
SC7 Bayes Methods

Third problem sheet (Sections 4.3-7.2 of lecture notes).

Section A questions

1. Let x1, x2, x3, ... be an infinite exchangeable sequence of binary random variables. Show

that cov(xi, xj) ≥ 0 for all i, j ∈ {1, 2, 3, ...}.

2. The Savage axioms (as formulated by DeGroot) characterise coherent prior preference for

events stated in terms of inequalities, so that A ≤ B implies B is at least as likely as A.

(a) Write down the first three axioms (see Lecture notes).

(b) Suppose a probability space (S,S, π) expressing prior preferences exists. For A,B ∈ S
let Ac, Bc give the complements of A and B. Show A ≤ B ⇒ Ac ≥ Bc from the

Axioms of Probability.

Section B questions

3. Continuing question 2 in Section A, suppose preferences over sets in B satisfy the first

three Savage Axioms. Show (from the Savage Axioms) that if A ≤ B then Ac ≥ Bc.

4. Let X1, X2 be binary random variables. Table entries below give probabilities, p(x1, x2) =

Pr(X1 = x1, X2 = x2), for outcomes (X1, X2) = (x1, x2) indicated by row and column.1

X1 = 0 X1 = 1
X2 = 0 0 1/2
X2 = 1 1/2 0

(a) Show that X1 and X2 are exchangeable.

(b) Show that there does not exist a distribution F such that

p(x1, x2) =

∫ 1

0

∏
i=1,2

pxi(1− p)1−xidF (p),

ie, de Finetti’s theorem need not hold if the exchangeable sequence is finite.

5. For xi ∈ {0, 1}, i = 1, 2, 3, ..., John elicits a separate prior pn(x1, x2, ..., xn) for each value

of n = 1, 2, .... John’s priors are not marginally consistent, in particular,

pn(x1, ..., xn) 6= pn+1(x1, ..., xn, 0) + pn+1(x1, ..., xn, 1).
1From P. Diaconis and Freedman D. (1980). Finite Exchangeable Sequences. Ann. Probab. v8 p745–764.



(a) Can you think of a well-known family of distributions on binary random variables

that is not marginally consistent? Hint, a model for binary images...

(b) Show that John’s priors do not satisfy the Savage axioms (consider the first three).

(c) Show that, under John’s priors, x1, x2, x3, ...xn+1 is not part of an infinite exchangeable

sequence. Hint: show infinite exchangeable sequences are marginally consistent.

6. (Model averaging) Consider a normal linear model allowing for outliers. Let X be an n×p
design matrix with rows xi = (xi,1, ..., xi,p) and first column Xi,1 = 1, i = 1, ..., n. Let β

be a p-component parameter vector with β1 the regression intercept. Let z be a latent

indicator variable with zi = 1 if (yi, xi) is an outlier and zi = 0 otherwise. The response

yi ∼ N(xiβ, σ
2) if zi = 0 and yi ∼ N(xiβ, ρσ

2) if zi = 1. Here ρ is a variance inflation

factor defining outliers (and ρ is fixed, so for eg we take ρ = 9 in Q10 below). Let p be the

probability that any single given data point is an outlier.

(a) The model parameters are β, σ, p and the n-component vector z. The choice of ρ

defining outliers is fixed. Write down the likelihood L(β, σ, z; y).

(b) Write down the posterior p(β, σ, p, z|y) if the priors are p ∼ Beta(1, 9), βi/2.5 ∼ t(1),

iid for i = 1, ..., p and zi ∼ Bern(p), iid for i = 1, ..., n and σ ∼ 1/σ.

(c) The columns of X are scaled and centred to mean zero, variance one. Show that,

conditional on zi = 0, i = 1, ..., n (no outliers) and σ, β1 is independent of β2, ..., βp in

the posterior. Why might this be desirable for MCMC analysis?

(d) An MCMC sampler targeting π(β, σ, p, z|y) is given. Explain (a) how you would use

the MCMC output to test if a given data point is an outlier, (b) how you would

sample the model averaged posterior π(β, σ, p|y) and (c) how you would form a point

estimate β̂i, i ∈ {1, ..., p} for βi if your loss function is the square error |β̂i − βi|2.

7. (MCMC with a Jacobian) Consider an MCMC algorithm targeting π(θ) ∝ θ−1/2/(1 + θ2)

with θ > 0 a scalar parameter. In the following ν is a fixed parameter of the MCMC and

t(ν) denotes the student-t distribution with ν degrees of freedom.

(a) Calculate the acceptance probability for the MCMC proposal u ∼ t(ν), θ′ = θu.

(b) Comment briefly on how you would decide a value for ν.

Section C questions

8. Continuing question 3 in Section B, show that prior preferences respecting the Savage

Axioms are transitive, that is, if A ≤ B and B ≤ C then A ≤ C.



9. Consider a process generating x1, x2, x3, ... in which x1 = 1 with fixed and known proba-

bility p and for n = 1, 2, ...,

p(xn+1 = 1|xn, ..., x1) =
p+ kn
1 + n

,

where kn =
∑n

i=1 xi.

(a) Is the process Markov?

(b) Show that this process generates an infinite exchangeable sequence.

10. (MCMC with a Jacobian) Let θ ∈ <p be a p-component parameter vector with prior

π(θ) and y ∈ <n an n-component data vector with observation model y ∼ p(y|θ). the

parameters are positive, and satisfy an order constraint, 0 < θ1 < θ2 < ... < θp <∞.

(a) Consider the following MCMC proposal. Draw u1 ∼ U(1/2, 2) and u2 ∼ N(0, σ2)

where σ > 0 is a fixed parameter of the MCMC. Set θ′ = u1θ + u2, that is θ′i =

u1θi + u2, i = 1, 2, ..., p. Calculate the acceptance probability α(θ′|θ) in as much

detail as you can.

(b) Explain qualitatively why the proposal scheme above is not irreducible (for example

in the “computer measure”). A MCMC algorithm which has an update with a second

distinct proposal mechanism alternates between the two updates. Outline briefly (in

a sentence) a suitable “second update”.

11. Continuing question 6 in Section B, the hills data are often used to illustrate outlier

detection. The finishing time is transformed to make the response more normal, and the

covariates for height climbed and distance covered are scaled and centred.

> data(hills); a=hills

> a$y=sqrt(a$time); a$climb=scale(a$climb); a$dist=scale(a$dist)

We would like to fit a normal linear model y~climb+dist to these data, allowing for

possible outliers and carrying out model averaging over the outlier labels z. In the file

ProblemSheet3-23.R is MCMC code for this problem. Run the MCMC, test for outliers

and give an 95% HPD interval for the outlier probability p.

12. Continuing question 7 in Section B, implement the MCMC and check your answer!
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