
3 Random Samples from Normal Distributions

Statistical theory for random samples drawn from normal distributions is very important,
partly because a great deal is known about its various associated distributions and partly
because the central limit theorem suggests that for large samples a normal approximation
may be appropriate.

3.1 Useful theoretical results

Theorem 3.1 IfX1; X2 ; : : : ; Xn are independent random variables withXj � N(�j; �2j),
then Y =
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By uniqueness of the moment generating function the result follows.

�
De�nition 3.1 A chi-square distribution with r degrees of freedom is a gamma dis-

tribution: �2(r) is the same as �
�
r

2
;
1

2

�
:

Note that the moment generating function is

M(t) =

�
1

1� 2t

� r
2

:

�
The density function �2(1) is given by

f(x) =
1p
2�
x�

1
2 e�

1
2
x; x > 0:

Using the above moment generating function, we see that E (X) =M 0
X(0) = 1; V (X) =

2: You can see from the graphs below that �2-distributions have a distinctively skewed
shape.
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Figure 3.1 P.d.f.s of �2 (1) and �2 (3) distributions

The solid line is �2(1) and the dotted line is �2(3).

Lemma 3.1 If X � N(0; 1); then Y = X2 � �2(1).
�
Proof Let Y = X2: Then

FY (y) = P (Y � y) = P
�
X2 � y

�
= P (�py � X � py) = FX (

p
y)� FX (�

p
y)

so that

fY (y) = F
0
Y (y) =
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2
p
y
(fX (

p
y) + fX (�

p
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1p
2�y

e�
1
2
y; y > 0:

�

Theorem 3.2 If Y1; Y2 ; : : : ; Yr are an independent random sample, each with a �2(1)
distribution then

rP
j=1

Yj � �2(r):

�
Proof Just consider the moment generating functions. The m.g.f of a �2(r) random
variable is (1� 2t)�r=2, so the m.g.f. of a �2(1) random variable is (1� 2t)�1=2. But
the m.g.f. of a sum of r independent identically distributed random variables, each with
m.g.f. M (t) is [M (t)]r, so the m.g.f. of

Pr
j=1 Yj is (1� 2t)

�r=2, which is the m.g.f. of a
�2(r) random variable. Therefore, by the uniqueness theorem for m.g.f.s,

rP
j=1

Yj � �2(r):

�

Corollary If Y1 � �2(r) and Y2 � �2(s) , and are independent, then
Y1 + Y2 � �2(r + s):

�
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3.2 Independence of X and S2 for normal samples.

One of the key results for normal random samples is the independence ofX =
1

n

Pn
i=1Xi

and S2 =
1

n� 1
Pn

i=1

�
Xi �X

�2
, and their relationship to the mean and variance pa-

rameters of a normal distribution.

Theorem 3.3 If X1; X2 ; : : ; Xn are independent, identically distributed random
variables with normal distribution N (�; �2) ; then X and S2 are independent with dis-
tributions

(i) X � N
�
�;
�2

n

�
;

(ii)
(n� 1)S2

�2
� �2(n� 1):

�
Proof There are various methods of proof. We will use one which delivers both inde-
pendence and distribution within the same argument.

Xi � N
�
�; �2

�
=) Zi =

Xi � �
�

� N (0; 1)

Now, from Theorem 3.1, we know that, if Z is a vector of normal random variables and
L is a linear transformation, then Y = LZ is also a vector of normal random variables.
Suppose that L is orthogonal so that LTL = I. Then

YTY = ZTLTLZ = ZTZ or
nX
i=1

Y 2i =
nX
i=1

Z2i :

Thus, if the joint p.d.f. of independent N (0; 1) variables Zi, i = 1; : : : ; n is

fZ (z) =
1p
2�
exp
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nX
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z2i

!
; Z 2 Rn;

then joint p.d.f. of the Yi, i = 1; : : : ; n is

fY (y) =
1p
2�
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�1
2

nX
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y2i

!
; Y 2 Rn;

and the Yi variables are also independent and distributed as N (0; 1).

Now suppose we choose L such that its �rst row is�
1p
n
;
1p
n
; : : : ;

1p
n

�
:
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Then Y1 =
1p
n

Pn
i=1 Zi =

p
nZ , and

nX
i=1

�
Zi � Z

�2
=

nX
i=1

Z2i � nZ
2
=

nX
i=1

Y 2i � Y 21 =
nX
i=2

Y 2i ;

which is independent of Y1. Thus

nX
i=1

�
Zi � Z

�2
is independent of Z )

nX
i=1

�
Xi �X

�2
is independent of X

since Zi =
Xi � �
�

. The independence of X and S2 is therefore proved.

(i) Y1 � N (0; 1) )
p
nZ � N (0; 1) )

p
n

�
X � �

�
�

� N (0; 1) )
X � N (�; �2=n) ;

(ii) From Theorem 3.2,

nX
i=2

Y 2i � �2 (n� 1) )
Pn

i=1

�
Xi �X

�2
�2

� �2 (n� 1)

) (n� 1)S2
�2

� �2(n� 1):

�

As we have just seen,X1; X2 ; : : : ; Xn is a random sample from N (�; �2) then

p
n

�
X � �

�
�

� N (0; 1) :

When trying to make inferences from normal data we are often interested in �; the
location parameter, but the variance �2 is unknown. We need to �nd an estimator for
the mean � which does not contain the unknown variance parameter. To do this we are
going to need to de�ne something new and do a little more theory.

De�nition 3.2 If U � N (0; 1) and V � �2(r) are independent, then

T =
Up
V=r

� t(r)

has a t-distribution with r degrees of freedom. This de�nes the distribution t(r).
�
Figure 3.2 shows a graph of t (7) compared with a standard N (0; 1) distribution. You
can see that it is very similar, but has fatter tails.
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Figure 3.2 Normal and t(7) distributions

Properties of the t-distribution

(i) The pdf of the t(r) distribution is

f(t) =
�
�
r+1
2

�p
(�r)�

�
r
2

� �1 + t2
r

�� r+1
2

; t 2 R:

(ii) If r = 1 then t(1) is a Cauchy distribution without �nite mean or variance.

(iii) As r !1 then t(r)! N(0; 1) :

Referring again to Figure 3.2, the distributions are not so very di¤erent in shape, and
the higher the number of degrees of freedom the closer the t-distribution approaches to
the standard normal distribution.

These results are all leading to the fact that, if we replace � by S, then we know the
distribution of the resulting estimator and the mean, variance and all quantiles are
tabulated in either tables or any statistical package, including R.

Theorem 3.4 If X1; X2 ; : : : ; Xn are a normal random sample then
p
n(X � �)
S

� t(n� 1):

�
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Proof X and S2 are independent and

p
n(X � �)
�

� N (0; 1) ; (n� 1)S
2

�2
� �2(n� 1):

Using the de�nition of the t-distribution, the result follows with the unknown � can-
celling.
�

3.3 Estimators and con�dence intervals

Z-statistics
Given a set of data which we regard as plausibly normal we might wish to �nd a point
estimate of the mean �: The previous section suggests that X is an obvious candidate.
We also need to know what is the likely error range. If we had a di¤erent estimate, how
close to the estimator X should it lie to be regarded as a plausible estimator of �? For
example consider the radiocarbon dating sample in Data Set 2.4. Without the outlier
we have seen that it is plausible that the data is a normal random sample. With the
outlier, x = 2622, without x = 2505:9. In either case, how reliable is our estimate, can
we trust it? To within what error bounds? Should we include or exclude the outlier? If
we exclude the outlier then the data is plausibly normal and we have a possible measure
of spread in terms of the sample standard deviation s, although the variance �2 is un-
known and is often referred to as a nuisance parameter. We need some theory, making
use of the previous sections.

De�nition 3.3 An estimator of a parameter � is a statistic, say a functionA (X1; X2 ; : : : ; Xn)
of the random sample, which does not depend on any unknown parameters in the model
and which we use to give a point estimate of the parameter from the data.
�
An example of this is the way we use X to estimate the mean of a distribution.
If the estimator is to have any use at all, it should have some nice properties. For ex-
ample, we know that X P! � by the weak law of large numbers, ensuring that X is a
sensible estimator for �.

A starting point for considering the likely error using the normal distribution is given by

p
n(X � �)
�

� N (0; 1) :
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De�nition 3.4 A Z-statistic is a statistic with a standard normal distribution (as
above).
�
The main use of Z-statistics stems from the facts that, for a general distribution, the
Central Limit Theorem implies asymptotically that

p
n(X � �)
�

� N (0; 1) ;

and that the standard normal distribution involves no unknown parameters: it can be
(and is) tabulated.

We can use the Z-statistic to calculate a range of plausible values for �, under the
assumption that �2 is known.

De�nition 3.5 Con�dence interval

LetX represent a vector of random variables with entriesXi. If (a(X); b(X)) is a random
interval such that

P (a(X) < � < b(X)) = 1� �;
then a realisation of that interval, (a(x); b(x)) is said to be a 100 (1� �)% con�dence
interval for �.
�
It is not easy to get to grips with what is meant by a con�dence interval. Clearly one
cannot say that the parameter � has probability (1� �) of lying within the calculated
interval (a(x); b(x)) because the ends of the interval are �xed numbers, as is �; and
without random variables being present, probability statements cannot be made: either
� lies between the two numbers or it doesn�t, and we have no way of knowing which.
The only viable interpretation is to say that we have used a procedure which, if repeated
over and over again, would give an interval containing the parameter 100 (1� �)% of
the time: the rest of the time we will be unlucky.

Central 100(1 � �)% con�dence intervals using Z-statistics are found as follows. Re-
membering that Z � N(0; 1); choose z�=2 such that

P
�
Z � z�=2

�
= 1� �

2
=) P

�
�z�=2 � Z � z�=2

�
= 1� �:

If Z =

p
n
�
X � �

�
�

as above, then

P

 
�z�=2 �

p
n
�
X � �

�
�

� z�=2

!
= 1� �

=) P

�
X � �p

n
z�=2 � � � X +

�p
n
z�=2

�
= 1� �:

49



Hence the appropriate random interval is�
X � �p

n
z�=2 ; X +

�p
n
z�=2

�
and the 100 (1� �)% con�dence interval is�

x� �p
n
z�=2 ; x+

�p
n
z�=2

�
:

The most common value of � in use is 0.05, in which case z�=2 = z0:025 = 1:960:

Figure 3.3 95% interval for N(0; 1)

Example 3.1 Radioactive-carbon dating

In order to estimate the age of the site, we need to take the following steps.

(i) Check that the data are plausibly normal. We did this in Example 2.8 using a
normal probability plot. We decided that we should leave out one point because it
was a clear outlier.

(ii) Estimate the mean of the distribution by the sample mean and write b� = x =
2505:86:

(iii) Use a Z-statistic to �nd a 95% con�dence interval which gives a range of plausible
values for the mean age. This is�

x� 1:96�p
n

; x+
1:96�p
n

�
;

and, putting in n = 7 and x = 2505:86, we �nd a central 95% con�dence interval�
2505:86� 1:96�p

7
; 2505:86 +

1:96�p
n

�
;
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Unfortunately we are no better o¤. We cannot obtain the con�dence interval because
we do not know �, so what should we do? We would like to replace � by s; the sample

standard deviation, but can we?
�
Recall that S2 =

1

n� 1
P
(xi � x)2 :

�
�

We know from Theorem 3.4 that, if X1; X2 ; : : : ; Xn is a random sample from a normal
distribution N(�; �2), then

T =

p
n
�
X � �

�
S

� t (n� 1)

We can now look for a con�dence interval by replacing the Z-statistic with the t-statistic.
Writing t�=2 (n� 1) for the 1� �

2
quantile from the distribution t(n� 1);

P

 
�t�=2 (n� 1) <

p
n
�
X � �

�
S

< t�=2 (n� 1)
!
= 1� �:

Re-arranging gives the random interval�
X �

t�=2p
n
S; X +

t�=2p
n
S

�
;

and the 100 (1� �)% con�dence interval is the realisation of this interval.

Example 3.2 Radioactive-carbon dating

For the carbon-dating example, n = 7 and t0:025(6) = 2:447, from a t-distribution with 6
degrees of freedom, s = 56:44. Plugging these values into the formula results in a 95%
con�dence interval of (2453:5; 2558:3), thereby giving a range of plausible values for �.
�

3.4 Application of Central Limit Theorem

The Central Limit Theorem states that, for any random sample X1; X2 ; : : : ; Xn such
that the sample size n is su¢ ciently large, we have

p
n
�
X � �

�
�

:� N (0; 1) :

Notation: :� means �approximately distributed as�. Provided we are dealing with mod-
erate to large sample sizes we can therefore use the approximate normality to �nd con-
�dence intervals, using approximate Z-statistics.

Example 3.3 Binomial Proportion

In an opinion poll prior to a Sta¤ordshire South East by-election, of 688 constituents
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chosen at random 368 said they would vote Labour (53.5%). The newspapers are per-
fectly happy to use these data to estimate p; the probability that a constituent selected
at random would vote Labour, but they rarely, if ever, give any idea of the quality of
the estimate. Let us see how to obtain a 95% con�dence interval for p.

First identify the random sample. Constituents questioned are labelled 1,. . . , 688. Let

Xi =

�
1; if ith constituent says "I will vote Labour",
0; otherwise.

Then Xi has a Bernoulli distribution B (1; p), the sample size n is 688, and E (Xi) = p,

V (Xi) = p(1 � p). We know that p can be estimated by the sample mean x =
368

688
=

0:535. We can also apply the Central Limit Theorem to �nd an approximate con�dence
interval using the asymptotic normality with � = p; �2 = p(1� p): Thus

p
n
�
X � p

�p
p (1� p)

:� N (0; 1) :

The 95% random interval is of the form�
X � �p

n
z0:025; X +

�p
n
z0:025

�
but unfortunately � is a function of p. We could solve a quadratic inequality for p, but,
since n = 688 is large, we will replace � by its estimator

p
x(1� x). This gives (0.498,

0.572) as a 95% con�dence interval for p, with point estimate 0.535.

If we required a 99% con�dence interval we would use z0:005 = 2:576 to replace 1.960,
and get a wider interval (0.486, 0.584) about which we are slightly more con�dent.
�
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