1. For \(n = 1, 2, 3, \ldots \) the joint probability mass function of the random variables \(x_1, x_2, \ldots, x_n \) is \(p_n(x_1, \ldots, x_n) \). These distributions are specified arbitrarily: the marginal distributions might be inconsistent for different \(n \).

(a) Suppose now \(x_1, x_2, x_3, \ldots \) is an infinite sequence of exchangeable binary random variables. Show that the marginal distributions must be consistent, i.e., show that
\[
p_n(x_1, \ldots, x_n) = p_{n+1}(x_1, \ldots, x_n, 0) + p_{n+1}(x_1, \ldots, x_n, 1).
\]

Remark: such families are “marginally consistent”. More generally we require
\[
p_n(x_1, \ldots, x_n) = \int p_{n+1}(x_1, \ldots, x_n, x_{n+1}) \, dx_{n+1}.
\]

(b) Show that \(\text{cov}(x_i, x_j) \geq 0 \) for all \(i, j \in \{1, 2, 3, \ldots\} \).

(c) Construct a prior for \(x_1, x_2, x_3, \ldots \) representing the following prior knowledge: (A) the variables are exchangeable; (B) \(\Pr(x_i = 1) = p \); and (C) \(\text{var}(\bar{x}) = v \) where \(\bar{x} = n^{-1} \sum_{i=1}^n x_i \) and \(0 \leq p \leq 1 \) and \(v \) are prior parameters we wish to specify separately. Note any constraints on \(p \) and \(v \).

Hint: this is just Q1 of sheet 2 again.

2. Let \(X_1, X_2 \) be binary random variables. Table entries below give probabilities, \(p(x_1, x_2) = \Pr(X_1 = x_1, X_2 = x_2) \), for outcomes \((X_1, X_2) = (x_1, x_2) \) indicated by row and column.

\[
\begin{array}{c|cc}
X_2 & X_1 = 0 & X_1 = 1 \\
\hline
X_2 = 0 & 0 & 1/2 \\
X_2 = 1 & 1/2 & 0 \\
\end{array}
\]

(a) Show that \(X_1 \) and \(X_2 \) are exchangeable.

(b) Show that there does not exist a distribution \(F \) such that
\[
p(x_1, x_2) = \int_0^1 \prod_{i=1,2} p^{x_i}(1-p)^{1-x_i} \, dF(p).
\]

Remark: i.e., de Finetti’s theorem need not hold if the sequence is finite. This example comes from a paper by Diaconis and Freedman (1980)

3. Let \(H \) be a distribution on \(\Omega \) and suppose \(G \sim DP(\alpha, H) \) with \(\alpha > 0 \) a real parameter.

(a) Let \(A \subset \Omega \). Calculate \(\text{var}(G(A)) \). Briefly interpret \(\alpha \) and \(H \) as model “parameters”.

(b) Suppose for \(i = 1, 2, 3, \ldots, \theta_i \sim G \) with \(G \sim DP(\alpha, H) \). Show that the predictive distribution of \(\theta_{n+1} \) given \(\theta_{1:n} = (\theta_1, \ldots, \theta_n) \), \(\alpha \) and \(H \) is
\[
(\theta_{n+1} \mid \theta_{1:n}, \alpha, H) \sim \frac{\alpha H + \sum_{i=1}^n \delta_{\theta_i}}{\alpha + n}.
\]
4. Consider the Dirichlet-Normal mixture with \(\theta = (\mu^*_i, \sigma^*_i) \) and for \(i = 1, \ldots, n \),
\[
y_i \sim N(\mu^*_i, \sigma^*_i)
\]
where for \(k = 1, \ldots, K \) and \(\theta^*_k = (\mu^*_k, \sigma^*_k) \)
\[
H(d\theta^*_k) = N(d\mu^*_k; \mu_0, \sigma_0)\Gamma(d\sigma^*_k; \alpha_0, \beta_0)
\]
in terms of the \(S, \theta^* \) notation of Q3c.

(a) Show that the prior expected number of clusters \(E(K) \) is a function of the number of observations \(n \), and that it diverges to infinity with \(n \).

(b) Write down the posterior \(\pi(S, \theta^*|y) \propto f(y|S, \theta^*)\pi(\theta^*)P(S) \) for \(S, \theta^*|y \) in terms of the model elements. Give the marginal likelihood \(p(y) \) in terms of \(f, \pi \) and \(P \).

(c) The \(\sigma \)-prior is not conjugate. Outline an MCMC algorithm targeting \(\pi(S, \theta^*|y) \).

(d) (optional) Modify the L16 MCMC code to target \(\pi(S, \theta^*|y) \) with \(\alpha_0 = 1.5, \beta_0 = 0.5 \).

5. Consider a prior for a normal mixture like the RJ-MCMC prior in lecture 11.
\[
M \sim \text{Geom}(\xi)
\]
\[
w \sim \text{Dirichlet}(\alpha_1, \ldots, \alpha_M) \quad \text{with} \quad \alpha_m = \alpha/M, \ m = 1, \ldots, M
\]
\[
z_i \sim \text{Multinom}(w), \ i = 1, \ldots, n
\]
\[
(\mu^*_m, \sigma^*_m) \sim N(\mu^*_m; \mu_0, \sigma_0)\Gamma(\sigma^*_m; \alpha_0, \beta_0) \ m = 1, \ldots, M
\]
Here \(z_i \sim \text{Multinom}(w), \ i = 1, \ldots, n \) means \(z_i = m, \ m \in \{1, \ldots, M\} \) with probability \(w_m \).

In this model \(z_i \) is the label of the cluster to which \(y_i \) belongs. The observation model is
\[
y_i \sim N(\mu^*_z, \sigma^*_z), \ i = 1, \ldots, n.
\]

(a) Suppose the list \(z_1, \ldots, z_n \) of cluster labels contains \(K \leq M \) unique values \(m_1, \ldots, m_K \).
For \(k = 1, \ldots, K \) let \(S_k = \{i : z_i = m_k, i = 1, \ldots, n\} \). Show that \(E(K) \leq 1/\xi \).

(b) Let \(S = (S_1, \ldots, S_K) \). Show that in this prior model
\[
P(S|M) = \frac{\Gamma(\alpha)}{\Gamma(\alpha/M)^K} \frac{M!}{(M-K)!} \prod_{k=1}^K \frac{\Gamma(\alpha/M + n_k)}{\Gamma(\alpha + n)}
\]

(c) Write down the posterior \(\pi(S, \theta^*, M|y) \propto f(y|S, \theta^*)\pi(\theta^*)P(S|M)\pi_M(M) \) for \(S, \theta^*, M|y \) in terms of the model elements.

(d) Show (or at least outline why it is unsurprising) that the posterior converges to the DP posterior as \(\xi \to 0 \). Note that \(z\Gamma(z) \to 1 \) as \(z \to 0 \).