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1. Let X and Y be discrete random variables with probability mass functions p(x) = p̃(x)/Zp

and q(y) = q̃(y)/Zq given in terms of unnormalised functions p̃(x) and q̃(y).

(a) [6 marks] Write down the rejection algorithm simulating X. State any additional condi-
tions you impose on q(y). You may assume simulation of Y ∼ q is available. However,
your algorithm should not require evaluation of Zp and Zq.

ANS: Suppose we can find M so that M > p̃(x)/q̃(x) for all x.

Rejection Algorithm simulating X ∼ p:

[1] Simulate y ∼ q(y) and u ∼ U(0, 1).

[2] If u < p̃(y)/Mq̃(y) return X = y, otherwise goto [1].

(b) [7 marks] Prove that the rejection algorithm returns X ∼ p(x).

ANS: Let a(x) = p̃(x)/q̃(x)M . The probability to reject at [2] is r = 1 − ∑

y q(y)r(y) =
1−Zp/MZq. We must propose x and it accept it. We could propose and reject any number
of times before that.

Pr(X = x) = q(x)a(x) + rq(x)a(x) + r2q(x)a(x) + ...

= q(x)a(x)/(1 − r)

= p̃(x)/MZq × MZq/Zp

= p(x).

as supposed.

(c) [12 marks] Let θ be a discrete parameter with prior probability mass function π(θ) and let
z ∼ f(z|θ) be a discrete observation with probability mass function f(z|θ). The likelihood
for θ is L(θ; z) = f(z|θ). The posterior for θ is

π(θ|z) =
f(z|θ)π(θ)

m(z)

where m(z) =
∑

θ f(z|θ)π(θ).

(i) [7 marks] Prove that the following algorithm simulates Θ ∼ π(θ|z).

[1] Simulate y ∼ π(y) and u ∼ U [0, 1].

[2] If u 6 L(y; z) set Θ = y and stop, otherwise, return to step [1] and repeat.

ANS: this is a rejection algorithm with p(θ) = π(θ|z), q(θ) = π(θ) and M = 1/m(y).
The acceptance probability p/Mq = π(θ|z)m(y)/π(θ) = L(θ; z) and since θ is discrete,
L(θ; z) 6 1 as it is a pmf.

(ii) [5 marks] Let N be the random number of simulations needed at step [1] for each
acceptance at step [2]. Show that E(N) = 1/m(z).
ANS: the number of trials is geometric with success probability 1 − r since each trial is
independent. Now 1 − r =

∑

y q(y) × p(y)/Mq(y) = m(z) so E(N) = 1/m.

2. (a) [9 marks] Let X = (X1,X2) be a pair of random variables X ∈ ℜ2 with joint density

p(x) ∝ exp(−|x1| − |x2| − |x1 − x2|), where x = (x1, x2).

Give an MCMC algorithm targeting p(x).
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ANS: Step 1. For a proposal distribution q we want something simple to sample. The simplest
thing I can think of is the same as before:

x′

i ∼ U(xi − a, xi + a)

with a > 0 a fixed constant. That is easy to sample, and certainly q(x′|x) > 0 ⇔ q(x|x′) > 0
since q(x′|x) = q(x|x′) = 1/4a2.

Step 2. The algorithm is, given X(n) = x,
[1] for i = 1, 2 simulate x′

i ∼ U(xi − a, xi + a)
[2] with probability

α(x′|x) = min

{

1,
exp(−|x′

1| − |x′

2| − |x′

1 − x′

2|)
exp(−|x1| − |x2| − |x1 − x2|)

}

set X(n+1) = x′ otherwise set X(n+1) = x.

(b) [8 marks] Write an R function implementing the code you wrote down in part (a). Your
function should take as input the number of MCMC steps, n say, and return as output a
2 × n matrix X of simulated values.

f<-function(x) {

return(exp(-sum(abs(x)))-abs(diff(x)))

}

a=1; n=100000

X=matrix(NA,2,n); X[,1]=x=c(0,0)

for (t in 1:(n-1)) {

xp<-x+(2*runif(2)-1)*a

MHR<-f(xp)/f(x)

if (runif(1)<MHR) x<-xp

X[,t+1]<-x

}

(c) [8 marks] Let
A = { x ∈ ℜ2 : 2 < x2 < 2.01 }.

Write down an MCMC algorithm targeting p(x|X ∈ A) giving the acceptance probability
as an explicit function of x1, x2. In choosing the proposal distribution you should consider
the efficiency of your algorithm.

ANS: The algorithm is similar to the last but we should adjust the proposal, take X0 ∈ A and
reject if we leave A.

Step 1. Take a = (1, 0.005). For i, 1, 2,

x′

i ∼ U(xi − ai, xi + ai).

so we make small jumps in the constrained variable. It remains the case that q(x′|x) > 0 ⇔
q(x|x′) > 0 since each variable by itself still satisfies the same generic proposal as before.

Step 2. The algorithm is, given X(n) = x,
[1] for i = 1, 2 simulate x′

i ∼ U(xi − ai, xi + ai)
[2] with probability

α(x′|x) = min

{

1, I2<x′

2
<2.01

exp(−|x′

1| − |x′

2| − |x′

1 − x′

2|)
exp(−|x1| − |x2| − |x1 − x2|)

}

set X(n+1) = x′ otherwise set X(n+1) = x.

Page 3 of 5 Turn Over



3. (a) [15 marks] Suppose A is a n × n symmetric positive definite matrix. The Cholesky fac-
torization of A is A = LLT with L a lower triangular matrix with positive diagonal
elements.

(i) [6 marks] Give an algorithm computing L. ANS: Chop A and L up into blocks

A =









a11 AT
21

A21 A22









=









1 × 1 1 × (n − 1)

(n − 1) × 1 (n − 1) × (n − 1)









and similarly

L =









L11 01×(n−1)

L21 L22









.

Since L is lower triangular it is zero above the diagonal, and in particular all the
entries in the top row except the first are zero. Since A = LLT ,

(

a11 AT
21

A21 A22

)

=

(

L11 01×(n−1)

L21 L22

)(

L11 L21
T

0(n−1)×1 LT
22

)

=









L2
11 L11L21

T

L11L21 L22L22
T + L21L21

T









so L11 =
√

a11, L21 = A21/
√

a11 and the A22 block gives

A22 − L21L21
T = L22L22

T

Ã = L̃L̃T now (n − 1) × (n − 1)

To solve for L22, we need the Cholesky factorization of the (n − 1) × (n − 1) matrix
Ã = A22 − L21L21

T , so we have reduced the problem by one dimension. Finally, if
n = 1 so A is a scalar, L =

√
A terminates the recursion.

(ii) [9 marks] Write an R function implementing the algorithm you wrote part (i). Your
function should take as input A and return L as output.
#Cholesky

my.chol<-function(A) {

n=dim(A)[1] #assume nxn

if (n==1) return(sqrt(A))

L=matrix(0,n,n)

L[1,1]=sqrt(A[1,1])

L[2:n,1]=A[2:n,1]/L[1,1]

L[1,2:n]=rep(0,n-1)

A22=A[2:n,2:n,drop=FALSE]

newA=A22-L[2:n,1]%*%t(L[2:n,1])
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L[2:n,2:n]=my.chol(newA)

return(L)

}

(b) [10 marks] Let Z = (Z1, Z2, ..., ZK)T be a vector of K jointly independent N(0, 1) random
variables. Let µ ∈ ℜn be an n × 1 vector and let Σ be a non-singular symmetric positive
definite K × K matrix.

(i) [5 marks] Show that if L is a K × K matrix satisfying Σ = LLT and X = µ + LZ
then X ∼ N(µ,Σ). ANS: since X is a linear combination of normals it is also normal.
Its mean is E(X) = µ + LE(Z) = µ. It covariance matrix is E((µ − X)(µ − X)T ) =
E(LZZTLT ) = LE(ZZT )LT = Σ since E(ZZT ) is the identity matrix as it is the
covariance of Z.

(ii) [5 marks] Write an R function simulating X ∼ N(µ,Σ). Your function should take
as input µ and Σ and return as output a simulation of X.
my.mvnorm<-function(mu,Sigma) {

L<-my.chol(Sigma)

X<-mu+L%*%rnorm(length(mu))

return(X)

}
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