, then the probability Px,y to move

to Xt+1 = y at the next step is the probability to propose y at

step 1 times the probability to accept it at step 2, so

Px,y = P (Xt+1 = y|Xt = x) = q(y|x)α(y|x).



Now check DB:

p(x)Px,y = p(x)q(y|x)α(y|x)

= p(x)q(y|x)min

{

1,
p(y)q(x|y)

p(x)q(y|x)

}

= min {p(x)q(y|x), p(y)q(x|y)}

= p(y)q(x|y)min

{

p(x)q(y|x)

p(y)q(x|y)
, 1)

}

= p(y)q(x|y)α(x|y)

= p(y)Py,x

and we are done.



Example: Simulating a Discrete Distribution

Let p(i) = i/Zp with Zp =
∑m

i=1 i.

Give a MH MCMC algorithm ergodic for p(i), i = 1, 2, ..., m.

Step 1: Choose a proposal distribution q(j|i). It needs to be

easy to simulate and determine a irreversible chain.

A simple distribution that ’will do’ is Y ∼ U{1, 2, ..., m}, so

q(i) = 1/m, i = 1, 2, ..., m.

This proposal scheme is clearly irreducible (we can get from A
to B in a single hop) and satisfies q(x|y) > 0 ⇒ q(y|x) > 0
(since q is constant).



Step 2: write down the algorithm.

If Xt = x, then Xt+1 is determined in the following way.

[1] Simulate y ∼ U{1, 2, ..., m} and u ∼ U [0, 1].
[2] If

u ≤ min

{

1,
p̃(y)q(x|y)

p̃(x)q(y|x)

}

= min

{

1,
y

x

}

set Xt+1 = y, otherwise set Xt+1 = x.



#MCMC simulate X_t according to p=[1:m]/sum(1:m).

m<-30

n<-10000; X<-rep(NA,n); X[1]<-1

for (t in 1:(n-1)) {

x<-X[t]

y<-ceiling(m*runif(1))

a<-min(1,y/x)

U<-runif(1)

if (U<=a) {

X[t+1]<-y

} else {

X[t+1]<-x

}

}



Left: x-axis is Markov chain step counter t = 1, 2, 3...200 and

y-axis is Markov chain state Xt for p̃(i) = i, i = 1, 2, ..., m,

m = 30.

Right: histogram of X1, X2, ..., Xn for n = 1000.
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Example: Simulating a Poisson Distribution

We want to simulate p(x) = e−λλx/x! ∝ λx/x!

Step 1: Define the proposal. We want something simple to

simulate with a simple density. We use

q(y|x) =

{ 1
2 for y = x ± 1
0 otherwise,

i.e. toss a coin and add or subtract 1 to x to obtain y.



Step 2: Write down the algorithm, giving the acceptance prob-

ability α(y|x) in closed form.

If Xt = x, then Xt+1 is determined in the following way.

[1] Simulate y ∼ U{x − 1, x + 1} and u ∼ U [0, 1].

[2] The acceptance probability is α(y|x) = min
{

1,
p̃(y)q(x|y)
p̃(x)q(y|x)

}

.

If y = −1 then α = 0. Otherwise,

α(y|x) =







min
(

1, λ
x+1

)

if y = x + 1

min
(

1, x
λ

)

if y = x − 1

If u ≤ α(y|x), set Xt+1 = y, otherwise set Xt+1 = x.



MCMC for state spaces which are not finite Does this work for

continuous rv? Computers use the “computer measure”. The

reals are discretised.

Let x∗ be the computer truncation of x and δx = {y : x∗ = x}.
The length |δx| of the cell containing x is not constant. Roughly

|δx|/x ≃ 10−15. π(x) is approximated by [π(x)]∗.

The Hastings ratio we compute is

[p̃(y)]∗[q(x|y)]∗

[p̃(x)]∗[q(y|x)]∗
=

[p(y)]∗|δy|[q(x|y)]∗|δx|

[p(x)]∗|δx|[q(y|x)]∗|δy|

≃
Pr(Y ∈ δy) Pr(X ∈ δx|Y = y)

Pr(X ∈ δx) Pr(Y ∈ δy|X = x)

since Pr(X ∈ δx) ≃ [p(x)]∗|δx| etc. If we apply this to densi-

ties, we simulate the approximate distribution. Our discussion

of Markov chains on finite spaces is relevant.



MCMC for the Normal distribution

Suppose want to simulate the standard normal distribution X ∼
N(0, 1). The target density is

p̃(x) ∝ exp(−x2/2).

Step 1: Choose the proposal distribution. We need something

simple and irreducible. Fix a constant a > 0 and choose a new

point uniformly at random in a window of length 2a centred at

x. The proposal density is

q(y|x) =
1

2a
Ix−a<y<x+a

Notice that q(y|x) = q(x|y).



Step 2: give the MCMC algorithm. If Xt = x then Xt+1 is

determined in the following way:

[1] Simulate Y ∼ U(x − a, x + a) and U ∼ U(0, 1).

[2] If U ≤ α(y|x) set Xt+1 = y and otherwise set Xt+1 = x.

Here

α(y|x) = min

(

1,
p̃(y)q(x|y)

p̃(x)q(y|x)

)

= min
(

1, exp(−y2/2 + x2/2)
)

.



#MCMC simulate X_t ~ N(0,1)

a=3; n=2000

X=numeric(n); X[1]=0;

for (t in 1:(n-1)) {

x<-X[t]

y<-x+(2*runif(1)-1)*a

if (runif(1)<exp((x^2-y^2)/2)) {

X[t+1]<-y

} else {

X[t+1]<-x

}

}



(see the associated R-file for plotting commands)
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MH example: an equal mixture of bivariate normals

π(θ) = (2π)−1
(

0.5e−(θ−µ1)Σ
−1
1 (θ−µ1)/2 + 0.5e−(θ−µ2)Σ

−1
2 (θ−µ2)/2

)

with θ = (θ1, θ2). Use µ1 = (1, 1)T , µ2 = (5, 5)T and Σ1 =
Σ2 = I2 for this illustration.

Step 1. For a proposal distribution q we want something simple

to sample. The simplest thing I can think of is the same as

before:

θ′i ∼ U(θi − a, θi + a)

with a a fixed constant. Note that this time we are proposing in

a box of side 2a. That is easy to sample, and certainly q(θ′|θ) >
0 ⇔ q(θ|θ′) > 0 since q(θ′|θ) = q(θ|θ′) = 1/4a2.



Step 2. The algorithm is, given θ(n) = θ,
[1] for i = 1, 2 simulate θ′i ∼ U(θi − a, θi + a)
[2] with probability

α(θ′|θ) = min

{

1,
π(θ′)

π(θ)

}

set θ(n+1) = θ′ otherwise set θ(n+1) = θ.

This algorithm is ergodic for any a > 0 but we will see that the

choice of a makes a difference to efficiency.



#MCMC simulate X_t according to a mixture of normals

f<-function(x,mu1,mu2,S1i,S2i,p1=0.5) {

#mixture of normals, density up to constant factor

c1<-exp(-t(x-mu1)%*%S1i%*%(x-mu1))

c2<-exp(-t(x-mu2)%*%S2i%*%(x-mu2))

return(p1*c1+(1-p1)*c2)

}

a=3; n=2000

mu1=c(1,1); mu2=c(5,5); S=diag(2); S1i=S2i=solve(S);

X=matrix(NA,2,n); X[,1]=x=mu1

for (t in 1:(n-1)) {

y<-x+(2*runif(2)-1)*a

MHR<-f(y,mu1,mu2,S1i,S2i)/f(x,mu1,mu2,S1i,S2i)

if (runif(1)<MHR) x<-y

X[,t+1]<-x

}



(see the associated R-file for plotting commands)
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