
SC7 Bayes Methods

Second problem sheet (Sections 3-4 of lecture notes).

Section A questions

1. Let M = {1, 2} and consider two generative models πm(θ)pm(y|θ), m ∈ M and corre-

sponding marginal likelihoods pm(y), m ∈ M for continuous parameters θ ∈ Ω and data

y ∈ Y . Let q(θ) = cq̃(θ) be an arbitrary density over Ω satisfying q(θ) > 0 for all θ ∈ Ω.

Show that the Bayes factor B1,2 = p1(y)/p2(y) is given by1

B1,2 =
Eθ∼q(π1(θ)p1(y|θ)/q̃(θ))
Eθ∼q(π2(θ)p2(y|θ)/q̃(θ))

and state how this might be estimated using Monte Carlo samples.

2. Suppose X = x is a draw from an Ising model distribution X ∼ π(·|θ) on an m×m lattice,

so that for i = 1, 2, ..., n with n = m2, xi ∈ {0, 1} and x = (x1, ..., xn) with n = m2. Let

Ni be the set of neighbors of pixel i on the square lattice. Let #x denote the number of

disagreeing neighbors, that is

#x =
1

2

m2∑
i=1

∑
j∈Ni

Ixi 6=xj .

Under the Ising model, π(x|θ) = exp(−θ#x)/Z(θ) where Z(θ) is a normalising constant.

Suppose we don’t observe X itself but instead observe Y = yobs with yobs = (yobs1, ..., yobsn)

and Yi|xi ∼ N(xi, σ
2) iid for i = 1, 2, ..., n. Here σ > 0 is known and a prior θ ∼ Exp(2) is

elicited for θ.

(a) Write down the posterior π(θ, x|yobs) in terms of the model elements and explain why

it is doubly intractable when m� 1 .

(b) Consider the statistic for y ∈ Rn

S(y) =
1

2

m2∑
i=1

∑
j∈Ni

(yi − yj)2

and distance measure d(s− s′) = |s− s′|. Briefly motivate this choice of of the ABC

statistic S(y) [Hint: what happens when σ � 1. ].

(c) An MCMC algorithm for X ∼ π(x|θ) is available. Give an ABC algorithm targeting

π(θ|d(S(Y ), S(yobs)) < δ) using the MCMC algorithm to simulate X ∼ π(x|θ).
1Ming-Hui Chen, Qi-Man Shao, On Monte Carlo methods for estimating ratios of normalizing constants, Ann.

Statist. 25(4), 1563-1594, (1997a)



Section B questions

3. (a) Consider two models with parameter spaces respectively θ ∈ <p and φ = (θ, ψ)

with ψ ∈ <q, so that φ ∈ <p+q. We want to compare model 1 with prior π1(θ),

observation model p1(y|θ) and marginal likelihood p1(y) with model 2 where we have

π2(φ), p2(y|φ), and p2(y) correspondingly. Explain briefly why

p1(y)

p2(y)
6=
Eφ|y,m=2(π1(φ)p1(y|φ)h(φ))

Eθ|y,m=1(π2(θ)p2(y|θ)h(θ))
,

for h a function we are free to choose.

(b) Let Q(ψ) be a probability density on <q. Show that

p1(y)

p2(y)
=

E(θ,ψ)|y,m=2(Q(ψ)π1(θ)p1(y|θ)h(θ, ψ))

Eψ(Eθ|y,m=1(π2(θ, ψ)p2(y|θ, ψ)h(θ, ψ)))

where ψ ∼ Q in the expectation in the denominator and h : <p+q → < is a function

chosen so that the expectations exist. Comment briefly on how this last identity may

be used for model comparison for models defined on spaces of unequal dimension.2

(c) Briefly outline any assumptions we are making about the densities above.

4. (ABC) We considered a version of ABC related to the rejection algorithm. Consider the

following MCMC-ABC algorithm3, targeting π(θ|y) (approximately) using the statistics

S(y), distance d(S, S ′) and threshold δ. The observation model is p(y|θ) and the prior is

π(θ). Suppose Xt = θ.

Step 1. Simulate θ′ ∼ q(θ′|θ) and y′ ∼ p(y′|θ′).

Step 2. If d(S(y), S(y′)) < δ then accept θ′ (set Xt+1 = θ′) with probability

α(θ′|θ) = min

{
1,

π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

}
and otherwise reject θ′ (set Xt+1 = θ).

(a) Show this algorithm targets π(θ|d(S(Y ), S(y)) < δ) (y is fixed here and Y ∼ p(·|θ)).

(b) Suppose we have yi ∼ Poisson(Λ), i = 1, 2, ..., n with n = 5. Prior λ ∼ Γ(α =

1, β = 1). Give the ABC-MCMC algorithm targeting π(λ|y) (approximately). Take

S(y) = ȳ, d(ȳ′, ȳ) = |ȳ′ − ȳ| and δ = 0.5.

2Chen, M.H. and Shao, Q.M. (1997b). Estimating ratios of normalizing constants for densities with different
dimensions. Statistica Sinica v7, p607–630.

3Marjoram et al, “Markov chain Monte Carlo without likelihoods”, PNAS (2003).



5. Consider two urns. In the first urn there are 50 black balls and 50 red balls. In the second

urn there are 100 balls, the number of each color unknown. Suppose the proportion of

back balls in the second urn is equal φ.

Jane’s φ-prior, π(φ), satisfies E(φ) = 1/2. Jane is offered a choice of urn and color and two

balls are drawn (with replacement) from the chosen urn. Jane receives a £1 reward for

each ball matching her chosen color. Her utility function is U(0) = 0, U(1) = v, U(2) = 1

with 1/2 < v < 1.

Jane is offered red from the first urn or black from the second.

(a) Show that the expected utility of choosing the second urn given φ is

E(U |φ) = 2φ(1− φ)v + φ2.

(b) Jane chooses the first urn. Show that this choice maximises the expected utility.

(c) Jane is now offered black from the first urn or red from the second. Show that Jane

should again choose the first urn.

6. If π(θ) is a prior for θ then an inference scheme is a rule ψ(θ; π, y) for updating belief for

θ given data y. For example in Bayesian inference ψBayes(θ; π, y) = π(θ|y) but in ABC at

fixed δ, ψ∆,δ(θ; π, y) = π(θ|Y ∈ ∆y(δ)).

For 1 ≤ j < n let y1:j = (y1, ..., yj) and yj+1:n = (yj+1, ..., yn) so we split the data into two

sets. Suppose the data are conditionally independent, so

p(y|θ) =
n∏
i=1

p(yi|θ).

A belief update is order-coherent for conditionally independent data if

ψ(θ; π, y) = ψ(θ;ψ(θ; π, y1:j), yj+1:n)

for all j ∈ {1, 2, ..., n− 1} (the posterior from the first data set is the prior for the next).

(a) Show that Bayesian inference is order-coherent.

(b) Show that ABC with fixed δ is not in general order coherent. Hint: take summary

statistic S(y) = y and Euclidean distance measure d(y, y′) = ||y − y′|| and give a

counter-example.

(c) Let Cy(δ) be the rectangular prism Cy(δ) = {y′ ∈ Rn : |yi − y′i| < δ ∀ i = 1, ..., n}.
Show that inference with ψC,δ(θ; π, y) = π(θ|Y ∈ Cy(δ)) is order-coherent.



Section C questions

7. For θ ∈ Ω and i = 1, 2 let pi(θ) = qi(θ)/ci and θ
(t)
i ∼ pi, t = 1, ..., T so ci normalises qi.

Let h be defined so that
∫

Ω
q1(θ)q2(θ)h(θ)dθ exists. Let r = c1/c2 and

r̂h =

∑T
i=1 q1(θ

(t)
2 )h(θ

(t)
2 )∑T

j=1 q2(θ
(t)
1 )h(θ

(t)
1 )

.

Let the relative mean square error be defined

RE(r̂h) =
E[(r̂h − r)2]

r2
,

where the expectation is taken over the random samples θ
(t)
i , t = 1, ..., T for i = 1, 2 which

are assumed jointly independent. It may be shown (using the delta-rule) that

RE(r̂h) =
1

T

∫
Ω

p1(θ)p2(θ)(p1(θ) + p2(θ))h(θ)2dθ(∫
Ω
p1(θ)p2(θ)h(θ)dθ

)2 − 2

T
+O(T−2).

Show that this expression is minimised over functions h by the choice4

h(θ) ∝ 1

p1(θ) + p2(θ)
.

Hint: Cauchy Schwarz or functional differentiation WRT h both lead to the result.

Statistics Department, University of Oxford

Geoff Nicholls: nicholls@stats.ox.ac.uk

4following the proof in Meng, XL and Wong, WH, Simulating ratios of normalizing constants via a simple
identity: a theoretical exploration, Statistica Sinica 6:831-860 (1996)


