SC7/SM6 Bayes Methods HT20

Lecturer: Geoff Nicholls

Lecture 9: ABC

Notes and Problem sheets are available at

http://www.stats.ox.ac.uk/~nicholls/BayesMethods/
Approximate Bayesian Computation is a Monte Carlo scheme targeting an approximate posterior. We use it when the likelihood is intractable, but the generative model

\[(\theta, y) \sim \pi(\theta)p(y|\theta)\]

is easy to simulate. If the observation model \(p(y|\theta) \propto \tilde{p}(y, \theta)\) (as a function of \(y\)) then

\[p(y|\theta) = \frac{\tilde{p}(y, \theta)}{c(\theta)}\]

with

\[c(\theta) = \int \tilde{p}(y, \theta)dy\]

and \(c(\theta)\) may be intractable. These problems are called doubly intractable. Standard MCMC wont work, as we cant calculate the acceptance probability \(\alpha(\theta'|\theta)\).
ABC example: the Ising model - a doubly intractable model.

Denote by $\Omega_Y = \{0, 1\}^{n^2}$ the set of all binary images $Y = (Y_1, Y_2, ..., Y_{n^2})$, $Y_i \in \{0, 1\}$, where $i = 1, 2, ..., n^2$ is the cell index on the square lattice of image cells. Let $#y$ give the number of disagreeing neighbors in the binary image $Y = y$.

The Ising model is the following distribution over Ω:

$$p(y|\theta) = \exp(-\theta #y)/c(\theta).$$

Here $\theta \geq 0$ is a positive smoothing parameter and

$$c(\theta) = \sum_{y \in \Omega_Y} \exp(-\theta #y)$$

is a normalizing constant which we can't compute for n large.*

*There is a formula for $c(\theta)$ for the special case of periodic boundary conditions, but that is not generally our image model of choice.
Suppose we have image data y and we want to estimate θ. If $\pi(\theta)$ is a prior for θ then the posterior is

$$
\pi(\theta|y) = \frac{p(y|\theta)\pi(\theta)}{p(y)}.
$$

Consider doing MCMC targeting $\pi(\theta|y)$. Choose a simple proposal for the scalar parameter θ, say $\theta' \sim U(\theta - a, \theta + a)$, $a > 0$. The acceptance probability is

$$
\alpha(\theta'|\theta) = \min \left\{ 1, \frac{p(y|\theta')\pi(\theta')}{p(y|\theta)\pi(\theta)} \right\}
$$

$$
= \min \left\{ 1, \frac{c(\theta)}{c(\theta')} \times \text{easy stuff} \right\}
$$

and although $p(y)$ cancels, $c(\theta)/c(\theta')$ does not, and so we are left with an acceptance probability we cannot evaluate.
Rejection sampling, ABC-style

The basic ABC algorithm approximates the following variant of rejection. Suppose y and θ are both discrete so $p(y|\theta) \leq 1$.

The following algorithm simulates $\theta \sim \pi(\theta|y)$ where (as usual) $$\pi(\theta|y) \propto p(y|\theta)\pi(\theta).$$

(1) Simulate $\theta \sim \pi(\theta)$ and $y' \sim p(y'|\theta)$.

(2) If $y' = y$ return θ and stop, otherwise goto (1).

Line (2) simulates an event succeeding with probability $p(y|\theta)$.
Let Θ_{rej} be the value returned by this algorithm.

Claim: $\Theta_{\text{rej}} \sim \pi(\cdot | y)$.

Proof: To find the probability $\Theta_{\text{rej}} = \theta$, sum over probabilities for all sequences of rejections ending in the return value θ,

$$
\Pr(\Theta_{\text{rej}} = \theta) = \pi(\theta)p(y|\theta) + \pi(\theta)p(y|\theta) \sum_{\theta'} \pi(\theta')(1 - p(y|\theta')) + \ldots
$$

$$
= \pi(\theta)p(y|\theta)(1 + (1 - p(y)) + (1 - p(y))^2 + \ldots)
$$

$$
= \pi(\theta)p(y|\theta) \times \frac{1}{1 - (1 - p(y))}
$$

$$
= \pi(\theta|y)
$$

with $p(y) = \sum_{\theta} \pi(\theta)p(y|\theta)$.
Rejection-ABC (where now \((\theta, y) \in \Omega \times \mathcal{Y} - \text{general rv}\)).

ABC assumes that if \(y'\) is “close” to \(y\) then \(\pi(\theta|y')\) is a good approximation to \(\pi(\theta|y)\). We measure “close” using summary statistics \(S(y) = (S_1(y), \ldots, S_p(y))\) chosen so they inform \(\theta\).

Let \(d(s', s)\) be a distance between vectors \(s' = S(y'), s = S(y)\). Let \(\delta \geq 0\) be a threshold distance.

(1) Simulate \(\theta \sim \pi(\theta)\) and \(y' \sim p(y'|\theta)\).

(2) If \(d(S(y'), S(y)) < \delta\) return \((\theta, y')\) and stop, else goto (1).

Claim: If \(\theta, y'\) is the (random) output pair then marginally

\[\theta \sim \pi(\theta|d(S(Y), S(y)) < \delta) \]

with \(Y \sim p(\cdot)\) and \(p(y'), y' \in \mathcal{Y}\) the prior predictive.
Proof: for \(y \in \mathcal{Y} \) let
\[
\Delta_\delta(y) = \{ y' \in \mathcal{Y} : d(S(y'), S(y)) < \delta \}.
\]
The algorithm returns \((\theta, y') \sim \pi(\theta)p(y'|\theta)\) conditioned on
\[
y' \in \Delta_\delta(y)
\]
so the joint distribution of the output pair is
\[
\theta, y'|y \sim \pi(\theta)p(y'|\theta)I_{y' \in \Delta_\delta(y)}.
\]
The marginal distribution of the output \(y' \) is
\[
y'|y \sim p(y')I_{y' \in \Delta_\delta(y)}
\]
with \(p(y') = \int_{\Omega} \pi(\theta)p(y'|\theta)d\theta \) the original prior predictive distribution. The marginal distribution of the output \(\theta \) is
\[
\theta|y \sim \pi(\theta)P(Y \in \Delta_\delta(y)|\theta),
\]
where \(Y \sim p(\cdot) \). This is just \(\theta|y \sim \pi(\theta|Y \in \Delta_\delta(y)) \). [EOP]
We have made two (more) approximations
- we summarise the data with $y \rightarrow s(y)$
- we replace the data-statement

 “the realised value of the data is $Y = y$”

with

 “the realised value of the data is in the ball $Y \in \Delta_\delta(y)$”.

If $S : \mathcal{Y} \rightarrow \mathbb{R}^p$ is a sufficient statistic then

\[
\pi(\theta|Y = y) = \pi(\theta|S(Y) = s(y)),
\]

and in that case

\[
\pi(\theta|Y \in \Delta_\delta(y)) \rightarrow \pi(\theta|y)
\]
as $\delta \rightarrow 0$ may often be verified.
Example

Data model: \(y_i \sim \text{Poisson}(\Lambda)^*, \ i = 1, 2, ..., \ n \) with \(n = 5 \).

Prior: \(\Lambda \sim \Gamma(\alpha = 1, \beta = 1) \).

Summary statistic: \(S(y) = \bar{y} \)

Distance measure: \(d(\bar{y}', \bar{y}) = |\bar{y}' - \bar{y}| \) and \(\delta = 0.5, 1 \).

ABC algorithm

(1) Simulate \(\lambda \sim \Gamma(\alpha, \beta) \) and \(y'_i \sim \text{Poisson}(\Lambda), \ i = 1, 2, ..., \ n \).

(2) If \(|\bar{y}' - \bar{y}| < \delta \) return \(\theta \) and stop, otherwise goto (1).

We do Bayesian inference without calculating \(L \) or \(\pi \), sometimes called “likelihood free” inference. We just specify how to simulate parameters and data.

*True value was \(\Lambda = 2 \).
Regression adjustment of samples

ABC generates pairs \(\theta, y' \sim \pi(\theta)p(y'|\theta) \). Conditional on \(y' \), \(\theta \sim \pi(\theta|y') \). “Shift” this distribution onto the data at \(y' = y \! \).

Assume (1) \(s = S(y) \) is sufficient and let \(s' = S(y') \).

Assume (2) shifting the data, \(y \) to \(y' \), shifts the posterior mean

\[
\mu(s) = E(\theta|S(Y) = s)
\]

but has no other effect on the distribution of \(\theta|y \). If this is true then if \(\theta \sim \pi(\cdot|y) \) we can alternatively write

\[
\theta = \mu(s) + \epsilon
\]

with \(\epsilon \sim \mathcal{F} \) a mean zero r.v. with \(\mathcal{F} \) not depending on \(y \).
Assume (3) for $d(s', s)$ small, the linear approximation

$$
\mu(s') \approx \alpha + (s' - s)\beta
$$

is good. Clearly $\alpha \approx \mu(s)$ is the posterior mean at the data.

If we knew $\mu(s)$, we could simulate $\theta|s$ by simulating ϵ and setting

$$
\theta = \alpha + \epsilon.
$$

We have lots of pairs $\theta(t), S(y(t))$ and we can regress them to estimate a local linear approximation

$$
\theta(t) = \alpha + (S(y(t)) - s)\beta + \epsilon(t).
$$
We estimate $\hat{\alpha}, \hat{\beta}$ using LS-regression and set

$$
\theta_{\text{adj}}^{(t)} = \theta^{(t)} - (S(y^{(t)}) - s)\hat{\beta} \\
= \left[\alpha + (S(y^{(t)}) - s)\beta + \epsilon^{(t)}\right] - [S(y^{(t)}) - s]\hat{\beta} \\
\simeq \alpha + \epsilon^{(t)},
$$

if $\hat{\beta} \simeq \beta$ is a good approximation. In this case $\theta_{\text{adj}}^{(t)} \sim \pi(\cdot|s)$ approximately, a sample from the posterior, under our assumptions.

The regression correction adjusts the distribution of θ at y' to move it onto the distribution of θ at y.

Example: We did exactly this for the Poisson example above. Worked well. See the figure and R-code for this lecture.
Example: Radiocarbon dating revisited

We will fit our shrinkage model using ABC and see how it compares to MCMC. ABC is much easier here.

Recall the model.

Data model: \(y_i' \sim N(\mu(\theta_i), \sigma^2 + \sigma_c(\theta_i)^2) \) for \(i = 1, ..., n \).

Prior: uniform span \(v \sim U(L, U) \), \(\psi_1 \sim U(L, U - v) \),
\(\psi_2 = \psi_1 + v \), \(\theta_i \sim U(\psi_1, \psi_2) \) \(i = 1, ..., n \).

Summary statistic \(s(y) = y \) (works here as just \(n = 7 \) dates).

Distance: Euclidian \(d(s(y'), s(y)) = |y' - y| \). We chose \(\delta \) by experimentation (see figure).
for (k in 1:K) {
 span=runif(1,min=0,max=U-L); #uniform span
 lower=runif(1,min=L,max=U-span); #psi[1]
 upper=lower+span; #psi[2]
 dates=round(runif(nd,min=lower,max=upper))
 y.sim=mu[dates]+sqrt(d^2+err[dates]^2)*rnorm(nd)
 D=sqrt(sum((y-y.sim)^2))/1000 #arbitrary scale
 if (D<delta) {
 S=rbind(S,y.sim); psi=rbind(psi,c(lower,upper))
 }
}

Implementation detail: it is common practice to save all the simulation output, not just the ones satisfying \(y' \in \Delta y \), and choose \(\delta \) so some fixed fraction are retained. This allows us to trial different \(\delta \)-values without rerunning. Above is simple rejection-ABC.
ABC example: the Ising Model

The Ising distribution $Y \sim p(\cdot | \theta)$ is easy to sample for moderate n-values using MCMC. Here are 3 samples $Y \sim p(y|\theta)$:

These samples are not exactly distributed according to $p(y|\theta)$ (convergence) but we can make them as good as we need by taking long MCMC runs.
We can sample $Y \sim p(\cdot|\theta)$ using MCMC: Suppose $Y^{(t)} = y$.

[Step 1] Choose an update, something simple. Choose a cell $i \sim U\{1, 2, ..., n^2\}$. Set $y'_i = 1 - y_i$ and $y'_j = y_j$ for $j \neq i$. Notice that $q(y'|y) = q(y|y') = 1/n^2$ for y', y differing at exactly one cell.

[Step 2] Write down the algorithm. Let $Y^{(t)} = y$. $Y^{(t+1)}$ is determined in the following way.

1. Simulate $y' \sim q(y'|y)$ as above, and $u \sim U(0, 1)$.

2. If $u < \alpha(y'|y)$ set $Y^{(t+1)} = y'$ and otherwise set $Y^{(t+1)} = y$.
[Step 3] Calculate α. The q’s cancel as usual, so

$$\alpha(y'|y) = \min \left\{ 1, \frac{p(y'|\theta)q(y|y')}{p(y|\theta)q(y'|y)} \right\}$$

$$= \min \left\{ 1, \exp(-\theta(#y' - #y)) \right\}$$

It is clear the algorithm is irreducible (q is irreducible and α is never zero) and aperiodic (rejection is possible), so it is ergodic for $p(y)$.

An implementation of this algorithm in R is available in the code for this lecture. Some samples produced using this code are shown above.
ABC inference for θ

Recall the doubly intractable inference for $\theta|y$.

We have data $Y = y$ which is an $n \times n$ binary matrix and our observation model for Y, $Y \sim p(y|\theta)$ is the Ising model. Our goal is to estimate θ. The posterior is

$$\pi(\theta|y) = \frac{p(y|\theta)\pi(\theta)}{p(y)}$$

and the likelihood

$$p(y|\theta) = \exp(-\theta \#y)/c(\theta)$$

depends on $c(\theta)$, an intractable function of θ.
Our ABC algorithm sampling $\theta \sim \pi(\theta|y)$ approximately is as follows. Suppose we have a prior for θ. Given the scale of θ, $\text{Exp}(2)$ is a natural generic prior. We take $S(y) = \#y$, which is actually sufficient for θ.

(1) Simulate $\theta \sim \text{Exp}(2)$ and $y' \sim \exp(-\theta\#y')/c(\theta)$.

(2) If $|\#y' - \#y| < \delta$ return θ, otherwise, goto (1).

We implemented this (see attached R, 8x8 Ising, $\theta = 0.8$) and estimated the posterior densities in the figure.

The distribution converges to something stable as $\delta \to 0$. The regression adjustment for $\delta = 0.1$ corrects its distribution to agree with that for $\delta = 0.05$.