SC7 Bayes Methods

First problem sheet (Sections 1-2 of lecture notes).

Section A questions

1.

(a)

Consider tossing a drawing pin [see figure at end]. Define the result of a toss to
be “heads” if the point lands downwards, and “tails” otherwise. Write p for the
probability that a toss will land point downwards. Think about p, and choose a, b,
so that a Beta(a, b) prior distribution approximates your subjective prior distribution

for p. [T used a =2 and b = 3 but you may differ.]

Now collect data. Toss a drawing pin 100 times and keep track of the number of
heads after 10, 50, and 100 tosses. You may find the result depends on the surface
you use. [I got 4, 16 and 26 heads after 10, 50 and 100 tosses.]

Ask someone else what prior they chose. Think of your respective priors as a hy-
potheses about p. Who’s beliefs were better supported by the data? Compute a

Bayes factor comparing your priors. [for me the other person used a = 3 and b = 2.]

Estimate a 95% HPD credible interval for p for each of the two priors you are con-
sidering, for the case when n = 10 trials. Write down the posterior averaged over
models, stating any assumptions you make, and estimate a 95% HPD credible interval

for p from the model averaged posterior.

Specify a Metropolis-Hastings Markov chain Monte Carlo algorithm targeting p(z|6)
where z € {0,1,...,n} and

pl]f) = (Z) 6(1 — g)"=.

Prove that your chain is irreducible and aperiodic.

Suppose now that the unknown true success probability for the Binomial random vari-
able X in part (a) is a random variable © which can take values in {1/2,1/4,1/8, ...}
only. The prior is

(0) =
0 for 8 otherwise.

{ 6 for0c{1/2,1/4,1/8,...}, and

An observed value X = z of the Binomial variable in part (a) is generated by sim-
ulating © ~ 7(-) to get © = 0* say, and then X ~ p(z|0*) as before. Specify a
Metropolis-Hastings Markov chain Monte Carlo algorithm simulating a Markov chain

targeting the posterior m(|z) for O] X = x.



Section B questions

3. In the radiocarbon dating example, suppose the dated materials are found in layers (strata)
piled up on one another, with y; ; the radiocarbon date for 6, ;, the j'th date in the ¢'th
layer. Let L < 1y < 9y < ... < py < U be the age parameters for the layer boundaries. If
we have n; dates from the ith layer we know that for:=1,2,.... M —1,and j = 1,2, ...,n,,
Y < 0, ; < 1isq (so specimen dates in higher layers are not as old as dates in lower layers).
Let ¢ = (1, ...,¥n) and 0 = (01, .00 1) with 6; = (0,1, ..., 0in,).

Derive a prior density (6, ) for the parameters 0, ¢ with reference to the prior elicitation

checklist given in lectures. Hint: how are the layer boundary dates 1o, ..., 9¥p/—1 generated?

4. Let I'(x; o, ) be the Gamma density. Consider Poisson observations Y = (Y1, Y5, ..., Y},)
with means A = (Aq, Ag,..., \,) given by a mixture of Gamma densities: for shape pa-
rameters aq, s and rate parameters [, 2, a known mixture proportion 0 < p < 1 and
1=1,2,...,n, we observe

Y:|Ai ~ Poisson(\;)

(all iid) with
Ai ~ pL(Ai; aq, Br) + (1 = p)L(Ng; az, Ba).

(a) Denote by 7(aq, f1, g, B2) a prior for the unknown shape and rate parameters. Write
down the joint posterior for aq, 1, as, B2 and A given Y1, Y5, ....Y,,. Give an MCMC
algorithm sampling o, 51, a, B2, A|Y1, ..., Y.

(b) Integrate A out of the joint posterior to obtain a marginal posterior denisty for
aq, b1, ag, Bo|Y1, ..., Y,. Comment briefly on how you would alter your MCMC algo-
rithm for the new target. What considerations would guide your choice of simulation

method (ie, whether to simulate the joint or the marginal posterior density)?

5. Let X be an n x p design matrix with rows z;,i = 1,2,...,n and 6 = (61,0,,...,0,)" a
p-component vector of parameters. Let z = (z1,...,2,) be jointly independent normal
random variables, z ~ N(X#,1,) with I, the n x n identity. In the probit observation
model for y = (y1, ..., Yn), we observe y; = 1 if z; > 0 and y; = 0 if z; < 0.

Denote by 7(0, z) = w(0)7(2|0) the joint density of # and z with 7(6) = N(0;0,X) a normal

prior for # and ¥ a p X p covariance matrix.
(a) Show that y; ~ Bernoulli(®(x;0)).

(b) Write the posterior 7(6, z|y) in terms of the model elements.

(c¢) Show that
p(0|z) = N(6; p, V)

with p=VXTzand V = (27! + XTX)"L.



(d)

(e)

Show that
m(zilyi 0) ox { N(zi;2:0,1),50 ify; =1

Give a Gibbs sampler sampling 7(0|y) (Hint: 7(6, z|y) would be easier).

6. Let m(0),0 € R be a prior density for a scalar parameter, let p(y|f),y € R"™ be the

observation model density and let 7(8|y) o< w(0)p(y|f) be the posterior density. Consider

a Markov chain simulated in the following way. Suppose 0(®) ~ 7(-) is a draw from the

prior and for t = 0,1,2, ... we generate a Markov chain by simulating data y® ~ p(-|§®)
and then 0+ ~ 7(-[y®).

(a)

(b)

i. Calculate the joint density, p(6®, 01)) say, for 6, §(1) and show that p(6©, o)) =
(0 9 (ie they are exchangeable).
ii. Show that marginally, ) ~ 7(-) for all t = 0,1, 2, ...
iii. Give the transition probability density K (6,6’) for the chain and show the chain

is reversible with respect to the prior 7(6).
Suppose we are given an MCMC algorithm 67 = M(6©), T y), initialised at 0,
and targeting the posterior 7(d|y) o m(0)p(y|6), so 6T RS 7(-|ly) as T — oo. Here
M is a function that moves us T steps forward in the MCMC run and this Markov
chain is just some MCMC algorithm for simulating 7(6|y) and so not related to the
Markov chain in the previous part.
Suppose we think we have chosen T sufficiently large that the chain has converged,
and so we believe #T) ~ 7(-|y) is a good approximation.
Consider the following procedure simulating pairs (¢;,6;), ¢ = 1,2,..., K: (Step 1)
parameter ¢; ~ 7(+) is an independent draw from the prior; (Step 2) synthetic data
yi ~ p(-|¢;) is an independent draw from the observation model; (Step 3) the MCMC
algorithm M is initialised with a draw GZ(O) ~ 70 from an arbitrary fixed initial
distribution 7© and (Step 4) we set 6; = M(6\”), T, y!).
Let ¢ = (¢1,...,05) and 0 = (04, ..., 0 ) be samples generated in this way.

i. Suppose the chain has indeed converged by T steps for all starting states 0.
Let p(¢,0) be the joint distribution of the random vectors ¢ and #. Show that
p(,6) = p(6,0).

ii. Give a non-parametric test for MCMC convergence which makes use of the result
in Question 6(b)i. Hint: the null is 07 ~ 7(-|y).



7. (From Cox and Hinkley Theoretical Statistics) For i = 1,...,n, let §; € {0,1} be the
indicator for the event that student ¢ enjoys the course in 2023 and let 6 = (64, ...,6,).
Suppose our prior probability for §; = 1, i = 1,...,n is that they are iid with P(§; = 1) = p
with p our prior probability that an individual student enjoys the course and we take a
fixed value of p expressing our prior expectation for the proportion enjoying the course

(based perhaps on past years).

Our prior on the function ¢(f) = n~' ", 6; has mean p (that’s good) and variance p(1 —
p)/n. If n is large this prior expresses near certainty in the proportion of students enjoying

the course.

Criticise this prior elicitation and suggest an improvement. As a hint, something is wrong
with the prior variance of the random variable @) = ¢(#) and we should change the prior

to fix this.

Section C questions

8. (MSc 2020 exam - students had a related practical in 2020) A book club with n members
wants to decide what book to read next. They have a shortlist of B books with labels
B = {1,...,B}. Let Pg be the set of all permutations of the labels in B. Fori =1,...,n
the ¢'th reader gives a ranked list of the books v; = (yi1,....¥i.5), ¥i € Pp, ranking them

from most to least interesting. The data are y = (y1, ..., Yn)-

In a Plackett-Luce model each book b = 1,..., B has interest measure 6, > 0. Let 6 =
(01,...,0B), 0 € RB. Let Y; € Pg denote the random ranking from the i'th reader. In
the Plackett-Luce model, given Y;1 = yi1, ..., Yia—1 = Yia—1, the a’th entry (ie, the next
entry) is decided by choosing book b with probability proportional to €, from the books
B\ {yi1,..-sYia—1} remaining. The Y7, ..., Y, are jointly independent given 6.

(a) i Show that the likelihood L(;y) is

n B

0,
L;y) =111 S
Yi,b

i=1 a=1 b=a

ii. The prior is 75(0) = [[_, 7(6;) with 7(6;) = ['(8;; o/, 1) with o/ > 0 given. Write
down the posterior density 7(f|y) and give an MCMC algorithm targeting 7(6|y).
ili. Explain why the scale £ in the prior I'(o/, ') for ;, i € B may be set equal one.
Suppose odds of 1000 : 1 for ranking one book above another represent extreme
preference and are a priori unlikely for books on the shortlist. Explain how a

fixed numerical value of o/ might be chosen, noting any assumptions.



(b) Suppose B is large so each reader ¢ = 1,...,n only reports the first N entries x; =
(®i1,...,o;n) in their ranking, with N <« B. Here z;; = y;; for i = 1,....,n and

j=1,..,N. The data are x = (21, ..., ).

i. Show that the likelihood L(0;z) for the new data is

N
exi,a

L(6;x) = HH

N .
a=1 Zb:a emi,b + ZdGB\wi Oa

ii. Let C = J;_, z; give the books appearing in at least one ranking and D = B\ C
be the books appearing in none. Let 0 = (6y)pec and V =3, 1, 0.
Write down the prior distribution of V' and the likelihood L(6¢,V;x), and give

the posterior 7(6¢, V|x) as a function of 6, and V.

iii. Give an MCMC algorithm targeting (¢, V|x). State briefly why it may be more
efficient, for estimation of ¢ in the case |C| < B, than MCMC targeting 7(6|z).
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