
Part A Simulation and Statistical Programming HT14

Lecturer: Geoff Nicholls

University of Oxford

Notes and Problem sheets are available at

www.stats.ox.ac.uk\ ∼nicholls\PartASSP

“Monte Carlo Simulation: An analytical technique for solving

a problem by performing a large number of trail runs, called

simulations, and inferring a solution from the collective results

of the trial runs.”, glossary at www.nasdaq.com.

“Anyone who can do solid statistical programming will never miss

a meal.”, Prof David Banks, 2008.



Course structure

• 8 Lectures here in SPR1

• 6 2hr sessions in HT weeks 2-6 and 8 in Evenlode room,

OUCS, 13 Banbury road

• 4 problem sheets and 4 classes 4-5pm on Tuesdays in weeks

3 and 7 and 10-11am on Fridays in week 5 and 8 in 2 South

Parks Road.

• Exam paper A12: 3 questions, with the best two questions

counting towards a candidate’s total mark for the paper.

• Equivalent to a 16hr lecture course.



Why Simulation and Statistical Programming, and why together?

We fit complex realistic models and analyze large data sets.

Taking expectations is a fundamental operation in Statistics.

Expectations are integrals and integrals are hard.

Use simulation to do hard integrals.

Simulation theory is applied probability.

Doing simulation on a computer is statistical programming.

Taken together Simulation and Statistical Programming em-

power you to do a large chunck of statistical inference.



What is R?

R is an open-source package for Statistical Computing. The

Statistical Programming segment of this course is designed to

teach you to do statistical programming in R.

• It is freely available - http://cran.r-project.org/

• Millions of users worldwide in Universities and Industry

• The BS1 course in Part B will use R extensively

R is actively supported and updated and has many add-on pack-

ages that specialize in specific applications.

I recommend you install it for your own use.



Simulation: motivation

In many settings we wish to estimate expectations.

Suppose X ∈ Ω is a random variable (rv) with density X ∼ p(x),
f : Ω→ ℜ is a function and we want to evaluate the expectation

Ep(f) =

∫

Ω
f(x)p(x)dx.

If we have Xi, i = 1, 2, ..., n with Xi ∼ p then

fn = n−1
n

∑

i=1

f(Xi)

is an unbiased estimator for Ep(f).



If f(Xi) are iid with 0 < var(f(X)) <∞ and |Ep(f)| <∞ then

fn − E(f)
√

var(f)/n
→ N(0, 1),

by the CLT. If Zα/2 is the 1−α/2 quantile of a standard normal

and

s2 =
1

n− 1

n
∑

i=1

(f(Xi)− fn)2

is an unbiased estimator for var(f) we can report a level-α CI

fn ± Zα/2
s√
n

for Ep(f).



Example: X ∼ N(0, 1), what is a = P (sin(πX) > 0.5)?

Here P (sin(πX) > 0.5) =
∫∞
−∞ Isin(πx)>0.5 p(x)dx, where

p(x) =
1√
2π

e−x2

and

Isin(πx)>0.5 =

{

1 if sin(πx) > 0.5
0 otherise.

We fix n and draw xi ∼ N(0, 1) then form

â =
1

n

n
∑

i=1

Isin(πXi)>0.5



Simulation: overview. Our task in simulation is to give algo-
rithms for generating the Xi’s: given a probability density or

mass function p(x) (the target distribution), give an algorithm
for simulating X ∼ p.

We will use

• the inversion and transformation methods,

• rejection sampling,

• importance sampling,

• Markov chain Monte Carlo

You will learn why they work, and what their relative advantages
are in different settings.

You will learn to adapt these algorithms to simulation for differ-
ent target distributions.



Inversion

Say X ∈ Ω is a scalar rv with cdf F (x) = Pr(X ≤ x) at X = x
and we want to simulate X ∼ F .

Claim: suppose F (x) is continuous and strictly increasing with

x. If U ∼ U(0, 1) and X = F−1(U) then X ∼ F .

Proof: Pr(X ≤ x) = Pr(F−1(U) ≤ x) so applying strictly

increasing F to both sides of F−1(U) ≤ x we have Pr(X ≤
x) = Pr(U ≤ F (x)) which is F (x), since U is uniform.

Remark: if we define

F−1(u) = min(z; F (z) ≥ u)

then F−1(U) ∼ F without F continuous or strict increasing.



Example: if we want X ∼ Exp(r), ie X ∼ p(x) with

p(x) = r exp(−rx),

then the CDF is

F (x) = 1− exp(−rx)

and its inverse is

F−1(u) = −(1/r) log(1− u).

The algorithm is

U ∼ U(0, 1)

X ← − log(U)/r

and note I replaced 1− U with U since U ∼ 1− U .



Inversion: discrete random variables Suppose X ∼ F with X a

discrete rv with pmf p(x), x = 0, 1, 2, .... Consider the following

algorithm

U ∼ U(0, 1)

set X equal the unique x satisfying
∑x−1

i=0 p(i) < u <
∑x

i=0 p(i)

with
∑x−1

i=0 p(i) ≡ 0 if x = 0.

Proof: It is easy to check that X ∼ p. (board presentation)

Remark: the cdf here is F (x) =
∑x

i=0 p(i) and the above algo-

rithm is actually just x = F−1(u) again with the more general

definition for F−1 above.



Example: If 0 < p < 1 and q = 1− p, and we want to simulate

X ∼ Geometric(p) then

p(x) = pqx−1

and the cdf

F (x) =
x

∑

i=0

p(i)

is F (x) = 1− qx for x ∈ N.

Smallest x giving 1− qx ≥ u is

x =

⌈

log(1− u)

log(q)

⌉

where ⌈x⌉ rounds up.



Transformation Methods

Say Y ∼ Q, Y ∈ ΩQ we can simulate (for example Y ∼ U(0, 1))

X ∼ P , X ∈ ΩP we want to simulate (eg X ∼ Exp(1)).

If we can find a function f : ΩQ→ ΩP with the property that

f(Y ) ∼ P

then we can simulate X by simulating

Y ∼ Q and setting X = f(Y )

(for example, set f(y) = − log(y) and we know from above that

if X = f(Y ) then X ∼ Exp(1)).



Example: Suppose we want to simulate X ∼ Exp(1) and we

can simulate Y ∼ U(0, 1). Try setting X = − log(Y ). Does

that work?

Ans: recall that if Y has density q(y) and X = f(Y ) then the

density of X is p(x) = q(y(x))|dy/dx|. Now q(y) = 1 (the

density of U(0, 1)) and y(x) = exp(−x), so p(x) = exp(−x)
and so X has the density of an Exp(1) rv.

Example: Inversion is a transformation method: Q is U(0, 1); Y
is U ; and X = f(Y ) with f(y) = F−1(y) and F the CDF of

the target distribution P .



We can generalize the idea. We can take functions of collections

of variables.

Example: Suppose we want to simulate X ∼ Γ(a, β) with a ∈
1, 2, 3, ... and we can simulate Y ∼ Exp(1) (the Γ(a, β) density

is p(x) = βα

Γ(α)
xα−1e−βx for x > 0).

Simulate Yi ∼ Exp(1), i = 1, 2, ..., a and set X =
∑a

i=1 Yi/β.

Then X ∼ Γ(a, β).

Proof: Use moment generating functions. The MGF of the

Exp(1) rv Y is

E
(

etY
)

= (1− t)−1



so the MGF of X is

E
(

etX
)

=
a

∏

i=1

E
(

etYi/β
)

= (1− t/β)−a

which is the MGF of a Γ(a, β) variate.



See you next week

Our next meeting is here in this lecture theater next week.

Our first lecture and practical in statistical programming will be

next week on Friday afternoon in Evenlode - the OUCS computer

teaching facility.

The first problem sheet is due Monday 9am of Week 3.

Homework: install R and run the code from this lecture.


