1. The observations (x_i, Y_i) satisfy the equation

$$Y_i = \alpha + \beta(x_i - \overline{x}) + \varepsilon_i, \quad i = 1, 2, \dots, n,$$

where α and β are unknown constants, $\overline{x} = n^{-1} \sum x_i$ and the ε_i s are independent normal random variables with mean zero and variance σ^2 . The x_i s are not all equal.

Show that the covariance matrix of the least squares estimators of α and β is

$$\sigma^2 n^{-1} \left(\sum_{i=1}^n (x_i - \overline{x})^2 \right)^{-1} \left(\begin{array}{cc} \sum_{i=1}^n (x_i - \overline{x})^2 & 0\\ 0 & n \end{array} \right)$$

How would you estimate σ^2 ? How would you obtain $100(1 - \gamma)\%$ confidence intervals for α and β ?

What estimate would you use for the value of y when x = 0, and what is the variance of your estimate?

Now suppose that y depends upon two explanatory variables x_i and z_i according to the model

$$Y_i = \alpha + \beta(x_i - \overline{x}) + \gamma z_i + \varepsilon_i, \quad i = 1, 2, \dots, n,$$

where the vectors (x_1, x_2, \ldots, x_n) , (z_1, z_2, \ldots, z_n) and $(1, 1, \ldots, 1)$ are linearly independent. Show that the variance of the least squares estimate of β is

$$\frac{\sigma^2 \sum_{i=1}^n (z_i - \overline{z})^2}{\sum_{i=1}^n (x_i - \overline{z})^2 \sum_{i=1}^n (z_i - \overline{z})^2 - \left(\sum_{i=1}^n (x_i - \overline{x})(z_i - \overline{z})\right)^2}.$$

2. Consider the linear model

 $\mathbf{Y} = \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\epsilon},$

where **Y** is a random *n*-vector, **X** is an $n \times p$ design matrix of rank p < n, θ is a *p*-vector of parameters and ϵ is an *n*-vector of independent random variables with mean zero and variance σ^2 . Derive the least squares estimator $\hat{\theta}$ of θ and show that it is unbiased. Find its covariance matrix. Under what circumstances is the least squares estimator also the maximum likelihood estimator?

A sailor uses a sextant to measure the two angles in the horizontal plane subtended by three distant landmarks A, B, C: their true values are λ and μ .

He takes four measurements, the first two, y_1 and y_2 , being of λ and μ respectively and the third and fourth, y_3 and y_4 , each being of the combined angle $\lambda + \mu$. The measurements are subject to independent, normally distributed random errors with known variance σ^2 . Obtain maximum likelihood estimates $\hat{\lambda}$, $\hat{\mu}$ of λ and μ . Show that the variance of $\hat{\lambda}$ is $\frac{3}{5}\sigma^2$ and that the correlation coefficient between $\hat{\lambda}$ and $\hat{\mu}$ is $-\frac{2}{3}$.

The sailor suspects that each of the measurements has a constant bias β . Show that this bias is estimated as $y_1 + y_2 - \frac{1}{2}(y_3 + y_4)$ and show how to test the hypothesis that the bias is zero.

3. A team of researchers believe that the outcome Y of an experiment obeys the linear regression model

$$Y = \alpha + \beta x + \varepsilon$$

where α and β are unknown constants, the error $\varepsilon \sim N(0, \sigma^2)$ with σ^2 unknown, and where they can control the value of x. They conduct the experiment r times at x = a, rtimes at x = -a, and n - 2r times at x = 0. Assume the associated errors $\varepsilon_1, \ldots, \varepsilon_n$ are independent.

Derive explicit expressions for the maximum likelihood estimators of α and β . If the researchers' only interest is in estimating β , which value of r should they have chosen?

How should they estimate the value of σ^2 ?

Consider a new experiment about to be conducted, resulting in a new observation \widetilde{Y} taken at $x = x_0$. Show how to construct

- i) a $100(1-\delta)$ % confidence interval for the mean value of \widetilde{Y}
- ii) a $100(1-\delta)$ % prediction interval for the new value of \widetilde{Y} .
- 4. Consider the model in Question 1 and suppose that two further independent observations, $\widetilde{Y}_1, \widetilde{Y}_2$ are to be made at the point x', that is

$$\widetilde{Y}_j = \alpha + \beta \left(x' - \overline{x} \right) + \widetilde{\epsilon}_j, \text{ for } j = 1, 2.$$

Find an expression for the variance τ^2 of the predictor of \widetilde{Y}_1 and explain how it can be used to construct a prediction interval for \widetilde{Y}_1 . Show that the correlation between the prediction error of \widetilde{Y}_1 (defined as the difference between the true value of \widetilde{Y}_1 and the predictor of \widetilde{Y}_1) and the prediction error of \widetilde{Y}_2 is $\frac{\tau^2}{\tau^2 + \sigma^2}$.

Optional Computer Exercises

- 1. The data file *wind.txt*, which you will find on the website, contains data from an investigation into the relationship between electrical current produced by a wind generator and wind speed (in miles per hour). Observations were recorded in the matched vectors *output* and *speed*.
 - (i) Load the data and use the plot() function to look at a scatterplot of *output* against speed. Also produce scatterplots of *output* against the square root of speed, *output* against the logarithm of speed and *output* against the reciprocal of speed. Does any of these plots show a plausible straight line relationship?

- (ii) In the light of your investigations from part (i) of this question, fit the most plausible straight line. Produce a vector of fitted values and a vector of residuals.
- (iii) Use the residuals to produce a normal probability plot; also produce a plot of residuals against fitted values. Comment briefly upon the suitability of your model in the light of the assumptions of the regression model.

[You may find it helpful to fit your linear model using an R command of the form output <- lm(reponse ~variable1 + variable2 + You can then obtain a model summary with summary(output) and fitted values and residuals are obtained respectively from fitted(output) and resid(output).]

2. The proportion of successful putts (y) in a series of golf tournaments was recorded for different putt lengths (x), measured in feet. The data are taken from Iman, R.L. (1994) A Data-based Approach to Statistics, and are in the table below.

x	y	x	y
2	0.93	12	0.26
3	0.83	13	0.24
4	0.74	14	0.31
5	0.59	15	0.17
6	0.55	16	0.13
7	0.53	17	0.16
8	0.46	18	0.17
9	0.32	19	0.14
10	0.34	20	0.16
11	0.32		

- (i) Enter these data into the computer and plot the variable y against x. Is it useful to model these data by fitting a regression line?
- (ii) Fit the straight line $y = \alpha + \beta x$. According to your model, at what putting distance (in feet) is the chance of a successful putt equal to $\frac{1}{2}$?
- (iii) Try the effect of the transformation $y_2 = \sqrt{y}$ by plotting against x. Does this transformation seem to be effective?

The usual approach to regression when the response variable y is a proportion is to transform to a new variable

$$y_3 = \log\left(\frac{y}{1-y}\right).$$

Try the effect of this transformation by plotting y_3 against x. Fit the models $y_2 = \alpha + \beta x$ and $y_3 = \alpha + \beta x$ obtaining vectors of fitted values and residuals. Which transformation do you prefer and why?

- (iv) According to your preferred fitted model in part (iii), at what putting distance (in feet) is the chance of a successful putt equal to $\frac{1}{2}$?
- (v) Use your fitted line to estimate the success rate at a putting distance of 40 feet. Does your answer make sense? What can you conclude?