
SC7 Bayes Methods

Fourth problem sheet (Sections 7.3-8 of lecture notes).

Section A questions

1. (RJ-MCMC) For m ∈ {1, 2} and x ∈ [0, 1] let πX,M(x,m) = πX|M(x|m)πM(m) with

πM(m = 1) = 1/3, πM(m = 2) = 2/3, πX|M(x|m = 1) = Ix=1/2 and πX|M(x|m = 2) = 2x.

In the joint πX,M(x,m), we have (x,m) ∈ Ω∗ with Ω∗ = {(1/2, 1)} ∪ {2× (0, 1)}.

If M ∼ πM(·) realises M = m then take X ∼ πX|M(·|M = m) to get a random variable X

with CDF FX(x), x ∈ [0, 1].

(a) Show that FX(x) = 2
3
x2 + 1

3
Ix≥1/2 and give a simple algorithm realising iid X ∼ FX .

(b) Give a RJ-MCMC algorithm targeting π(x,m) and say how you would use it to

simulate X ∼ FX . Hint: See code or 2021 Lecture notes. This gave Figure 1.

2. (Dirichlet process) Let H be a continuous distribution on Ω = Rp, p ≥ 1 and suppose

G ∼ Π(α,H) is a DP with α > 0 a real parameter.

(a) Let A ⊆ Ω. Calculate var(G(A)). Briefly interpret α and H as model “parameters”.

(b) Suppose for i = 1, 2, 3, ..., θi ∼ G are iid, with G ∼ Π(α,H). Recall (lectures) that

marginally θ1 ∼ H and G|θ1 ∼ Π(α + 1, (αH + δθ1)/(α + 1)). Show that for n ≥ 1,

G|θ1:n ∼ DP

(
α + n,

αH +
∑n

i=1 δθi
α + n

)
.

(c) Let θ∗1, ..., θ
∗
K denote the distinct values of θ with associated partition S = (S1, ..., SK),

Sk = {i : θi = θ∗k, i ∈ [n]} for k = 1, ..., K. Show that

E(K) =
n∑
i=1

α

α + i− 1



Section B questions

3. (Reversible jump MCMC) The skew-normal distribution1 with density Q(y;µ, σ2, ξ) is

obtained from the normal by skewing it with a weight ξ > 0. The skewing is negative for

0 < ξ < 1, positive for ξ > 1 and absent for ξ = 1, ie N(y;µ, σ2) = Q(y;µ, σ2, 1).

The Shoshoni data y = (y1, ..., y20) give the values of 20 scalar width-to-length ratios of

beaded rectangles used by the Shoshoni Indians. They are available here,

www.statsci.org/data/general/shoshoni.html.

You can see them and an example of the skew-normal in ProblemSheet3-21.R. Consider

using Bayesian inference and RJ MCMC to carry out model selection and model averaging

over skewed and normal models for the Shoshoni data.

(a) Suppose the prior probability for normal (model m = 1) or skew-normal (model

m = 2) is 1/2. Write down the joint posterior distribution π(θ,m|y) for the model

index m = 1, 2 and parameters θ = (µ, σ, ξ) in as much detail as you can, though

without eliciting priors for the parameters.

(b) Give a reversible jump MCMC algorithm targeting π(θ,m|y). You can omit the fixed

dimension updates.

(c) Explain how to estimate the Bayes Factor comparing skew-normal and normal models

from MMC output θ(t) = (µ(t), σ(t), ξ(t)) and m(t), t = 1, 2, ..., T . How you would

simulate data y′ from the model averaged posterior predictive distribution p(y′|y)?

(d) (Section C) The code in the R-file ProblemSheet3-20.R implements RJ-MCMC for

these data. Use the code to estimate the Bayes factor mentioned above.

4. Let Ξ[n] be the set of partitions of [n] = {1, ..., n}. The CRP realises S ∈ Ξ[n] with

probability

Pα,[n](S) =
Γ(α)αK

Γ(α + n)

K∏
k=1

Γ(|Sk|).

Let P[n] be the permutations of {1, ..., n}.

(a) For σ ∈ P[n] let S(σ) be the partition obtained by permuting the labels in S ac-

cording to σ. For example if S = {{1, 3, 4}, {2}} and σ = (1, 3, 2, 4) then S(σ) =

{{σ1, σ3, σ4}, {σ2}} = {{1, 2, 4}, {3}}. Show that Pα,[n](S) = Pα,[n](S(σ)) (CRP out-

comes don’t depend on arrival order).

(b) Let S ∼ Pα,[n] be a realisation of the CRP and let

S−i = (S−i1 , ..., S−i
K−i)

1Fernandez & Steel “Bayesian Modeling of Skewness and Fat Tails”, JASA, 1998



be the partition with i ∈ [n] removed. Let P (S−i) give the distribution of S−i. Here

K−i = K−1 if we create an empty cluster when we remove i and otherwise K−i = K.

Let Pα,[n]\{i}(S
′), S ′ ∈ Ξ[n]\{i} give the probability to realise S ′ if i is removed from

the list of customers in the CRP from the start. Show that

P (S−i) = Pα,[n]\{i}(S
−i)

and

Pr(i ∈ Sk|S−i) = Pα,[n](S)/Pα,[n]\{i}(S
−i).

5. Consider the following prior for the cluster labels z = (z1, ..., zn) of data y = (y1, ..., yn) in

a mixture model with a fixed number M of components. Let w = (w1, ..., wM) be a vector

of probabilities
∑

mwm = 1 giving the mixture-component weights.

w ∼ Dirichlet(α1, ..., αM), with α > 0 and αm = α/M , m = 1, ...,M

zi ∼ Multinom(w), iid for i = 1, ..., n.

In this model zi ∈ {1, ...,M} is the label of the cluster to which yi belongs, and the

notation zi ∼ Multinom(w), i = 1, ..., n means that for m ∈ {1, ...,M} we have zi = m

with probability wm. Suppose the list z1, ..., zn of cluster labels contains K ≤ M unique

distinct values m1, ...mK . For k = 1, ..., K let Sk = {i : zi = mk, i = 1, ..., n} give the

label-grouping determined by z and let S = (S1, ..., SK).

The partition is determined by z, so that S = S(z) with S ∈ Ξ[n]. There are many z’s

giving the same S. For example, if n = 4 and M = 5 then z = (1, 1, 3, 3), z = (3, 3, 1, 1)

and z = (4, 4, 2, 2) determine the same clustering S = ({1, 2}, {3, 4}).

(a) (Section C, but result needed below) Let nk = |Sk| for k = 1, ..., K. Let Pα,M(S) be

the probability to realise S. Calculate

Pα,M(S) =
∑

z:S(z)=S

Pα,M(z),

where Pα,M(z) is the probability the process realises z = (z1, ..., zn), and show

Pα,M(S) =
Γ(α)

Γ(α/M)K
M !

(M −K)!

∏K
k=1 Γ(α/M + nk)

Γ(α + n)
.

(b) Show that, for each S ∈ Ξ[n], lim
M→∞

Pα,M(S) = Pα,[n](S), with Pα,[n] from Question (4).

Note: zΓ(z) = Γ(z + 1) and zΓ(z)→ 1 as z ↘ 0.



6. The multinomial DP process GM ∼ ΠM(α,H) is simulated as follows:

w ∼ Dirichlet(α1, ..., αM), with α > 0 and αm = α/M , m = 1, ...,M ,

θ̃m ∼ H, iid for m = 1, ...,M,

and GM =
M∑
m=1

wmδθ̃m . Here, for m = 1, ...,M , θ̃m ∈ Rp is a parameter vector of dimension

p and H is a base distribution with probability density h on Rp.

(a) For i = 1, ..., n, let θi = θ̃zi with

zi ∼ Multinom(w), iid for i = 1, ..., n.

Show that Pr{θi ∈ A|GM) = GM(A) for A ⊆ Rp and i = 1, ..., n.

(b) Let θ∗1, ..., θ
∗
K denote the distinct values of θ with associated partition S = (S1, ..., SK),

Sk = {i : θi = θ∗k, i ∈ [n]} for k = 1, ..., K. Give the joint distribution πM(θ∗, S).

(c) Consider the following process.

Step 1 Simulate ψ1 ∼ H

Step 2 Independently for i = 1, ..., n− 1, and sequentially, simulate

ψi+1 ∼
α(1−Ki/M)H +

∑Ki

k=1(ni,k + α/M)δψ∗
k

α + i
.

where Ki is the number of distinct ψ-values ψ∗1, ..., ψ
∗
Ki

at the time of the i + 1’st

arrival and ni,k is the number of times ψ∗k appears in the list (ψ1, ..., ψi). Show that

ψ = (ψ1, ..., ψn) above has the same distribution as θ = (θ1, ..., θn) in Question 6a.

Hint: set it up as a variant of a CRP realising ψ∗, C with ψ∗ the unique values in ψ

and C the corresponding partition of ψ and repeat the calculation we did in lectures

for Pα,[n](S) to get P (C) = Pα,M(C).

(d) (Section C) Let φi ∼ G iid for i = 1, ..., n with G ∼ Π(α,H) and φ = (φ1, ..., φn). Let

φ = θ(φ∗, S) with θ the usual invertible mapping between the two representations.

Let ψi ∼ GM iid for i = 1, ..., n with GM ∼ ΠM(α,H) and ψ = (ψ1, ..., ψn). Let

ψ = θ(ψ∗, C) be corresponding unique values and partition representation (ie as in

the hint for Question 6c). Show that ψ → φ in distribution as M → ∞ at fixed n.

Hint show that Pr{(ψ∗, C) ∈ A∗} → Pr{(φ∗, S) ∈ A∗} for some A∗.



Section C questions

7. The observation model for data y is yi ∼ f(·|θi), iid for i = 1, ..., n with parameter vector

θ = (θ1, ..., θn) determined from the multinomial Dirichlet process model via a realisation

of θ∗ and S as in Question 6.

(a) Write down the posterior πM(S, θ∗|y) for S, θ∗|y in terms of the model elements.

(b) Why might we prefer a prior derived from a multinomial Dirichlet process over a prior

derived from a Dirichlet process?

(c) Show that the pairs (θi, yi)
n
i=1 are exchangeable (as pairs, ie preserving the association

between θi and yi). Give the S, θ∗-update of a Gibbs sampler targeting πM(S, θ∗|, y).

8. Mining disasters were common in the period 1850 − 1950. Let L = 1850 and U = 1950

and for i = 1, 2, ..., n, let yi ∈ (L,U) be the date of the i’th event. Let y = (y1, ..., yn).

Model the event times y as the arrival times of a Poisson process of piecewise constant

rate λ(t) per year. Let θ0 = L and θm = U and for i = 1, ...,m − 1 let θi ∈ (L,U) be the

sorted change point times at which λ(t) jumps up or down. For i = 1, ...,m let λi ≥ 0 give

the disaster rate over the interval (θi−1, θi]. The rate function λ(t) = λ(t; θ, λ) for y is

λ(t) =
m∑
i=1

λiIθi−1<t≤θi L < t < U.

The data and a realisation of λ(t) with m = 4 are shown in Figure 2.

Let θ = (θ1, ..., θm−1) and λ = (λ1, ..., λm). Model the change-point times θ as arrivals in a

Poisson process of unknown rate ρ per year. The number of intervals m is unknown. Prior

densities πR(ρ), ρ ∈ [0,∞) and πΛ(λ|m) =
∏m

i=1 πΛ(λi), λ ∈ [0,∞)m are given.

(a) i. Write down the prior π(θ, λ,m, ρ) in as much detail as you can. Specify its

parameter space, (θ, λ,m, ρ) ∈ Ω say.

ii. Write down the posterior π(λ, θ,m, ρ|y) in terms of the available model elements.

(b) In a reversible jump MCMC algorithm targeting π(λ, θ,m, ρ|y), birth and death up-

dates are chosen with probabilities pm,m+1 and pm,m−1 respectively. A birth proposal

(λ, θ,m, ρ)→ (λ′, θ′,m′, ρ) with m′ = m+1 is generated as follows: choose an interval

i ∼ U{1, ...,m} uniformly; simulate a split point θ∗ ∼ U(θi−1, θi); simulate two new

values λi,1, λi,2 ∼ Exp(1) independently. In the candidate state

λ′ = (λ1, ..., λi−1, λi,1, λi,2, λi+1, ..., λm)

θ′ = (θ1, ..., θi−1, θ
∗, θi, ..., θm−1).

Give a matching death proposal (λ′, θ′,m′, ρ)→ (λ, θ,m, ρ) and the acceptance prob-

ability for the birth proposal. No simplification of expressions is required.
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Figure 1: RJ-MCMC targeting π(x,m): (Left) plot of x-values realised by the chain (sub-sampled
every 10 steps); (Centre) histogram estimate of marginal pdf of x (fX(x) = 4

3
x+ 1

3
δ1/2(x)) showing

the atom of probability at x = 1/2; (Right) Marginal CDF of x (FX(x) = 2
3
x2 + 1

3
Ix≥1/2).
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Figure 2: Coal mining disasters: event dates y (+ signs), change point times (θ vertical lines)
and λ(t) itself (piecewise constant function of year, t).
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