
2 Estimation

2.1 Data and questions

Data set 2.1 Wages in the USA

These data are taken from Dyer, D. (1981), Canadian Journal of Statistics, 9. They
comprise annual wages (in multiples of US$100) of 30 production line workers in a large
American �rm.

Table 2.1 US wages
112 123 128 116 119
154 103 132 140 111
119 115 107 108 101
108 107 151 105 157
112 125 103 158 112
156 119 104 104 115

�

Data set 2.2 Severe ideopathic respiratory distress syndrome

The data were published by van Vliet, P.K. and Gupta, J.M. (1973), Sodium bicarbonate
in ideopathic respiratory distress syndrome, Arch. Diseases in Childhood, 48, 249-255.
The condition, known by its acronym SIRDS, is very serious and can result in the death.
The data comprise birth weights (kg) of 50 infants who displayed SIRDS

:

Table 2.2 Birth weights (kg) of infants with
severe ideopathic respiratory distress syndrome
1.050* 2.500* 1.890* 1.760 2.830
1.175* 1.030* 1.940* 1.930 1.410
1.230* 1.100* 2.200* 2.015 1.715
1.310* 1.185* 2.270* 2.090 1.720
1.500* 1.225* 2.440* 2.600 2.040
1.600* 1.262* 2.560* 2.700 2.200
1.720* 1.295* 2.730* 2.950 2.400
1.750* 1.300* 1.130 3.160 2.550
1.770* 1.550* 1.575 3.400 2.570
2.275* 1.820* 1.680 3.640 3.005
* child died

There are important questions to be asked about these data. Can we identify children
at risk quickly and accurately? Is it possible to relate the risk of death to birthweight?
�
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Data set 2.3 Silver content of Byzantine coins

A number of coins from the reign of King Manuel I, Comnemus (1143 - 80) were dis-
covered in Cyprus. They arise from four di¤erent coinages at intervals throughout his
reign. The question of interest is whether there is any signi�cant di¤erence in their silver
content with the passage of time; there is a suspicion that it was deliberately and steadily
reduced. The data give the silver content (%Ag) of the coins.

Table 2.3 Silver content of coins
First Second Third Fourth
5.9 6.9 4.9 5.3
6.8 9.0 5.5 5.6
6.4 6.6 4.6 5.5
7.0 8.1 4.5 5.1
6.6 9.3 6.2
7.7 9.2 5.8
7.2 8.6 5.8
6.9
6.2

On the face of it the suspicion could be correct in that the fourth coinage would seem
to have lower silver content than, say, the �rst coinage, but there is a need for �rm
statistical evidence if it is to be con�rmed.
�

Data set 2.4 Radiocarbon dating

Radiocarbon datings have given historians a powerful tool for determining more precisely
the periods during which ancient civilisations �ourished. The following set of data came
from the Lake Lamoka site and were contributed by S.R. Wilson from the Australian
National University to Andrews, D.F. and Herzberg, A.M. (1985), Data, Springer-Verlag:
New York.

Table 2.4 Radiocarbon dating
Sample Radiocarbon age
number determination
C-288 2419
M-26 2485
C-367 3433
M-195 2575
M-911 2521
M-912 2451
Y-1279 2550
Y-1280 2540

�
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2.2 Desirable properties of estimators

Suppose we have X = X1; X2; : : : ; Xn drawn from a distribution with some parameter
�. Often X1; X2; : : : ; Xn form a sample.

De�nition 2.0 Estimators

An estimator b�n of � is just a function of the observed data which (we hope) forms a
useful approximation to the parameter:b�n = g(X1; X2; : : : ; Xn):

Note that b�n can depend only on the observed data, and not on any unknown parameters.
You have already met a number of estimators in Mods, such as. the sample mean and
sample variance. The estimator is a function of random variables, so is itself a random
variable, with a distribution, mean, and variance, etc.

Here is a familiar property which you have already met.

De�nition 2.1 Unbiasednessb�n is said to be unbiased for � if
E
�b�n� = �; 8� 2 �:

�

Next a new property, but one which appeals to common-sense. The idea is that, the
larger the amount of data, the closer the estimate should be to the parameter to be
estimated. This is expressed in terms of the estimator converging in probability to the
parameter value.

Convergence in probability (borrowed from probability course)
A sequence of random variables Z1; Z2; : : : ; Zn; ::: is said to converge in probability to a
constant z if for any � > 0, as n!1

P (jZn � zj > �)! 0:

De�nition 2.2 Consistencyb�n is said to be consistent for � if b�n P! �:

�

De�nition 2.3 E¢ ciencyb�A is said to be more e¢ cient than b�B if
V
�b�A� < V �b�B� ; 8� 2 �:

�

Again, this appeals to common-sense.
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2.3 Revision and extension of maximum likelihood estimation

The basic idea starts with the joint distribution of X = X1; X2; : : : ; Xn depending upon
a parameter �,

f (x; �) = f (x1; x2; : : : ; xn; �) :

For �xed �, probability statements can be made about X. If we have observations, x,
but � is unknown, we regard information about � as being contained in the likelihood

L(�;x) = f (x; �) ;

where L is regarded as a function of � with x �xed.

Example 2.1

Suppose X = X1; X2; : : : ; Xn are independent Bernoulli random variables with parame-
ter � 2 [0; 1].

i:e: P (Xi = 1) = �; P (Xi = 0) = 1� �:
Observations are x = (1; 0; 0; 1; 0; 1; 1) and

L(�;x) =
7Y
i=1

f (xi; �)

=
7Y
i=1

�xi (1� �)1�xi

= �4 (1� �)3 :

In general, for a sample size n,

L(�;x) =
nY
i=1

�xi (1� �)1�xi = �
P
xi (1� �)n�

P
xi :

�

Maximum likelihood estimation

The value of � which maximises L(�) is called the maximum likelihood estimate of �.

Example 2.1 (continued)

In the previous example, we can �nd this by di¤erentiating L(�), or equivalently by
di¤erentiating l(�) = logL(�):

l(�) =
P

i xi log � + (n�
P

i xi) log (1� �)

@l(�)

@�
=

P
i xi/ � � (n�

P
i xi)/ (1� �)
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Putting
@l(�)

@�
= 0 we obtain

� =
X

i
xi

.
n:

This leads us to b�n; the maximum likelihood estimator based on a sample of size n

b�n =X
i
Xi

.
n:

�

Example 2.2

Suppose X = X1; X2; : : : ; Xn are independent normal random variables, N (�; �2).

L (�; �2) =
nY
i=1

1p
2��2

exp

"
�(xi � �)

2

2�2

#

= (2��2)
�n/2

exp

"
� 1

2�2

nX
i=1

(xi � �)2
#

and
l (�; �2) = logL (�; �2)

= �n
2
log (2��2)� 1

2�2

nX
i=1

(xi � �)2

Di¤erentiating,
@l (�; �2)

@�
=

1

�2

nX
i=1

(xi � �) ;

@l (�; �2)

@�2
= � n

2�2
+

1

2�4

nX
i=1

(xi � �)2

Equating these derivatives to zero results in

b� = X; b�2 = 1

n

nX
i=1

(Xi � b�)2 = 1

n

nX
i=1

�
Xi �X

�2
:

�
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2.4 Order statistics

To expand our armoury of useful and descriptive statistics we shall need to know about
order statistics.

De�nition 2.4 Order statistics

Suppose that X1 , X2, . . , Xn is a random sample then the full set of order statistics
is the re-ordering X(1) , X(2), . . , X(n) such that X(1) � X(2) � : : � X(n): In
particular the minimum order statistic is X(1) = minXi and the maximum order statistic
is X(n) = max Xi. If the random sample is derived from a continuous distribution then
all the inequalities will be strict.
�

Example 2.3 US wages

The data in Table 2.1 are shown below, with the data having been ordered.

Table 2.1: US wages
101 107 112 119 140
103 107 112 119 151
103 108 115 123 154
104 108 115 125 156
104 111 116 128 157
105 112 119 132 158

You can see that the realisation of the minimum order statistic is 101 and the realisation
of the maximum order statistic is 158.
�
The distributions ofX(1) = min fXig andX(n) = max fXig are straightforward to derive.
The c.d.f. of X(1) is

F(1)(x) = 1� P
�
X(1) > x)

�
= 1� P (X1 > x; : : : ; Xn > x)

= 1� [1� F (x)]n

so that, di¤erentiating,

f(1)(x) = F
0
(1)(x) = n [1� F (x)]

n�1 f(x):

Similarly
F(n)(x) = P

�
X(n) � x

�
= F (x)n

giving
f(n)(x) = nF (x)

n�1f(x):

Example 2.4
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Suppose Xi � U(0; �). Then

F (x) =

8><>:
0; x < 0;
x

�
; 0 � x < �;
1; x � �;

and f(x) =

( 1

�
; x 2 (0; �);
0; otherwise:

The p.d.f.�s of X(1) = min fXig and X(n) = max fXig are given by

f(1)(x) =
n (� � x)n�1

�n
; x 2 (0; �)

and

f(n)(x) =
nxn�1

�n
; x 2 (0; �):

�
For a continuous random sample, each with density function f(x) and cumulative dis-
tribution function F (x), the joint density function of the order statistics is

f(x(1); x(2); ::; x(n)) = n!
nY
i=1

f(x(i)); x(1) < x(2) < � � � < x(n);

and the marginal distribution for X(r) is

f(r)(x) =
n!

(r � 1)!(n� r)!F (x)
r�1(1� F (x))n�rf(x):

Lemma 2.1 The p.d.f. of X(r) is given by

f(r)(x) =
n!

(r � 1)!(n� r)!F (x)
r�1 [1� F (x)]n�r f(x):

�
Proof Putting r = 1 and r = n in the expression gives

f(1)(x) = n [1� F (x)]n�1 f(x); f(n)(x) = nF (x)
n�1f(x):

The c.d.f. F(r) of X(r) is

F(r)(x) = P
�
X(r) � x

�
=

nX
j=r

�
n

j

�
[F (x)]j [1� F (x)]n�j

i.e. the probability that at least r of the Xi�s are less than or equal to x.

Therefore

F(r)(x)� F(r+1)(x) =
�
n

r

�
[F (x)]r [1� F (x)]n�r
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and, by di¤erentiation,

f(r+1)(x) = f(r)(x)�
�
n

r

�
[F (x)]r�1 [1� F (x)]n�r�1 [r � nF (x)] f(x)

=
n!

r!(n� r)!F (x)
r�1 [1� F (x)]n�r�1 (n� r)F (x)f(x)

=
n!

r! (n� (r + 1))!F (x)
(r+1)�1 [1� F (x)]n�(r+1) f(x);

so the proposition is proved inductively.
�
There are many uses of the order statistics in terms of analysing and describing data,
three in particular being the median, the lower quartile and the upper quartile.

De�nition 2.5 Median

The median of a random sample is de�ned by

Xm = X( 12 (n+1)):

This is the central order statistic if the size of the sample is odd and is the average of
the two central order statistics if it is even, so that

if n = 2k + 1; then Xm = X(k+1); and if n = 2k; then Xm =
1

2

�
X(k) +X(k+1)

�
:

�
Example 2.3 (revisited) US wages
For the wages data, the realisation is xm = 1

2
(115 + 115) : Thus 50% of the data have a

smaller value than the median and 50% of the data have a higher value.
�

De�nition 2.6 Quartiles

The lower quartile is de�ned by

qL = X( 14 (n+1))
;

and the upper quartile is de�ned by

qU = X( 34 (n+1))
:

�
Example 2.3 (revisited) US wages
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The wages data comprises 30 values and 31=4 = 73
4
, so the realisation of the lower

quartile is qL = x(7 34)
= 107+ 3

4
(107� 107) = 107: The realisation of the upper quartile

is qU = x(23 14)
= 128 + 1

4
(132� 128) = 129:

�
You will see one of the main uses of order statistics in the next sub-section, where we
look at how to produce useful plots of the data.

2.4.1 Plotting the data

For univariate data there are many useful plots each of which attempts to give a graphi-
cal representation of the data. These include histograms, boxplots and plots of empirical
cumulative distribution functions (see Rice, Chapter 10 for examples and descriptions of
these plots). For paired data, scatter plots are a very quick way of visually checking for
association between the paired observations.

Boxplots

Boxplots are particularly useful in giving an intuitive feel for the way the data are dis-
tributed. They are very easy to construct, but their main advantage is that all computer
packages can produce them on-screen instantly. Let us look at how they are constructed.

Figure 2.1 Boxplot construction

With one exception the plot is largely self-explanatory; that exception is the idea of
adjacent values. These are calculated by �rst calculating the inter-quartile range qU�qL;
then the upper adjacent value is the largest value not exceeding that distance from the
upper quartile, the lower adjacent value is the smallest value not less than that distance
from the lower quartile. Any point which lies outside these boundaries is depicted as
a point and considered as a possible outlier (i.e. a value which is non-typical for some
reason or other). Thus we have a picture which, in some sense, represents the way the
data are distributed.

Example 2.3 (revisited) US wages
A boxplot of the wage data, produced using the R package, is shown in Figure 2.2.
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100 110 120 130 140 150 160

Figure 2.2 Boxplot of US wages data

It shows some skewness in the data and some possible outliers, but overall you can see
that most of the workers at that time earned between $10,000 and $14,000 with a me-
dian wage around $11,500 and 50% of workers earning between just over $10,500 and
just under $13,000.
�
But boxplots are really useful when it comes to comparison.

Example 2.5 Infants with SIRDS

The data set in Table 2.2 is reproduced below.

:

Table 2.2 Birth weights (kg) of infants with
severe ideopathic respiratory distress syndrome
1.050* 2.500* 1.890* 1.760 2.830
1.175* 1.030* 1.940* 1.930 1.410
1.230* 1.100* 2.200* 2.015 1.715
1.310* 1.185* 2.270* 2.090 1.720
1.500* 1.225* 2.440* 2.600 2.040
1.600* 1.262* 2.560* 2.700 2.200
1.720* 1.295* 2.730* 2.950 2.400
1.750* 1.300* 1.130 3.160 2.550
1.770* 1.550* 1.575 3.400 2.570
2.275* 1.820* 1.680 3.640 3.005
* child died

One way of comparing the birthweights of infants who died with the birthweights of
those who survived is to use a graph with the boxplots compared against the same scale.
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Figure 2.3 Boxplots of SIRDS data

The �rst thing you notice about this plot is that the median value of birtheweight for
children who died is less than the lower quartile for those who survived. The plot makes
it immediately clear that the two groups have typically di¤erent birthweights.
�

Probability Plots

These are sometimes called quantile-quantile plots. They can be used to examine the
plausibility of a density function from which a set of data could have been drawn. If
such a known distribution is found then analysis of the data is performed more readily,
particularly if this distribution should turn out to be normal. We need some theory
before we develop the graphical method.

De�nition 2.7

Let X be a continuous random variable with cumulative distribution function FX(x),
then the probability integral transform is

Y = FX(X):

�
The transformed random variable Y has a particularly useful property.

Lemma 2.2 For FX(x) strictly monotonic increasing on (a; b) , X taking values only

in (a; b) ; then if Y = FX(X);
Y � U(0; 1):
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Y so de�ned is uniformly distributed on (0; 1).
�
Proof For 0 � y � 1;

P (Y � y) = P (FX(X) � y) = P
�
X � F�1X (y)

�
= FX

�
F�1X (y)

�
= y;

giving the cumulative distribution function of the uniform distribution on (0; 1).
�
We shall also need a result concerning the expected values of order statistics from a
uniform distribution.

Lemma 2.3 If Y(1); Y(2); : : : ; Y(n) are the order statistics of a random sample drawn
from a uniform distribution U(0; 1), then

E
�
Y(k)
�
=

k

n+ 1
= P

�
Yi �

k

n+ 1

�
:

[Proof left as an exercise]
�
We conclude that, for the uniform distribution, E

�
Y(1)
�
; E
�
Y(2)
�
; : : : ; E(Y(n)) splits the

interval (0; 1) into equal bites of probability, each of length
1

n+ 1
.

Using the results of the two lemmas, it is now possible to give the method of construction
for a probability plot. The question we wish to address is:
�Is the data set plausibly drawn from a distribution with cdf F (x)?�

To construct a probability plot, you take the following steps:

(i) Arrange the data as x(1) < x(2) < � � � < x(n): From Lemma 2.2, if the supposition is
correct, F (x(1)); F (x(2)); : : : ; F (x(n)) are realisations of order statistics from U(0; 1):

(ii) Solve

F (z(k)) =
k

n+ 1

for z(k): remember that E
�
F (X(k)

�
=

k

n+ 1
.

(iii) Plot the ordered pairs
�
x(k); z(k)

�
.

If the supposition is reasonable we should get an approximate straight line, z = x.

If the distribution contains some unknown parameters we need to adapt the method, if
possible.

Example 2.6
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Suppose we wish to check whether a distribution is exponential with mean �. Then we
note F (x) = 1� e�x=�; so that

k

n+ 1
� 1� e�x(k)=�:

Re-arranging

x(k) � �� log
�
1� k

n+ 1

�
:

Hence, if the distribution is plausibly exponential, plot
�
x(k); log

�
1� k

n+1

��
and expect

to see an approximate straight line. The slope will provide an estimate of �.

�

Example 2.3 (revisited) US wages

Many �nancial modellers assume that wages have a Pareto distribution with c.d.f.

F (x) = 1�
��
x

��
; x > �;

where � represents the minimum wage and both � and � are unknown parameters.
Writing

k

n+ 1
� 1�

�
�

x(k)

��
and re-arranging,

x(k) � �
�
1� k

n+ 1

��1=�
:

Clearly we cannot produce a probability plot because we do not know the value of �, but
taking logs of both sides gives

log x(k) � log��
1

�
log

�
1� k

n+ 1

�
;

so plotting ordered pairs �
log x(k); log

�
1� k

n+ 1

��
should produce a straight line if the distribution is plausible as a model for the US wages
data.
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Figure 2.4 Pareto probability plot for US wages data

As you can see, a Pareto probability model doesn�t look very convincing.
�

In practice the distribution we wish to consider is frequently the normal distribution,
which has two unknown parameters. We do a little more adjustment.

De�nition 2.8 Normal scores

The numbers

z(k) = �
�1
�

k

n+ 1

�
;

where � is the c.d.f. of Z � N(0; 1), are called the normal scores. They are the k

n+ 1
quantiles of the standard normal distribution.

�

We use the normal scores to construct a normal probability plot. Suppose that we wish
to check whether or not the data could have been drawn from a normal distribution
N (�; �2) : As above take the ordered data x(1) < x(2) < � � � < x(n): Note that, if X �
N (�; �2), then

X � �
�

� N(0; 1):

Plot the pairs
�
x(k); z(k)

�
: If the data are plausibly normal then we should have an ap-

proximate straight line with slope 1=� and intercept �=�:
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In practice you will �nd that most statistical computer packages will generate normal
scores and produce probability plots: in fact, most packages will do this for a variety
of distributions. The plots in the examples which follow were generated using the R
package.

Example 2.7 Silver content of Byzantine coins

The data are reproduced below.

Table 2.3 Silver content of coins
First Second Third Fourth
5.9 6.9 4.9 5.3
6.8 9.0 5.5 5.6
6.4 6.6 4.6 5.5
7.0 8.1 4.5 5.1
6.6 9.3 6.2
7.7 9.2 5.8
7.2 8.6 5.8
6.9
6.2

The graph shows a normal probability plot of the silver content of the �rst coinage.
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Figure 2.5 Silver content of coins

It looks as if a normal distribution is appropriate.
�
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Example 2.8 Radio-carbon dating

The data from Table 2.4 are reproduced below.

Table 2.4 Radiocarbon dating
Sample Radiocarbon age
number determination
C-288 2419
M-26 2485
C-367 3433
M-195 2575
M-911 2521
M-912 2451
Y-1279 2550
Y-1280 2540

Radioactive-carbon dating was undertaken on 8 samples from a single early site. There
is one rather obvious outlier which is easily seen from the plot.
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Figure 2.6 Radiocarbon dating

If possible we would check out the outlier with the laboratory and the collector but,
since this is not possible, we will drop it and consider whether the remaining data points
could have been drawn from a normal distribution.
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Figure 2.7 Radiocarbon dating

As can be seen from Figure 2.7, the 7 remaining data points do give an approximate
straight line on a normal probability plot.
�

2.5 Comparing estimators

Remember that we began with three desirable properties of estimators. These were

Unbiasedness E
�b�n� = �; 8� 2 �:

Consistency b�n P! �:

E¢ ciency b�A is more e¢ cient than b�B if V �b�A� < V �b�B� ; 8� 2 �:

Even if we assume unbiasedness and consistency to be desirable, it is possible to have
more than one such estimator.

Example 2.9

Consider the linear estimator b�n = nX
i=1

aiXi

20



where E (Xi) = �; V (Xi) = �
2 for 1 � i � n.

E
�b�n� = nX

i=1

aiE (Xi) = �

nX
i=1

ai;

so the estimator is unbiased provided
nX
i=1

ai = 1:

For i.i.d. random variables,

V
�b�n� = nX

i=1

a2i�
2:

Now
nX
i=1

�
ai �

1

n

�2
� 0

)
nP
i=1

a2i �
2

n

nP
i=1

ai +
1

n
� 0

and; if
Pn

i=1 ai = 1;

)
nP
i=1

a2i � 1

n
:

Equality occurs i¤ ai =
1

n
; 1 � i � n:

The conclusion then is that, if b�n is a linear unbiased estimator of the form Pn
i=1 aiXi

and if X =
1

n

Pn
i=1Xi; then

V
�
X
�
� V

�b�n� :
Of all linear unbiased estimators, X is most e¢ cient.
�

2.5.1 Food for thought

1. Is the sample mean the �best�estimator of the distribution mean?

2. If X is unbiased for �, is g
�
X
�
unbiased for g (�)?

3. Is there any reason to doubt the principle of seeking the unbiased estimator with
the minimum variance?

4. Can a biased estimator be �better� (whatever that means!) than an unbiased
estimator?
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Is the sample mean the �best�estimator of the distribution mean?

Let X1; X2; : : : ; Xn be a random sample from a uniform distribution U(� � 1
2
; � + 1

2
):

E
�
X
�
= �; V

�
X
�
=

1

12n
:

Now consider b�n = 1
2

�
X(1) +X(n)

�
. Obviously b�n is symmetrically distributed about �

so
E
�b�n� = �:

Now
fX(1)X(n)(u; v) = n(n� 1) [F (v)� F (u)]n�2 f(u)f(v);

� � 1
2
< u < v < � + 1

2
:

where

F (x) =

8<:
0; x < � � 1

2
;

x+ 1
2
� �; � � 1

2
� x < � + 1

2
;

1; x � � + 1
2
;

and
f(x) = F 0(x);

so that
fX(1)X(n)(u; v) = n(n� 1) [v � u]n�2 ;

� � 1
2
< u < v < � + 1

2
:

You have my word as a gentleman that, after a lot of boring slog,

V
�b�n� = 1

2(n+ 1)(n+ 2)

and
V
�b�n� < V �X� for n > 2:

Question: Does this mean we can sometimes do better by ignoring some of the data
values?

If X is unbiased for �, is g
�
X
�
unbiased for g (�)?

Let
f(x) =

1

�
e�x/�; x � 0:

Then

E
�
X
�
=
1

n

nX
i=1

E (Xi) = �; V
�
X
�
=
1

n2

nX
i=1

V (Xi) =
�2

n
:
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Now consider g(x) = x2:

E
�
g
�
X
��

= E
�
X
2
�

= V
�
X
�
+ E

�
X
�2

=
�2

n
+ �2 = �2

�
1 +

1

n

�
:

Is there any reason to doubt the principle of seeking the unbiased estimator
with the minimum variance?
Finals question 1979 � IV � 15, part (iv).
X1; X2; : : : ; Xn is a random sample from a Poisson distribution with mean �. Hence

Y =
nX
i=1

Xi � Poisson (n�) :

Part (iv) asks for an unbiased minimum variance estimator of e�2n�.

Let this be g(Y ). Then

E [g(Y )] =
1X
y=0

g(y)
e�n�(n�)y

y!
= e�2n�

or
1X
y=0

g(y)
(n�)y

y!
= e�n�:

But

e�x =

1X
k=0

(�1)k x
k

k!

so that
g(y) = (�1)y ; y = 0; 1; : : :

i.e.

g(y) =

�
�1; y odd;
1; y even:

THIS IS COMPLETE AND UTTER RUBBISH!
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Can a biased estimator be �better�than an unbiased estimator?
Look at the distributions of the following two estimators of �.

θ

θ

2

θ1

Figure 2.8

Which do you prefer?

Even though b�1 is biased,
E

��b�1 � ��2� < V �b�2� :
b�1 has smaller mean squared error.
Are m.l.e.�s the answer?
The maximum likelihood principle is intuitively appealing and does not involve worries
about bias.

(i) Maximum likelihood estimators are asymptotically unbiased.

(ii) If b� is the m.l.e. of �, then g �b��is the m.l.e. of g (�).
This is the invariance property of maximum likelihood estimators.

Are there any problems with m.l.e.�s? ConsiderX1; X2; : : : ; Xn whereXi � U(��
1
2
; � + 1

2
); 1 � i � n; and note that � � 1

2
� x(1) < x(n) � � + 1

2
:

The likelihood function is

L(�;x) =

�
1; x(n) � 1

2
� � � x(1) + 1

2
;

0; otherwise:
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Clearly

max
�
fL(�;x)g = 1 8� 2

�
x(n) �

1

2
; x(1) +

1

2

�
i.e. the likelihood function is maximised for every statistic b� (X1; X2; : : : ; Xn) such thatb�(X) 2 �X(n) � 1

2
; X(1) +

1
2

�
:

Conclusion: An m.l.e. may not be unique.

2.6 More about likelihood

2.6.1 Invariance property of m.l.e.�s

Lemma 2.4 If b� is an m.l.e. of � and if g is a function, then g �b�� is an m.l.e. of g(�).
�

Proof If g is one-to-one, then

L(�) = L
�
g�1 (g(�))

�
are both maximised by b�, so

b� = g�1
�dg(�)�

or

g
�b�� = dg(�):

If g is many-to-one, then b� which maximises L(�) still corresponds to g �b��, so g �b��
still corresponds to the maximum of L(�)
�

Example 2.10

Suppose X1; X2; : : : ; Xn is a random sample from a Bernoulli distribution B(1; �). Con-
sider m.l.e.�s of the mean, �, and variance, �(1� �).
Note, by the way, that �(1� �) is not a 1-1 function of �.
The log-likelihood is

l(�) =
P

i xi log � + (n�
P

i xi) log(1� �)
and

dl(�)

d�
=

P
i xi/ � � (n�

P
i xi)/ (1� �)

so it is easily shown that the m.l.e. of � is b� = X:
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Putting � = �(1� �),
dl(�)

d�
=
dl (�(�))

d�
� d�
d�

so it is easily seen that, since
d�

d�
is not, in general, equal to zero,

b� = � �b�� = X �1�X� :
�

2.6.2 Relative likelihood

If sup
�
L(�) <1, the relative likelihood is

RL(�) =
L(�)

sup
�
L(�)

; 0 � RL(�) � 1:

Relative likelihood is invariant to known 1-1 transformations of x, for if y is a 1-1 function
of x,

fY (y; �) = fX (x(y); �)

����dxdy
���� :����dxdy

���� is independent of �, so
RLX(�) = RLY (�):

2.6.3 Likelihood summaries

Realistic statistical problems often have many parameters. These cause problems because
it can be hard to visualise L(�), and it becomes necessary to use summaries.

Key idea
In large samples, log-likelihoods are often approximately quadratic near the maximum.

Example 2.11

Suppose X1; X2; : : : ; Xn is a random sample from an exponential distribution with pa-
rameter �.
i.e.

fX(x) = �e
��x; x � 0:

Then

l(�) = n log �� �
P

i xi;
dl(�)

d�
= n/��

P
i xi;

d2l(�)

d�2
= � n/�2; d3l(�)

d�3
= 2n/�3:

26



The log-likelihood has a maximum at b� = n /Pi xi , so

RL(�) =

�
�b�
�n
en��

P
i xi

=

�
�b�e1��/b�

�n
; � > 0:

! 1 as �! b�:
Now, what does the likelihood look like in the neighbourhood of b�, as n!1?

logRL(�) = l(�)� l(b�)
= l(b�) + l0(b�)��� b��+ 1

2
l00(b�)��� b��2 � l(b�)

+O(�� b�)3
using Taylor series:

Now l0(b�) = 0 and l00(b�) = �n.b�2 , so
logRL(�) ' �

n
�
�� b��2
2b�2 ! �1 as n!1

unless � = b�:
Thus, as n!1,

RL(�)!
�
1; � = b�;
0; otherwise:

Conclusion

Likelihood becomes more concentrated about the maximum as n ! 1, and values far
from the maximum become less and less plausible.
�

In general

We call the value b� which maximises L(�) or, equivalently, l(�) = logL(�) the maximum
likelihood estimate, and

J(�) = �@
2l(�)

@�2

is called the observed information.

Usually J(�) > 0 and J(b�) measures the concentration of l(�) at b�. Close to b�, we
summarise

l(�) ' l(b�)� 1
2

�
� � b��2 J(b�):
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2.6.4 Information

In a model with log-likelihood l(�), the observed information is

J(�) = �@
2l(�)

@�2
:

When observations are independent, L(�) is a product of densities so

l(�) =
X
i

log f (xi; �)

and

J(�) = �
X
i

@2

@�2
log f (xi; �) :

Since
l(�) ' l(b�)� 1

2

�
� � b��2 J(b�);

for � near to b�, we see that large J(b�) implies that l(�) is more concentrated about b�.
This means that the data are less ambiguous about possible values of �, i.e. we have
more information about �.

2.6.5 Expected information

Univariate distributions
Before an experiment is conducted, we have no data so that we cannot evaluate J(�).

But we can �nd its expected value

I(�) = E

�
�@

2l(�)

@�2

�
:

This is called the expected information or Fisher�s information.

If the observations are a random sample, then the whole sample expected information is

I(�) = ni(�)

where

i(�) = E

�
� @

2

@�2
log f (Xi; �)

�
;

the single observation Fisher information.
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Sir Ronald Aylmer Fisher (1890 - 1962)

Example 2.12

Suppose X1; X2; : : : ; Xn is a random sample from a Poisson distribution with parameter
�:

L(�) =
nY
i=1

�xie��

xi!
;

giving
l(�) = logL(�) =

X
i

xi log � � n� �
X
i

log xi!

Thus

J(�) = �@
2l(�)

@�2
=
X

i
xi

.
�2:

To �nd I(�), we need E (Xi) = � and

I(�) =
1

�2

X
i

E (Xi) =
n

�
:

�

Multivariate distributions
If � is a (p� 1) vector of parameters, then I(�) and J(�) are (p� p) matrices.

fJ(�)grs = �
@2l(�)

@�r@�s
and fI(�)grs = E

�
� @

2l(�)

@�r@�s

�
:

These matrices are obviously symmetric.
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We can also write the above as

J(�) = � @
2l(�)

@�@�T
and I(�) = E

�
� @

2l(�)

@�@�T

�
:

Example 2.13

X1; X2; : : : ; Xn is a random sample from a normal distribution with parameters � and
�2. We have already seen that

L
�
�; �2

�
=
�
2��2

��n/2
exp

�
� 1

2�2

X
i
(xi � �)2

�
;

so
l
�
�; �2

�
= �n

2
log 2� � n

2
log �2 � 1

2�2

X
i
(xi � �)2 :

and
@l

@�
=

1

�2
P

i (xi � �) ;

@l

@�2
= � n

2�2
+

1

2�4
P

i (xi � �)
2 ;

@2l

@�2
= � n

�2
;

@2l

@�@�2
= � 1

�4
P

i (xi � �) :

@2l

@ (�2)2
=

n

2�4
� 1

�6
P

i (xi � �)
2 :

J(�; �2) =

0B@ n

�2
1

�4
P

i (xi � �)
1

�4
P

i (xi � �)
1

�6
P

i (xi � �)
2 � n

2�4

1CA :
To �nd I(�; �2), use

E (Xi) = �;

V (Xi) = E
�
(Xi � �)2

�
= �2;

so that

I(�; �2) = E
�
J(�; �2)

�
=

0@ n

�2
0

0
n

2�4

1A :
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Example 2.14 Censored exponential data

Lifetimes of n components, safety devices, etc. are observed for a time c, when r have
failed and (n� r) are still OK.
We have two kinds of observation:

(i) Exact failure times xi observed if xi � c, so that

f(x;�) = �e��x; x � 0;

(ii) xi unobserved if xi > c,
P (X > c) = e��c:

Data are therefore x1; : : : ; xr; c; : : : ; c| {z }
n�r times

The (n�r) components, safety devices, etc. which have not failed are said to be censored.

The likelihood is

L(�) =
rY
i=1

�e��xi
nY

i=r+1

e��c

= �r exp

"
��
 

rX
i=1

xi + (n� r)c
!#

:

l(�) = r log �� � (
Pr

i=1 xi + (n� r)c)

l0(�) = r/�� (
Pr

i=1 xi + (n� r)c)

l00(�) = �r
�
�2 :

Thus J(�) = r
�
�2 > 0 if r > 0 so we must observe at least one exact failure time.

I(�) = E
�
r
�
�2
�
=
1

�2
E (#Xi observed exactly:)

Now P (Xi observed exactly) = P (Xi � c) = 1� e��c, so

Ic(�) =
n
�
1� e��c

�
�2

:

No censoring if c!1, giving

I1(�) =
n

�2
> Ic(�)

as one might expect.
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The asymptotic e¢ ciency when there is censoring at c relative to no censoring is

Ic(�) /I1(�) = 1� e��c:

�

Revision Example 2.15 Events in a Poisson process

Events are observed for period (0; T ).

n events occur at times 0 < t1 < t2 < : : : < tn < T

Two observers A and B. A records exact times, B uses an automatic counter and goes
to the pub (i.e. B merely records how many events there are).

A knows exact times, and times between events are independent and exponentially dis-
tributed, so

LA(�) = �e��t1 � �e��(t2�t1) � � � � � �e��(tn�tn�1) � e��(T�tn)

= �ne��T :

B merely observes the event [N = n], where N � Poi(�T ), so

LB(�) =
(�T )n e��T

n!
:

Log-likelihoods are

lA(�) = n log �� �T;
lB(�) = n log �+ n log T � �T � log n!

and
JA(�) = JB(�) = n

�
�2 :

E(N) = �T , so IA(�) = IB(�) = T /� , and both observers get the same information.
As usual, the one who went to the pub did the right thing.
�

2.6.6 Maximum likelihood estimates

The maximum likelihood estimate b� of � maximises L(�) and often (but not always)
satis�es the likelihood equation

@l

@�

�b�� = 0;
with

J(b�) = � @2l
@�2

�b�� > 0
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for a maximum.

In the vector case, b� solves simultaneously
@l

@�r

�b�� = 0; r = 1; : : : ; p;

with J(b�) positive de�nite This implies

detJ(b�) > 0
If the likelihood equation has many solutions, we �nd them all and check L(�) for each.
Usually, the equation has to be solved numerically. One way is by Newton-Raphson.

Suppose we have a starting value �0. Then

0 =
@l

@�

�b�� ' @l

@�
(�0) +

@2l

@�2
(�0)

�b� � �0�
which may be re-arranged to b� = �0 + U(�0)

J(�0)
;

where

U(�) =
@l

@�
is the score function;

J(�) = � @
2l

@�2
is the observed information:

Now we iterate using �0 as a starting value and

�n+1 = �n +
U(�n)

J(�n)
:

Example 2.16 Extreme value (Gumbel) distribution

This distribution is used to model such things as annual maximum temperature. Data
due to Bliss on numbers of beetles killed by exposure to carbon disulphide are �tted by
this model. The c.d.f. is

F (x) = exp
�
�e�(x��)

�
; x 2 R; � 2 R;

and the density is

f(x) = exp
�
�(x� �)� e�(x��)

�
; x 2 R; � 2 R:
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The sample log-likelihood is

l(�) = �
X
i

(xi � �)�
X
i

e�(xi��);

so that

U(�) = n�
X
i

e�(xi��);

J(�) =
X
i

e�(xi��):

Starting at �0 = x, iterate using

�n+1 = �n +
n�

P
i e
�(xi��n)P

i e
�(xi��n):

�

Fisher scoring
This simply involves replacing J(�) with I(�):

Example 2.17 Extreme value distribution

We need

I(�) = E [J(�)] =
X
i

E
�
e�(Xi��)

�
= n

Z 1

�1
e�(x��) exp

�
�(x� �)� e�(x��)

�
dx:

Put u = e�(x��) and the integral becomes

I(�) = n

Z 1

0

ue�udu = n;

so Fisher scoring gives the iteration

�n+1 = �n + 1�
1

n

X
i

e�(xi��n):

�

2.6.7 Su¢ cient statistics

You have already seen a likelihood which cannot be summarised by a quadratic.

Example 2.18
f (xi; �) = �

�1; 0 < xi < �;

so
L(�) = ��n; 0 < max fxig < �:
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L ( )θ

max(   )xi

θ n

Figure 2.9

Clearly a quadratic approximation is useless here.

De�nition 2.9 Su¢ cient statistic

If S = s (X) is such that the conditional density fXjS (xjs; �) is independent of �, then
S is a su¢ cient statistic for �.

The important question is:

Does s(x) reduce the dimensionality of the problem?�

As we will see, the de�nition is equivalent to saying that the likelihood L(�) only depends
upon data x through s (x). So maximum likelihood inference also only depends on s (x) :
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Example 2.19

Suppose X1; X2 � B(n; �) and consider

P (X1 = xjX1 +X2 = r)

=
P (X1 = x;X1 +X2 = r)

P (X1 +X2 = r)

=
P (X1 = x;X2 = r � x)
P (X1 +X2 = r)

=

�
n

x

�
�x (1� �)n�x

�
n

r � x

�
�r�x (1� �)n�r+x�

2n

r

�
�r (1� �)2n�r

=

�
n

x

��
n

r � x

�
�
2n

r

� :

This does not contain �; so that X1 +X2 is a su¢ cient statistic for �.
�

Theorem 2.1 Factorization Theorem

s(X) is a su¢ cient statistic for � if and only if there exist functions g and h such that

f(x; �) = g (s(x); �)h(x)

for all x 2 Rn; � 2 �.
�

Proof for discrete random variables

(i) Let s(x) = a and suppose the factorization condition to be satis�ed, so that
f(x; �) = g (s(x); �)h(x).

Then
P (s(X) = a) =

X
y2s�1(a)

p(y) = g(a; �)
X

y2s�1(a)

h(y):

Hence

P (X = x j s(X) = a) = h(x)P
y2s�1(a)

h(y)

and this does not depend upon �.
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(ii) Let s(X) be a su¢ cient statistic for �. Then

P (X = x) = P (X = x j s(X) = a)P (s(X) = a) :

But su¢ ciency ) P (X = x j s(X) = a) does not depend upon �; so writing
P (s(X) = a) = g(a; �) and P (X = x j s(X) = a) = h(x) gives the result.

The proof in the continuous case requires measure theory and is beyond the scope of this
course.
�

Example 2.20

X1; X2; : : : ; Xn � U(0; �), so that

L(�) = ��n; 0 < x1; : : : ; xn < �:

L(�) = ��n; � > x(n):

This factorizes with s(x) = x(n) and h (x) = 1, so that X(n) is a su¢ cient statistic for
�:�

Example 2.21

Suppose X1; X2; : : : ; Xn is a random sample from a Bernoulli distribution. Then

p(x; �) = �
P
i xi(1� �)n�

P
i xi :

Trivially this factorizes with s(x) =
P

i xi and h (x) = 1
�
Example 2.22

Suppose X1; X2; : : : ; Xn is a random sample from a N(�; �2) distribution, where (�; �2)T

is a vector of unknown parameters. Then

f(x;�; �2) =
�
2��2

��n/2
exp

"
� 1

2�2

X
i

(xi � �)2
#

=
�
2��2

��n/2
exp

"
� 1

2�2

X
i

(xi � x)2 + n(x� �)2
#
:

Again this factorizes where s(x) = (x;
P

i(xi � x)2)
T , a vector valued function.

�
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2.6.8 Large sample distribution of b�
From the data summary point of view, the m.l.e. b� and J �b��have been thought of
in terms of a particular set of data. We now wish to think of b� in terms of repeated
sampling (i.e. as a random variable).

Main results

In many situations and subject to regularity conditions

b� D! N(�; I(�)�1);

We can apply the approach to obtaining con�dence intervals developed in Mods, for the
CLT.

Then an approximate 95% con�dence interval for � is given by

b� � 1:96I(b�)�1/2 :
[or b� � 1:96J(b�)�1/2 , regarded by many as better, but not in the books].
In the multivariate case, b� D! N(�; I(�)�1):

Example 2.23 Exponential distribution

For an exponential distribution with mean �,

L(�) = ��ne�
P
i xi/� ; � > 0;

l(�) = �n log � �
X
i

xi /� ;

so that

U(�) = �n
�
+

P
i xi

�2
; J(�) = � n

�2
+
2
P

i xi

�3
:

Thus b� = x; J(b�) = n

x2

and an approximate 95% con�dence interval is

x� 1:96x
�p
n

�

Example 2.24 Normal distribution
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For a normal random sample,

b� = x; b�2 = n�1X
i

(xi � x)2 ;

J
�
�; �2

�
=

�
n /�2 ��4

P
i (xi � �)

��4
P

i (xi � �) ��6
P

i (xi � �)
2 � n /2�4

�
:

Therefore

I
�b�; b�2� = � n

�b�2 0

0 n
�
2b�4

�
:

An approximate 95% con�dence interval for � is

x� 1:96b� �pn ;
and for �2 is b�2 � 1:96b�2r 2

n
:

Note that the estimators b� and b�2 are asymptotically uncorrelated.
�

Lemma 2.5 If b� is the maximum likelihood estimator of a parameter � based on a
random sample, under suitable regularity conditionsb� D! N(�; I(�)�1);

where I(�) is Fisher�s information for the sample.
�

Sketch Proof Suppose X1; X2; : : : ; Xn is a random sample from a distribution with
p.d.f. f(x; �). Then the log-likelihood, score and observed information are

l(�) =
X
i

log f(xi; �);

U(�) =
X
i

@

@�
log f(xi; �);

J(�) = �
X
i

@2

@�2
log f(xi; �):

Let Ui(�) be the random variable Ui(�) =
@

@�
log f(Xi; �), and, provided that conditions

are such that integration and di¤erentiation are interchangeable,

E [Ui(�)] =

Z
f(x; �)

@

@�
log f(x; �)dx

=

Z
@

@�
f(x; �)dx

=
@

@�

Z
f(x; �)dx =

@

@�
1 = 0
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and

0 =
@

@�

Z
f(x; �)

@

@�
log f(x; �)dx

=

Z
f(x; �)

@2

@�2
log f(x; �)dx+

Z
@

@�
f(x; �)

@

@�
log f(x; �)dx

= E

�
@2

@�2
log f(X; �)

�
+

Z
f(x; �)

�
@

@�
log f(x; �)

�2
dx:

So
0 = �i(�) + E

�
Ui(�)

2
�

and, therefore, V [Ui(�)] = i(�).

It follows that E [U(�)] = 0, V [U(�)] = ni(�) = I(�), and the Central Limit Theorem
shows that

U(�)
D! N (0; I(�)) :

Now the m.l.e. is a solution of U(b�) = 0, so that, Taylor expanding about �,
U(�) + U 0(�)(b� � �) ' 0

or
U(�)� J(�)(b� � �) ' 0:

Re-arranging, p
I(�)(b� � �) ' U(�)pI(�)

J(�)
=

U(�)p
I(�)

�
J(�)

I(�)
:

From the CLT,
U(�)p
I(�)

D! N(0; 1)

and (from WLLN which you will meet in probability)

J(�)

I(�)

P! 1:

Slutsky�s Theorem states that, if Sn
D! S and Un

P! k, where k is a constant, then

Sn + Un
D! S + k; SnUn

D! Sk:

It therefore results in p
I(�)(b� � �) D! N(0; 1)

or b� D! N(�; I(�)�1):

�

Requirements of this proof
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(i) The true value of � is interior to the parameter space.

(ii) Di¤erentiation under the integral is valid, so that E [U(�)] = 0 and V [U(�)] =
ni(�). This allows a central limit theorem to apply to U(�).

(iii) Taylor expansions are valid for the derivatives of the log-likelihood, so that higher
order terms may be neglected.

(iv) A weak law of large numbers applies to J(�).

2.7 The �-method

We often want the asymptotic distribution of some function of a random variable. The
basic method of doing this is the �-method.

Let X1; X2; : : : ; Xn, be a random sample from a distribution with mean �, variance �2.

Then E
�
X � �

�
= 0; V

�
X
�
= �2=n.

By Taylor�s Theorem

g
�
X
�
= g

�
�+ (X � �

�
)

= g(�) + (X � �)g0(�) + 1
2
(X � �)2g00(�n);

0 < j�n � �j <
��X � ��� ;

and as n becomes large

E
�
g
�
X
��

= g(�) +O (n�1) ;

V
�
g
�
X
��

= n�1�2g0(�)2 +O
�
n�3/2

�
:

Example 2.25 Exponential distribution

If
fX(x) = �e

��x; x � 0;
then

E(X) = ��1; V (X) = ��2;

so that
E(X) = ��1; V (X) = 1/n�2:

Suppose we want E(Y ) and V (Y ), where Y = logX.

Then
g(x) = log x; g0(x) = 1/x
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and

E(Y ) ' � log �; V (Y ) ' 1

n�2

�
1

x

�2�����
x=1/�

=
1

n
:

�

Example 2.26 Variance stabilising transformations

The aim of a variance stabilising transformation is to �nd a transformation such that
g
�
X
�
has a variance which is approximately constant,

i.e.
�2g0(�)2 ' c; a constant:

Suppose we have a random sample X1; X2; : : : ; Xn with mean �, variance V (�). Then

g0(�) = cV (�)�1/2

) g(�) =
R �
V (u)�1/2du:

In practice, the transformation is usually applied to the sample data directly to produce
transformed data g(X1); g(X2); : : : ; g(Xn).
For a Poisson distribution, E(X) = �; V (X) = � so that g(�) = �1/2:
Thus, if X � Poisson(�), then

Y =
p
X

has a variance which is approximately constant.

For an exponential distribution, V (�) = �2, so

g(�) = log �:

�
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