SC7/SM6 Bayes Methods HT19

Lecturer: Geoff Nicholls

Lecture 12: Reversible Jump MCMC II.

Notes and Problem sheets are available at

http://www.stats.ox.ac.uk/~nicholls/BayesMethods/

and via the MSc weblearn pages.
Reversible Jump MCMC*

Consider now a set of models \(p(y|\theta, m) \) and \(\pi(\theta|m), \theta \in \Omega_m \), with model prior \(\pi(m), m = 1, \ldots, M \). We are targeting

\[
\pi(\theta, m|y) \propto p(y|\theta, m)\pi(\theta|m)\pi(m).
\]

The MCMC state is \(X_t = (\theta, m) \). In the following we know \(m \) if we know \(\theta \) (\(m \) might be the dimension of \(\theta \) for example) so we could drop the \(m \) reference if we wish.

Let \(\rho_{m,m'} \) be a matrix of proposal probabilities: the probability to propose a move to model \(m' \) given the current state is \(m \).

Suppose model m' has one more parameter than m, for example,

$$\theta|m = (\theta_1, ..., \theta_d)$$

and

$$\theta'|m' = (\theta'_1, ..., \theta'_d, \theta'_{d+1}),$$

and we have created a move $(\theta', u') = \psi(\theta, u)$ with

$$\psi(\theta, u) = (\psi_1(\theta, u), \psi_2(\theta, u))$$

that generates θ' from θ. This creates a flow from $\theta \rightarrow \theta'$ and we need to balance it.

To set the mapping ψ up as an differentiable involution extend the space U of the proposal $g(u)$ with another state, $\{\emptyset\}$ so that $\Omega_{m'} \times \{\emptyset\}$ and $\Omega_{m'} \times U$ have equal dimension $d + 1$.

Extend the definitions of ψ_1 and ψ_2 so that $\theta = \psi_1(\theta', \emptyset)$ and $u = \psi_2(\theta', \emptyset)$ and hence $(\theta, u) = \psi(\theta', \emptyset)$.

We extend $g(u)$ to $G_m(m', u) = \rho_{m', m}g(u)$ when the dimension of Ω_m is greater than that of Ω_m' and $G_{m'}(m, \emptyset) = \rho_{m', m}$.
Example Proposal $d \rightarrow d + 1$: selected with probability $\rho_{m,m'}$; simulate $u \sim g(u)$ and set

$$\theta'_{1:d+1} = \psi_1(\theta, u)$$

where $\theta'_{1:d} = \theta_{1:d}$ and

$$\theta'_{d+1} = \theta'_{d+1}(\theta_{1:d}, u)$$

for the last component. For simplicity assume $\theta'_{d+1} = \theta'_{d+1}(u)$.

Proposal $(d + 1 \rightarrow d)$: selected with probability $\rho_{m',m}$; set $\theta_i = \theta_i', i = 1, ..., d$ (i.e., delete θ'_{d+1}). In this move $u' = \emptyset$ and

$$\psi(\theta'_{1:d+1}, u') = (\theta_{1:d}, u),$$

where u solves $\theta'_d = \theta'_d(u)$ (it is the u that “takes us back”).
The Jacobian is
\[
\left| \frac{\partial \psi(\theta, u)}{\partial \psi(\theta', u')} \right| = \left| \frac{\partial \theta'}{\partial (\theta, u)} \right| = \left| \frac{\partial \theta'_{d+1}}{\partial u} \right|.
\]

Dimensions are matched as \(\dim(\theta) + \dim(u) = \dim(\theta') \). The acceptance probability for proposal \(d \rightarrow d + 1 \) is
\[
\alpha(\theta'|\theta) = \min \left\{ 1, \frac{\pi(\theta', m'|y) G_{m'}(m, u)}{\pi(\theta, m|y) G_{m'}(m, u)} \left| \frac{\partial \theta'}{\partial (\theta, u)} \right| \right\}
\]
\[
= \min \left\{ 1, \frac{\pi(\theta', m'|y) \rho_{m',m}}{\pi(\theta, m|y) \rho_{m,m'} q(\theta'_{d+1})} \right\}.
\]

where
\[
q(\theta'_{d+1}) = g(u) \left| \frac{\partial \theta'_{d+1}}{\partial u} \right|^{-1}
\]
is just the proposal distribution for \(\theta'_{d+1} \) (if the proposals depended on \(\theta \) then this would be \(q(\theta'_{d+1}|\theta) \).
The acceptance probability for the reverse move, \(d + 1 \rightarrow d \) from \(\theta' = (\theta'_1, ..., \theta'_d, \theta'_{d+1}) \) to \(\theta = (\theta'_1, ..., \theta'_d) \) is just the inverse
\[
\alpha(\theta|\theta') = \min \left\{ 1, \frac{\pi(\theta, m|y)\rho_{m,m'}q(\theta_{d+1})}{\pi(\theta', m'|y)\rho_{m',m}} \right\}.
\]

The setup described above is a special case, jumping one dimension, with a simple proposal scheme. However, the framework generalises a great deal.

For example if the state is a set \(x = \{x_1, ..., x_m\} \) we might choose the element to delete at random. That probability will enter detailed balance as the choice of update involves the choice of \(m' \) and \(i \). The acceptance probability for adding an element \((x, m) \rightarrow (x', m + 1)\) with \(x' = x \cup \{x_{m+1}\} \) is
\[
\alpha(x'|x) = \min \left\{ 1, \frac{\pi(x', m + 1|y)\rho_{m+1,m} \times \frac{1}{m+1}}{\pi(x, m|y)\rho_{m,m+1}q(x_{m+1})} \right\}.
\]
RJMCMC - simple example

Let \(X = 1/2 \) with probability 1/3, else \(X \sim 2xI_{0<x<1}. \)

In this example we have a mixture of two models of dimension zero and one: Model \(M = 1 \) has state space \(X|M = 1 \in \{1/2\} \) (ie, a point); Model \(M = 2 \) has state space \(X|M = 2 \in [0, 1] \).

In terms of the joint (value,model) pair the target pmf/pdf is

\[
\pi(x, m) = \pi(x|m)\pi(m)
\]

with \(\pi(m = 1) = 1/3, \pi(m = 2) = 2/3, \pi(x|m = 1) = I_{x = 1/2}, \pi(x|m = 2) = 2x. \) We would like to give a RJ MCMC algorithm targeting this distribution.

\(\dagger \)The CDF is \(F_X(x) = \Pr(X \leq x) \) with \(F_X(x) = \frac{2}{3}x^2 + \frac{1}{3}I_{x \geq 1/2} \)
RJMCMC algorithm targeting \((X, M) \sim \pi(x, m)\):

MCMC state: \((X_t, M_t) = (x, m)\). First the proposal rules:

(increase dimension) if \(m = 1\) propose \(m' = 2\) with probability \(\rho_{1,2} = 1\). Propose \(x' \sim q(x')\) (recall \(x'\) is a scalar rv in \([0, 1]\)).

(decrease dimension) if \(m = 2\) propose \(m' = 1\) with probability \(\rho_{2,1} = 1\) and set \(x' = 1/2\).

We can choose \(q(x')\) to be anything we like that is irreducible. Just to prove this all works I use

\[
q(x') = \text{Beta}(x'; \alpha = 1/2, \beta = 1/2)
\]

ie something dramatically different from the density \(2x\) we expect when \(m = 2\).
Acceptance probabilities:
If \((x, m) = (1/2, 1)\) and we propose \((x', m' = 2)\) (ie, increase dimension), the acceptance probability is

\[
\alpha(x', m'|x, m) = \min \left\{ 1, \frac{\pi(x'|m')\pi(m')\rho_{m',m}}{\pi(x|m)\pi(m)\rho_{m,m'}q(x'|m')} \right\}.
\]

Substituting in our values the AP is

\[
\alpha(x', m'|x, m) = \min \left\{ 1, \frac{4x'/3}{\text{Beta}(x'; \alpha, \beta)/3} \right\}.
\]

If \((x, m) = (x, 2)\) and we propose \((x' = 1/2, m' = 1)\) (ie, decrease dimension), the acceptance probability is

\[
\alpha(x', m'|x, m) = \min \left\{ 1, \frac{\pi(x'|m')\pi(m')\rho_{m',m}q(x|m')} {\pi(x|m)\pi(m)\rho_{m,m'}} \right\}.
\]
Substituting in our values the AP is
\[
\alpha(x', m'|x, m) = \min \left\{ 1, \frac{\text{Beta}(x; \alpha, \beta)/3}{4x/3} \right\}.
\]

Iteration: we generate our chain \((X_t, M_t)\) iterating proposals and acceptance steps using the formula above. If the model is \(m = 1\) (so the state is \(x = 1/2\)) we propose to jump to model \(m' = 2\) and a new state \(x' \in [0, 1]\), and vis versa.
Remark 1: the dimension of the proposal dbn matches the change in dimension in the target - in terms of our original notation we propose a switch from $m = 1$ to $m' = 2$, simulate $u \sim g(u)$ and set $(x', u') = \psi(x, u)$. Here $u \sim \text{Beta}(\cdot; \alpha, \beta)$, $u' = \emptyset$ and the “transformation” is just $(x', u') = (u, \emptyset)$ so the Jacobian $|\partial x'/\partial u|$ is one. Also $\mathcal{U} = [0, 1]$, $\Omega_1 = \{1/2\}$ and $\Omega_2 = [0, 1]$ so
\[
\dim(\mathcal{U} \times \Omega_1) = \dim(\Omega_2 \times \{\emptyset\})
\]
since both dimensions equal one.

Remark 2: we could if we wished mix in a fixed-dimension update (ie set $\rho_{2,1} = \rho_{2,2} = 1/2$ so we have two options if $m = 2$). In this fixed dimension update we target $\pi(x|m = 2)$ using our standard MCMC tools.
Summarising the posterior from RJ-MCMC output

RJ MCMC is a Monte Carlo method useful for Bayesian model selection and model averaging. If we can sample the joint posterior for model \(m \) and parameter \(\theta \)

\[
\theta^{(t)}, m^{(t)} \sim \pi(\theta, m|y)
\]

we can carry out model averaging and model selection.

Model Choice: Since \(m^{(t)} \sim \pi(m|y) \) (i.e., marginally), the maximum a posteriori model (the MAP)

\[
m_{\text{MAP}} = \arg \max_{m=1, \ldots, M} \pi(m|y)
\]

can be estimated by the mode of \(\{m^{(t)}\}_{t=1}^T \). The MAP model minimises the risk for the 0-1 loss function \(L(m^*, m) = \mathbb{I}_{m=m^*} \).
When the number of models is very large, we can summarise the uncertainty over models using an HPD credible set C over models. This set satisfies

$$\sum_{m \in C} \pi(m|y) = 1 - \alpha^*$$

and

$$\pi(m|y) \geq \pi(m'|y)$$

for all pairs $m \in C$ and $m' \in C^c$. The HPD set minimises the risk for the loss to cover the true model m_0,

$$L(m_0, C) = c \mathbb{I}_{m_0 \notin C} + \text{card}(C),$$

where c depends on α (see *The Bayesian Choice* Section 5.5.3).

or as close as we can manage given m is discrete.
Parameter estimation: Since $\theta^{(t)} \sim \pi(\theta|y)$, the model averaged posterior expectation $E_{\Theta|Y=y}(h(\Theta)) = E_{\Theta,M|Y=y}(h(\Theta))$ can be estimated by the mean of $\{h(\theta^{(t)})\}_{t=1}^{T}$. For prediction or goodness of fit checking, the posterior predictive distribution

$$p(y'|y) = \sum_m \int p(y'|\theta, m)\pi(\theta, m|y)d\theta$$

can be simulated via $y^{(t)} \sim p(\cdot|\theta^{(t)}, m^{(t)})$ or estimated via

$$\overline{p(y'|y)} = \frac{1}{T} \sum_{t=1}^{T} p(y'|\theta^{(t)}, m^{(t)}).$$

When carrying out model selection, the posterior predictive distribution conditioned on the selected model

$$p(y'|y, \hat{m}) = \int p(y'|\theta, \hat{m})\pi(\theta|y, \hat{m})d\theta$$

can be simulated and estimated in a similar way and plotted over the data (for a quick visual check, as a test needs reserved data).
RJ MCMC and fitting mixture models

The Galaxy radial velocity data are shown in the figure below. It is natural to model this via a mixture of normals. However we do not know the number of components in the mixture.
Likelihood: Our data \(y_i \in \mathbb{R}, i = 1, 2, \ldots, n \) are independent samples from a mixture model with \(m \) components \(N(\mu_j^{(m)}, \sigma_j^{(m)}^2) \), and mixture weights \(w_j^{(m)}, j = 1, 2, \ldots, m, w_j > 0, \sum_{j=1}^m w_j = 1 \).

Given \(m \in 1, 2, 3, \ldots \) the sets of mixture parameters are

\[
\mu^{(m)} = \{\mu_1^{(m)}, \ldots, \mu_m^{(m)}\}, \quad \sigma^{(m)} = \{\sigma_1^{(m)}, \ldots, \sigma_m^{(m)}\}, \quad w^{(m)} = \{w_1^{(m)}, \ldots, w_m^{(m)}\}.
\]

The observation model for the iid \(y_i, i = 1, 2, \ldots, n \) is the mixture

\[
(y_i | \mu^{(m)}, \sigma^{(m)}, w^{(m)}) \sim \sum_{j=1}^m w_j^{(m)} N(y_i; \mu_j^{(m)}, \sigma_j^{(m)}^2).
\]

The likelihood is therefore

\[
L(\mu^{(m)}, \sigma^{(m)}, w^{(m)}, m; y) = \prod_i \left[\sum_{j=1}^m w_j^{(m)} N(y_i; \mu_j^{(m)}, \sigma_j^{(m)}^2) \right].
\]
Priors: We take as our priors

\[w^{(m)} \sim \text{Dirichlet}(\alpha 1_m) \]

with \(1_m \) a vector of \(m \) ones, \(\alpha = 1 \) (\(w^{(m)} \) uniform, sum to one),

\[\mu_j^{(m)} \sim N(20, 10), \quad \text{iid for } j = 1, 2, \ldots, m, \]

which of course covers the data (covers \([0, 40]\) at \(2\sigma \) - I assume the scale of the response is known), and

\[\sigma_j^{(m)} \sim \text{Gamma}(1.5, 0.5), \quad \text{iid for } j = 1, 2, \ldots, m, \]

again informed by the scale: mean equals 3; shape 1.5 rules out very dense clusters at small \(\sigma \); small rate gives heavy tail, standard deviation about 2.5. For a model prior I take \(m \sim \text{Poisson}(\lambda|m > 0) \) with \(\lambda = 10 \), which is centred at 10, and tails off above about 20 clusters.
Posterior: The posterior for the model and parameters

$$\theta^{(m)} = (\mu^{(m)}, \sigma^{(m)}, w^{(m)})$$

is, for \(m = 1, 2, 3, \ldots \),

$$\pi(\theta^{(m)}, m|y) \propto L(\mu^{(m)}, \sigma^{(m)}, w^{(m)}, m; y)$$
$$\times \text{Dirichlet}(w^{(m)}; \alpha 1_m)$$
$$\times \prod_{j=1}^{m} N(\mu_j^{(m)}; 20, 10) \text{Gamma}(\sigma_j^{(m)}; 1.5, 0.5)$$
$$\times \text{Poisson}(m; \lambda)$$

Note that if \(m, m' \) are both greater than zero then

$$\text{Poisson}(m; \lambda|m > 0) \propto \text{Poisson}(m; \lambda),$$

so the condition has disappeared.
RJ MCMC algorithm fitting a normal mixture with an unknown number of components to the Galaxy Velocity data

Suppose the state is $X_t = (\mu, \sigma, w, m)$ with $\mu = (\mu_1, \ldots, \mu_m)$ etc. To get irreducibility we again need fixed dimension moves (3 of these) and variable dimension moves (2 of these).

Step 1. Choose an update UAR, $\text{move} \sim U\{1, 2, \ldots, 5\}$.

Step 2I. If $\text{move} = 1$ add a component (increase state dimension by three). Set $m' = m + 1$.

Step 2Ia Simulate $\mu'_{m+1}, \sigma'_{m+1} \sim q_{\mu\sigma}(\mu'_{m+1}, \sigma'_{m+1})$. We will take $q_{\mu\sigma}$ to be the Normal-Gamma prior above. Set $\mu' = (\mu, \mu'_{m+1})$ and $\sigma' = (\sigma, \sigma'_{m+1})$.
Step 2Ib Now simulate w'. We have to make sure $\sum_j w'_j = 1$ (still). Choose a weight $j \sim U\{1, 2, \ldots, m\}$ to “split”. Simulate $w'_{m+1} \sim U(0, w_j)$ and for $k = 1, 2, \ldots, m + 1$ set

$$w'_k = \begin{cases} w_k & k = 1, \ldots, m, k \neq j \\ w_k - w'_{m+1} & k = j \\ w'_{m+1} & k = m + 1 \end{cases}$$

The probability to propose m' given m is $\rho_{m,m'} = 1/5$. The probability to propose (μ', σ', w') given (μ, σ, w) is

$$q(\mu', \sigma', w'|\mu, \sigma, w) = q_{\mu\sigma}(\mu'_{m+1}, \sigma'_{m+1}) \times \frac{1}{m} \times \frac{1}{w_j}.$$

In the reverse move we will pick a component i of the mixture at random, delete it and add its weight to a randomly chosen component j out of the remainder. The probability to propose
this reverse move back from \((\mu', \sigma', w')\) to \((\mu, \sigma, w)\) is just

\[
p(i, j) = \frac{1}{m(m + 1)},
\]

(given \(m, m'\) already decided) since we must choose the two components involved in the update.

Step 3I. Accept the proposal \((\mu', \sigma', w', m')\) with probability

\[
\alpha^+ = \alpha(\mu', \sigma', w', m'|\mu, \sigma, w, m)
\]

where

\[
\alpha^+ = \min \left\{ 1, \frac{\pi(\mu', \sigma', w', m'|y)p(i, j)}{\pi(\mu, \sigma, w, m|y)q(\mu', \sigma', w'|\mu, \sigma, w)} \right\}
\]
Step 2D. If move = 2 delete a component (decrease state dimension by three). Set $m' = m - 1$ (if $m' = 0$, reject the move and set $X_{t+1} = X_t$).

Step 2Da Simulate $i \sim U\{1, 2, \ldots, m\}$. Set $\mu' = \mu_{-i}$, $\sigma' = \sigma_{-i}$.

Step 2Db To update w (ensuring w is still normalised), simulate $j \sim U\{1, 2, \ldots, m\} \setminus \{i\}$ and then (i) set $w' = w$, (ii) set $w'_j = w_j + w_i$, (iii) set $w' = w'_{-i}$.

The probability to propose m' given m is $\rho_{m,m'} = 1/5$ again. The probability to propose (μ', σ', w') given (μ, σ, w) is just

\[p(i, j) = 1/m(m - 1), \]
and to propose the move back, \((\mu', \sigma', w') \rightarrow (\mu, \sigma, w)\), is

\[
q(\mu, \sigma, w|\mu', \sigma', w') = q_{\mu\sigma}(\mu'_m, \sigma'_m) \times \frac{1}{m - 1} \times \frac{1}{w_i + w_j}.
\]

Step 3D. Accept the proposal \((\mu', \sigma', w', m')\) with probability

\[
\alpha^- = \alpha(\mu', \sigma', w', m'|\mu, \sigma, w, m)
\]

where

\[
\alpha^- = \min \left\{ 1, \frac{\pi(\mu', \sigma', w', m'|y)q(\mu, \sigma, w|\mu', \sigma', w')}{\pi(\mu, \sigma, w, m|y)p(i, j)} \right\}
\]

We have additionally moves 3-5 which act on \(\mu, \sigma\) and \(w\) respectively in fixed dimension moves.
RJ-MCMC for a normal mixture
We illustrate the method on the Galaxy velocity distribution data. The R-code and further detail of the algorithm are available on the course website. We ran the code and generated samples \((\mu(t), \sigma(t), w(t), m(t))\), \(t = 1, 2, ..., T\) from the joint posterior distribution over the number of clusters and the cluster weights and parameters.

The plot above shows the posterior distribution over the number of components. 3-6 components is the number favored.
The plot shows traces for the log-prior, log-likelihood and number of components, (as the number of parameters vary, they are not easily plotted).
On the previous page, the bottom figure shows the sequence of sampled means $\mu^{(t)}, t = 1,\ldots,T$. The dimension of these vectors is not constant. A point at (t, x) is colored by the index of x in the vector $\mu^{(t)}$, i.e., the color is $i : \mu_{i}^{(t)} = x$. We can see label-switching in action. Stable mixture components (the horizontal bands) are often present in the state, but may appear in any position in the vector. The label of a mixture component is random (and uninteresting).

The top figure shows an estimate of posterior predictive distribution $p(y'\mid y)$ (black line) obtained by averaging $p(y'\mid \mu, \sigma, w, m)$ over the sampled states, at each point y' on the x-axis, and the posterior predictive distribution $p(y'\mid y, m)$ conditioned on m clusters (red is $m=3$, green is $m=4$, blue is $m=5$).

The underlying histogram in black is a histogram of the data, y. We expect the distribution of the data to match the posterior predictive distribution, and the fit seems reasonable.