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Introduction.

We will be concerned with the mathemat-

ical framework for making inferences from

data. The tools of probability provide the

backdrop, allowing us to quantify the uncer-

tainties involved.

Examples

1. Question: How tall is the average five

year old girl?

Data: x1, x2, . . . , xn, the heights of n ran-

domly chosen girls.

An obvious estimate is

x̄ =
1

n

n
∑

i=1

xi

How precise is our estimate?
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2. Measure two variables, for example:

xi = Height of father

yi = Height of son ,

where i = 1, . . . , n.

Is it reasonable that

yi = α + βxi + “random error”?

Is β > 0?

Which α and β?
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Notation

We usually denote observations by lower case

letters: x1, x2, . . . , xn.

Regard these as observed values of random

variables (rv’s) (for which we usually use up-

per case) X1, X2, . . . , Xn.

We often write x (respectively X) for the col-

lection x1, x2, . . . , xn (respectively X1, X2, . . . , Xn).

In different settings, it is convenient to think

of xi as the observed value of Xi, or as a

possible value that Xi can take.

For example, if Xi is a Poisson random vari-

able with mean λ,

P(Xi = xi) =
e−λλxi

xi!
,

for xi = 0,1,2, . . ..
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1. Random Samples.

Definition 1 A random sample of size n is a

set of random variables X1, X2, . . . , Xn which

are independent and identically distributed

(i.i.d.).

Examples

1. Let X1, X2, . . . , Xn be a random sam-

ple from a Poisson distribution with mean

λ. (e.g. Xi = # of accidents on Parks Road

in year i.) Then,

f(x) = P(X1 = x1, X2 = x2, . . . , Xn = xn)

= P(X1 = x1)P(X2 = x2) · · ·P(Xn = xn)

=
e−λλx1

x1!
· e−λλx2

x2!
· · · e

−λλxn

xn!

=
e−nλ λ(

∑n
i=1 xi)

∏n
i=1 xi!

,

where the second equality follows from the

independence of the Xi.
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2. Let X1, X2, . . . , Xn be a random sample

from an exponential distribution with proba-

bility density function (p.d.f.)

f(x) =







1
µe

−x
µ if x > 0

0 otherwise.

(e.g. Xi might be the time until the ith of

a collection of pedestrians is able to cross

Parks Road on the way to a lecture.)

Again, since the Xi are independent, their

joint distribution is

f(x) = f(x1) · f(x2) · · · f(xn)

=
n
∏

i=1

1

µ
e
−xi

µ

=
1

µn
e
(−1

µ

∑n
i=1 xi) .
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In probability questions we would usually as-

sume that the parameters λ and µ from our

previous examples are known.

In many settings they will not be known, and

we wish to estimate them from data. Two

key questions of interest are:

1. What is the best way to estimate them?

(And what does “best” mean here?)

2. For a given method of estimation, how

precise is a particular estimator?
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2. Summary Statistics.

Definition 2 Let X1, X2, . . . , Xn be a random

sample. The sample mean is defined as

X̄ =
1

n

n
∑

i=1

Xi .

The sample variance is defined as

S2 =
1

n − 1

n
∑

i=1

(Xi − X̄)2 .

The sample standard deviation is S (=
√

S2).

Notes

1. The denominator in the definition of S2

is n − 1, not n.

2. X̄ and S2 are random variables, so they

have distributions (called the sampling dis-

tributions of X̄ and S2.)
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3. Given observations x1, x2, . . . , xn, we can

compute the observed values of x̄ and s2.

The sample mean x̄ is a summary of the lo-

cation of the sample.

The sample standard deviation S (or the sam-

ple variance S2) is a summary of the spread

of the sample about x̄.
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The Normal Distribution.

Definition 3 Recall that X has a normal dis-

tribution with mean µ and variance σ2, writ-

ten X ∼ N(µ, σ2), if the p.d.f. of X is

f(x) =
1√

2πσ2
e−

1
2(

x−µ
σ )2

for −∞ < x < ∞.

Recall also that E(X) = µ and var(X) = σ2.
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If µ = 0 and σ = 1, then X is said to have

a standard normal distribution, and we write

X ∼ N(0,1).

Important Result

If X ∼ N(µ, σ2) and Z = (X − µ)/σ, then

Z ∼ N(0,1).

The cumulative distribution function (c.d.f.)

of a standard normal random variable is:

Φ(x) =

∫ x

−∞
1√
2π

e−u2/2du .
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3. Maximum Likelihood
Estimation.

We now describe one method for estimating

unknown parameters from data, called the

method of maximum likelihood. Although

this shouldn’t be obvious at this stage, it

turns out to be the method of choice in many

contexts.

Example 1. Suppose X has an exponential

distribution with mean µ. We indicate the

dependence on µ by writing the p.d.f. as

f(x;µ) =







1
µe

−x
µ if x > 0

0 otherwise.

In general we write f(x; θ) to indicate that

the p.d.f. (or p.m.f.) f , which is a function

of x, depends on the parameter θ (sometimes

this is written f(x|θ)).
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Example 1. continued

Suppose n = 62 and x1, x2, . . . , xn are 62 time

intervals between major earthquakes. As-

sume X1, X2, . . . , Xn are exponential random

variables with mean µ.

How does one estimate the unknown µ? In-

tuition suggests using µ = x̄. But is this a

good idea? Are there general principles we

can use to choose estimators?

In general, suppose X1, X2, . . . , Xn is a ran-

dom sample from a distribution with p.d.f.

(or p.m.f.) f(x; θ). If we regard the param-

eter θ as unknown, we need to estimate it

using x1, x2, . . . , xn.
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Definition 4 Given observations x1, x2, . . . , xn

and unknown parameter θ, the likelihood of

θ is the function

L(θ) = f(x; θ)

=
n
∏

i=1

f(xi; θ) . (1)

That is, L is the joint density (or mass) func-

tion, but regarded as a function of θ, for a

fixed x1, x2, . . . , xn. The likelihood L(θ) is the

probability (or probability density) of observ-

ing x = x1, x2, . . . , xn if the unknown param-

eter is θ.

The log-likelihood is l(θ) = logL(θ) (The

logarithm is to the base e).

The maximum likelihood estimate θ̂(x), is

the value of θ that maximizes L(θ).

θ̂(X) is the maximum likelihood estimator

(m.l.e.).
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The idea of maximum likelihood is to esti-

mate the parameter by the value of θ that

gives the greatest likelihood to observations

x1, x2, . . . , xn. That is, the θ for which the

probability or probability density (1), is max-

imized.

In practice it is usually easiest to maximize

l(θ), and since the taking of logarithms is

a monotone function, this is equivalent to

maximizing L.
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Example 1 again

In this case the parameter of interest is µ.

L(µ) =
n

∏

i=1

1

µ
e
−xi

µ

=
1

µn
e
(−1

µ

∑n
i=1 xi) ,

and so

l(µ) = −n logµ −
∑n

i=1 xi

µ
.

Then

dl

dµ
= −n

µ
+

∑n
i=1 xi

µ2
,

and
dl

dµ
= 0 ⇒ µ = x̄ ,

(which is a maximum).

Therefore, the maximum likelihood estimate

of µ is x̄.

The maximum likelihood estimator is X̄.
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Example

Consider a random variable X with a Bernoulli

distribution with parameter p (this is the same

as a Binomial(1, p)).

P(X = 1) = p ,
P(X = 0) = 1 − p .

The probability mass function of X is

f(x; p) = P(X = x)

=

{

px(1 − p)1−x x = 0,1 .
0 otherwise.

Suppose X1, X2, . . . , Xn is a random sample.

Then, the likelihood is

L(p) =
n
∏

i=1

pxi(1 − p)1−xi

= pr(1 − p)n−r ,

where r =
∑n

i=1 xi.
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The log-likelihood is

l(p) = r log p + (n − r) log(1 − p)

so,

l′(p) =
r

p
− n − r

1 − p
.

Setting l′(p) to zero gives p̂ = r/n (which is

a maximum).

Therefore, the maximum likelihood estima-

tor is

p̂ =

∑n
i=1 Xi

n
.
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Example

Suppose we take a random sample of indi-

viduals from a population, and test their ge-

netic type at a particular chromosomal loca-

tion (called a “locus” in genetics). At this

particular position, each chromosome in the

population will have one of two possible vari-

ants, which we denote by A and a. Since

each individual has two chromosomes (we re-

ceive one from each of our parents), then the

type of a particular individual could be one

of three so-called genotypes, AA, Aa, or aa,

depending on whether they have 2, 1, or 0

copies of the A variant. (Note that order is

not relevant, so there is no distinction be-

tween Aa and aA.)

There is a simple result, called the Hardy-

Weinberg law, which states that under plau-

sible assumptions, the genotypes AA, Aa and

aa will occur with probabilities p1 = θ2, p2 =

2θ(1 − θ) and p3 = (1 − θ)2 respectively, for

some 0 ≤ θ ≤ 1.
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Now suppose the random sample of n indi-

viduals contains:

x1 of type AA;

x2 of type Aa;

x3 of type aa;

where
∑3

i=1 xi = n.

Then the likelihood L(θ) is the probability

that we observe (x1, x2, x3) if we assign indi-

viduals to genotypes with probabilities (p1, p2, p3).

That is,

L(θ) =
n!

x1!x2!x3!
p
x1
1 p

x2
2 p

x3
3 .

This is a multinomial distribution (the gen-

eralization of the binomial distribution in the

setting when there are more than two possi-

ble outcomes).
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Hence,

L(θ) ∝ θ2x1{θ(1 − θ)}x2(1 − θ)2x3 ,

and thus

l(θ) = (2x1 + x2) log θ

+(x2 + 2x3) log(1 − θ) + const ,

and

dl

dθ
= 0 ⇒ 2x1 + x2

θ
=

x2 + 2x3

1 − θ

⇒ θ =
2x1 + x2

2n
.

[Do Sheet 1, Question 3 like this.]
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Example

What if there is more than one parameter we

wish to estimate?

Let X1, X2, . . . , Xn be a random sample from

N(µ, σ2), where both µ and σ2 are unknown.

The likelihood is

L(µ, σ2) =
n
∏

i=1

1√
2πσ2

e
( −1
2σ2(xi−µ)2)

= (2πσ2)−
n
2 exp(

−1

2σ2

n
∑

i=1

(xi − µ)2) ,

and so

l(µ, σ2) =

−n

2
log2π − n

2
log(σ2) − 1

2σ2

n
∑

i=1

(xi − µ)2 .
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We just maximize l jointly over both µ and

σ2:

∂l

∂µ
=

1

σ2

n
∑

i=1

(xi − µ)

∂l

∂(σ2)
= −n

2
· 1

σ2
+

1

2
· 1

(σ2)2
·

n
∑

i=1

(xi − µ)2

Solving ∂l
∂µ = ∂l

∂(σ2)
= 0 simultaneously we

obtain

µ̂ = X̄ ,

σ̂2 =
1

n

n
∑

i=1

(Xi − X̄)2 .

Here the m.l.e. of µ is just the sample mean.

Note that the m.l.e. of σ2 is not quite the

sample variance S2, because of the divisor of

n rather than (n − 1). However, the two will

be numerically close unless n is small.
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Try to avoid confusion over the terms “esti-

mator” and “estimate”.

An estimator is a rule for constructing an es-

timate: it is a function of the random vari-

ables (X1, X2, . . . , Xn) involved in the random

sample.

In contrast, the estimate is the numerical

value taken by the estimator for a particu-

lar data set: it is the value of the function

evaluated at the data x1, x2, . . . , xn.

An estimate is just a number. An estimator

is a function of random variables and hence

is itself a random variable.
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4. Parameter Estimation.

Earthquake Example

Let X1, X2, . . . , Xn be a random sample from

the p.d.f.:

f(x;µ) =







1
µe

−x
µ if x > 0

0 otherwise.

Note E(Xi) = µ.

Maximum likelihood gave µ̂ = X̄.

Alternative estimators are:

(i) 1
3X1 + 2

3X2;

(ii) X1 + X2 − X3;

(iii) 2
n(n+1)

(X1 + 2X2 + · · · + nXn).

How should we decide between different es-

timators?
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In general, suppose X1, X2, . . . , Xn is a ran-

dom sample from a distribution with p.d.f.

(or p.m.f.) f(x; θ). We want to estimate the

unknown parameter θ using the observations

x1, x2, . . . , xn.

Definition 5 A statistic is any function T(X)

of X1, X2, . . . , Xn that does not depend on θ.

An estimator of θ is any statistic T(X) that

we might use to estimate θ.

T(x) is the estimate of θ, obtained via the es-

timator T , based on observations x1, x2, . . . , xn.

An estimator T(X), e.g. X̄, is a random vari-

able. (It is a function of the random variables

X1, X2, . . . Xn.)

An estimate T(x), e.g. x̄, is a fixed number,

based on data. (It is a function of the num-

bers x1, x2, . . . xn.)
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Properties of Estimators

A good estimator should take values close to

the true value of the parameter it is trying

to estimate.

Definition 6 The estimator T = T(X) is said

to be unbiased for θ if E(T) = θ for all θ.

That is, T is unbiased if it is ‘correct on av-

erage’.
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Earthquakes

The MLE is µ̂ = 1
n

∑n
i=1 Xi, and we know

that E(Xi) = µ. So,

and hence µ̂ is unbiased for µ.

Note that our alternative estimator (i) is un-

biased since

E(
1

3
X1 +

2

3
X2) =

Similar calculations show that alternatives

(ii) and (iii) are also unbiased.
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Example

Suppose X1, X2, . . . , Xn is a random sample

from a N(µ, σ2) distribution. Consider

T =
1

n

n
∑

i=1

(Xi − X̄)2

as an estimator of σ2. (T is the MLE of σ2

when µ and σ are unknown.)

n
∑

i=1

(Xi − X̄)2
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So,

E(T) =

Hence, T is not unbiased. On average, T

will underestimate σ2. However, E(T) → σ2

as n → ∞, i.e. T is asymptotically unbiased.

Observe that the sample variance is

S2 =
n

n − 1
T ,

and so

E(S2) =
n

n − 1
E(T) = σ2 .

Therefore S2 is unbiased for σ2.
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Example

Suppose X1, X2, . . . , Xn is a random sample

from a uniform distribution on [0, θ], i.e.

f(x; θ) =

{

1
θ if 0 ≤ x ≤ θ
0 otherwise.

What is the mle for θ? Is the mle unbiased?

1. We first calculate the likelihood:

L(θ) =
n
∏

i=1

f(x; θ)

=

{

1
θn if 0 ≤ xi ≤ θ for all i
0 otherwise.

=

{

1
θn if max1≤i≤n xi ≤ θ
0 otherwise.

=
1

θn
I{max1≤i≤n xi≤θ} .
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The maximum occurs when

θ = max
1≤i≤n

xi .

Therefore, the MLE is

θ̂ = max
1≤i≤n

Xi .
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2. We now find the c.d.f. of θ̂:

F(y) =

for 0 ≤ y ≤ θ, where the second last equality

follows from the independence of the Xi.

So, the p.d.f. is

f(y) = F ′(y) =
nyn−1

θn
,

for 0 ≤ y ≤ θ.
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3. So,

E(θ̂) =
∫ θ

0
y · nyn−1

θn
dy

=
n

n + 1
θ .

Therefore, θ̂ is not unbiased.

Since each Xi < θ, we must have θ̂ < θ and

so we should have expected E(θ̂) < θ. Note,

however, that the mle θ̂ is asymptotically un-

biased since E(θ̂) → θ as n → ∞.

In fact, under mild assumptions, MLEs are

always asymptotically unbiased (one attrac-

tive feature of MLEs).
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Further Properties of Estimators.

Definition 7 The mean squared error (MSE)

of an estimator T is defined by:

MSE(T) = E[(T − θ)2] .

The bias of T is defined by

b(T) = E(T) − θ .

Note that T is unbiased iff b(T) = 0.

Theorem 1

MSE(T) = var(T) + {b(T)}2 .

Proof: Let µ = E(T). Then,

MSE(T) = E[{(T − µ) + (µ − θ)}2]
= E[(T − µ)2]

+ 2(µ − θ)E(T − µ)

+ (µ − θ)2

= var(T) + {b(T)}2 .

2
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MSE(T) is a measure of the ‘distance’ be-

tween an estimator T and the parameter θ,

so good estimators have small MSE.

To minimize the MSE we have to consider

the bias and the variance.

Unbiasedness alone is not particularly desir-

able - it is the combination of small variance

and small bias which is important.
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Important Results

It is always the case that

E(a1X1 + a2X2 + · · · + anXn) =

a1E(X1) + a2E(X2) + · · · + anE(Xn) .

If X1, X2, . . . , Xn are independent then

var(a1X1 + a2X2 + · · · + anXn) =

a2
1var(X1) + a2

2var(X2) + · · · + a2
nvar(Xn) .

In particular, if X1, X2, . . . , Xn is a random

sample with E(Xi) = µ and var(Xi) = σ2,

then

E(X̄) = µ , and var(X̄) =
σ2

n
.
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Example

Suppose X1, X2, . . . , Xn is a random sample

from a uniform distribution on [0, θ], i.e.

f(x; θ) =

{

1
θ if 0 ≤ x ≤ θ
0 otherwise.

Consider the estimator

T =
2

n

n
∑

i=1

Xi .
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Then,

E(T) =
2

n

n
∑

i=1

E(Xi)

=
2

n
· n · θ

2
= θ .

Therefore T is unbiased.

Hence, since the Xi are independent, we have

MSE(T) = var(T)

=

39

Now consider the maximum likelihood esti-

mator θ̂ = max1≤i≤n Xi.

Previously, we found that the p.d.f. of θ̂ is

f(y) =
nyn−1

θn
,

for 0 < y < θ.

We find:

E(θ̂) =
nθ

n + 1
,

and

var(θ̂) =
nθ2

(n + 1)2(n + 2)
.

So

b(θ̂) =
nθ

n + 1
− θ =

−θ

n + 1
.

40



Thus,

MSE(θ̂) = var(θ̂) + {b(θ̂)}2

=
2θ2

(n + 1)(n + 2)

≤ θ2

3n
= MSE(T) ,

with strict inequality for n > 2.

So, θ̂ is better in terms of MSE. In fact, it is

much better since MSE decreases like 1/n2,

rather than like 1/n.

Note that (n+1
n )θ̂ is unbiased, but among es-

timators of the form λθ̂, MSE is minimized

at

λ =
n + 2

n + 1
.
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Estimation so far:

All of the estimates we have seen so far are

point estimates (i.e. single numbers), e.g.

x̄, max1≤i≤n xi, s2, ...

When an ‘obvious’ estimate exists, maximum

likelihood will typically produce it (e.g. x̄).

It can be shown that maximum likelihood

estimators have good properties, especially

when the sample size is large.

An important additional feature of maximum

likelihood as a method for finding estimators

is its generality: it works well when no ‘ob-

vious’ estimate exists (e.g. Sheet 2).
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Accuracy of an Estimate.

Earthquakes again.

We supposed that the p.d.f. of Xi was

f(x;µ) =
1

µ
e
−x

µ ,

for x > 0. Recall that in this case E(Xi) = µ

and var(Xi) = µ2.

Suppose our point estimate of µ is x̄ = 437

days.

Better than the point estimate of 437 would

be a range of plausible or believable values of

µ, for example an interval (µ1, µ2) containing

the point 437.
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The mle is X̄, and to understand the uncer-

tainty in the mle, we could calculate

var(X̄) =
1

n
var(X1) =

µ2

n
.

Therefore, the standard deviation is

s.d.(X̄) =
µ√
n

.

Notice that the standard deviation depends

on µ, which is unknown, and therefore we

need to estimate it. Our estimate of the

standard deviation is called the standard er-

ror:

s.e.(x̄) =
x̄√
n

.

(To find the standard error, we “plug in”

to the formula for the standard deviation of

the estimator an estimate for the unknown

parameter. So here, we replace µ by x̄.)
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5. Confidence Intervals.

Example

Suppose X1, X2, . . . , Xn is a random sample

of heights, where Xi is the height of the ith

person.

Suppose we can assume Xi ∼ N(µ, σ2
0) where

µ is unknown and σ0 is known.

Consider the interval [a(X), b(X)]. We would

like to construct a(X) and b(X) so that:

1. The width of this interval is small.

2. The probability, P(a(X) ≤ µ ≤ b(X)) is

large.

Note that the interval is a random interval

since its endpoints a(X) and b(X) are ran-

dom variables.
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Definition 8 If a(X) and b(X) are two statis-

tics, the interval [a(X), b(X)] is called a con-

fidence interval for θ with a confidence level

of 1 − α if

P(a(X) ≤ θ ≤ b(X)) = 1 − α .

The interval [a(x), b(x)] is called an interval

estimate.

The random interval [a(X), b(X)] is called an

interval estimator.

The interval [a(x), b(x)] is also called the 100(1−
α)% confidence interval for θ.

(n.b. a(X) and b(X) do not depend on θ.)

The most commonly used values of α are

0.1,0.05,0.01 (i.e confidence levels of 90%,

95%, 99%), but there is nothing special about

any one confidence level.
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Theorem 2 If X1, X2, . . . , Xn are independent

random variables with Xi ∼ N(µi, σi) and Y =
∑n

i=1 aiXi then Y ∼ N(
∑n

i=1 aiµi,
∑n

i=1 a2
i σ2

i ).

Proof: The proof is omitted.

Notation Let zα be the constant such that

if Z ∼ N(0,1), then P(Z > zα) = α.

zα is the “upper α point of N(0,1)”.

Φ(zα) = 1 − α, where Φ is the c.d.f. of a

N(0,1). For example:

α 0.1 0.05 0.025 0.005

zα 1.28 1.64 1.96 2.58
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Example Suppose X1, X2, . . . , Xn are inde-

pendent with Xi ∼ N(µ, σ2
0), where µ is un-

known and σ0 is known. The mle for µ is

µ̂ = X̄.

By Theorem 2,

n
∑

i=1

Xi ∼ N(nµ, nσ2
0) .

Therefore,

X̄ ∼ N(µ, σ2
0/n) .

So, standardizing X̄,

X̄ − µ

σ0/
√

n
∼ N(0,1) .

Hence,

P(−zα/2 ≤ X̄ − µ

σ0/
√

n
≤ zα/2) = 1 − α .
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Therefore

P(−
zα/2 · σ0√

n
≤ X̄ − µ ≤

zα/2 · σ0√
n

) = 1 − α ,

and thus

P(X̄ −
zα/2 · σ0√

n
≤ µ ≤ X̄ +

zα/2 · σ0√
n

) = 1− α .

i.e. we have a random interval that contains

the unknown µ with probability 1 − α.

Hence

[x̄ −
zα/2 · σ0√

n
, x̄ +

zα/2 · σ0√
n

]

is a 100(1 − α)% confidence interval for µ.
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Example (p82 of Daly et al.)

Suppose we measure the heights of 351 el-

derly women (i.e. n = 351), and suppose

x̄ = 160 and σ0 = 6.

The end points of a 95% confidence interval

(i.e. α = 0.05) are

160 ± 1.96(6/
√

351),

giving

[159.4,160.6]

as the 95% confidence interval for µ.
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Notes

1. Our symmetric confidence interval for µ

is sometimes called a central confidence in-

terval for µ.

If c and d are constants such that Z ∼ N(0,1),

P(−c ≤ Z ≤ d) = 1 − α then

P(X̄ − d · σ0√
n

≤ µ ≤ X̄ +
c · σ0√

n
) = 1 − α .

The choice c = d (= zα/2) gives the shortest

such interval.
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2. Note that

P(
X̄ − µ

σ0/
√

n
≥ −zα) = 1 − α .

Therefore,

P(µ ≤ X̄ +
zασ0√

n
) = 1 − α ,

and then

x̄ +
zασ0√

n

is an upper 1 − α confidence limit for µ.

Similarly,

P(µ ≥ X̄ − zασ0√
n

) = 1 − α ,

and

x̄ − zασ0√
n

is an lower 1 − α confidence limit for µ.
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Interpretation of a Confidence Interval

Since the parameter θ is fixed, the interval

[a(x), b(x)]

either definitely does or definitely does not

contain θ.

So it is wrong to say that [a(x), b(x)] contains

θ with probability 1 − α.

Rather, if we repeatedly obtain new data,

X(1), X(2), . . . say, and construct intervals

[a(X(i)), b(X(i))],

for each data set, then a proportion 1−α of

the intervals constructed will contain θ.

(That is, it is the endpoints a(X) and b(X)

that are random variables, not the parameter

θ.)
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The Central Limit Theorem
(CLT).

We already know that if X1, X2, . . . , Xn are

independent random variables with distribu-

tion N(µ, σ2) then

X̄ − µ

σ/
√

n
∼ N(0,1) .

Theorem 3 (Central Limit Theorem) Let

X1, X2, . . . , Xn be independent identically dis-

tributed random variables, each with mean

µ and variance σ2. Then, the standardized

random variables

Zn =
X̄ − µ

σ/
√

n

satisfy, as n → ∞,

P(Zn ≤ x) →
∫ x

−∞
1√
2π

e−u2/2du , (2)

for x ∈ R.
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The right hand side of (2) is just Φ(x), the

cumulative distribution function of a stan-

dard normal random variable, N(0,1).

The CLT says P(Zn ≤ x) → Φ(x) for x ∈ R.

So, for n large, Zn ≈ N(0,1) where ≈ means

“approximately equal in distribution”. The

important point about the result is that it

holds whatever the distribution of the X’s. In

other words, whatever the distribution of the

data, the sample mean will be approximately

normally distributed when the sample size n

is large. (Usually for n > 30 the distribution

of the sample mean will be close to normal.)
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Confidence Intervals Using the CLT.

Example Suppose X1, X2, . . . , Xn is a ran-

dom sample from an exponential distribution

with mean µ and p.d.f.

f(x;µ) =
1

µ
e−x/µ

for x > 0. e.g. Xi = the survival time of

patient i.

It is straightforward to check that E(Xi) = µ

and var(Xi) = µ2.

So, since σ2 = µ2, by the CLT we obtain (for

large n),

X̄ − µ

µ/
√

n
≈ N(0,1) . (3)

For clarity, we set z = zα/2. So,

P(−z ≤ X̄ − µ

µ/
√

n
≤ z) ≈ 1 − α .
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Therefore

P(µ(1 − z√
n
) ≤ X̄ ≤ µ(1 +

z√
n
)) ≈ 1 − α

and thus,

P(
X̄

1 + z√
n

≤ µ ≤ X̄

1 − z√
n

) ≈ 1 − α .

Hence




x̄

1 + z√
n

,
x̄

1 − z√
n





is a confidence interval with confidence level

of approximately 1−α. Note that this is not

exact because (3) is an approximation.
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Opinion Polls. In a poll preceding the

2005 general election, 519 of 1105 voters

said they would vote Labour.

With n = 1105, suppose that X1, X2, . . . , Xn

is a random sample from a Bernoulli(p) dis-

tribution:

P(Xi = 1) = p = 1 − P(Xi = 0) .

The mle of p is p̂ = X̄. We can easily check

that E(Xi) = p and var(Xi) = p(1 − p) =

{σ(p)}2 say.

Then by the CLT,

X̄ − p

σ(p)/
√

n
≈ N(0,1) ,

and so

P(−zα/2 ≤ X̄ − p

σ(p)/
√

n
≤ zα/2) ≈ 1 − α ,

or

P(X̄−zα/2·
σ(p)√

n
≤ p ≤ X̄+zα/2·

σ(p)√
n

) ≈ 1−α .
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The endpoints of the interval thus obtained

are unknown, since σ(p) depends on p.

(i) We could solve the quadratic inequality

to find P(a(X) ≤ p ≤ b(X)) ≈ 1 − α where a

and b don’t depend on p.

(ii) Our estimate of p is x̄, so we could es-

timate σ(p) by the standard error: σ(x̄) =
√

x̄(1 − x̄), giving endpoints of

x̄ ± zα/2

√

x̄(1 − x̄)

n
.

With n = 1105, and x̄ = 519/1105, an ap-

proximate 95% confidence interval is [0.44,0.50].

We have used two approximations here:

(a) We used a normal approximation (CLT).

(b) We approximated σ(p) by σ(x̄).

Both are good approximations.
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Opinion polls often mention “±3% error”.

Note that

σ2(p) = p(1 − p) ≤ 1

4
,

since p(1 − p) has its maximum at p = 1
2.

Then, we have

since σ2(p) ≤ 1
4.

For this to be at least 0.95 we need 0.03
√

4n ≥
1.96, or n ≥ 1068. Opinion polls typically use

n ≈ 1100.
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Suppose X1, X2, . . . , Xn is a random sample

with E(Xi) = θ and var(Xi) = {σ(θ)}2, for

some known function σ.

Then, for large n, the CLT we have

P(−zα/2 ≤ X̄ − θ

σ(θ)/
√

n
≤ zα/2) ≈ 1 − α ,

or

P(X̄−zα/2·
σ(θ)√

n
≤ θ ≤ X̄+zα/2·

σ(θ)√
n

) ≈ 1−α .

As σ(θ) depends on θ, replace it by the esti-

mate σ(x̄), giving a confidence interval with

endpoints

x̄ ± zα/2 · σ(x̄)√
n

.

This uses approximations (a) and (b) above.
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6. Linear Regression.

Suppose we measure two variables in the

same population:

x, the ‘explanatory variable’

y, the ‘response variable’

Example 1 Suppose x = the age of a child

and y = the height of a child.

Example 2 Suppose x = the latitude of a

(Northern Hemisphere) city and y = the av-

erage temperature in the city.
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We may ask the following questions:

For fixed x, what is the average value of y?

How does that average value change with x?

A simple model for the dependence of y on

x is a linear regression:

y = α + βx + ‘error’ .

Note that a linear relationship does not nec-

essarily imply that x causes y.
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We suppose that

Yi = α + βxi + ǫi , (4)

for i = 1,2, . . . , n, where

x1, x2, . . . xn are known constants,

ǫ1, ǫ2, . . . , ǫn are i.i.d. N(0, σ2): ‘random errors’,

α, β are unknown parameters.

Note The Yi are random variables, e.g. de-

noting the average temperature in city i. (yi

is the observed value of Yi.)

The xi do not correspond to random vari-

ables, e.g. xi is the latitude of city i.
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Two common objectives are:

1. To estimate α and β (i.e. find the ‘best’

straight line).

2. To determine whether the mean of Y re-

ally depends on x? (i.e. is β 6= 0?)

We focus on estimating α and β, and sup-

pose that σ2 is known.
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From (4),

Y ∼ N(α + βxi, σ
2) .

If f(yi;α, β) is a normal p.d.f. with mean α+

βxi and variance σ2, then the likelihood of

observing y1, y2, . . . , yn is

L(α, β)

=
n
∏

i=1

f(yi;α, β)

=
n
∏

i=1

1√
2πσ2

exp(− 1

2σ2
(yi − α − βxi)

2)

= (2πσ2)−
n
2 exp(− 1

2σ2

n
∑

i=1

(yi − α − βxi)
2) ,

and so

l(α, β) = −n

2
log2πσ2− 1

2σ2

n
∑

i=1

(yi−α−βxi)
2 .
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Maximizing l(α, β) over α and β is equivalent

to minimizing the sum of squares

S(α, β) =
n

∑

i=1

(yi − α − βxi)
2 .

Thus, the MLEs of α and β are also called

the least squares estimators.

We want to minimize
∑n

i=1(vertical distance)2.
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Now,

Yi = α + βxi + ǫi

= α + βx̄ + β(xi − x̄) + ǫi

= a + bwi + ǫi ,

where a = α + βx̄, b = β and wi = xi − x̄.

We work in terms of the new parameters a

and b, and note that
∑n

i=1 wi = 0.

The MLEs/least squares estimators of a and

b minimize

S(a, b) =
n

∑

i=1

(yi − a − bwi)
2 .

Since S is a function of two variables, a and

b, we use partial differentiation to minimize:

∂S

∂a
= −2

n
∑

i=1

(yi − a − bwi) ,

∂S

∂b
= −2

n
∑

i=1

wi(yi − a − bwi) .
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So, if ∂S
∂a = ∂S

∂b = 0 then

n
∑

i=1

yi = na + b
n

∑

i=1

wi ,

n
∑

i=1

wiyi = a
n

∑

i=1

wi + b
n

∑

i=1

w2
i .

Hence, the MLEs are

â = Ȳ ,

b̂ =

∑n
i=1 wiYi

∑n
i=1 w2

i

.

If we had minimized S(α, β) over α and β, we

would have obtained

α̂ = Ȳ − β̂x̄ ,

β̂ = b̂ =

∑n
i=1(xi − x̄)Yi

∑n
i=1(xi − x̄)2

.

The fitted regression line is y = α̂ + β̂x.

The point (x̄, ȳ) always lies on this line.
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Further Aspects of Linear
Regression.

Regression Through the Origin.

We could choose to fit the best line of the

form y = βx. The relevant model is:

Yi = βxi + ǫi ,

where i = 1,2, . . . , n, with ǫ1, ǫ2, . . . , ǫn i.i.d.

N(0, σ2), xi known constants and β an un-

known parameter.

We would estimate β by minimizing

n
∑

i=1

(yi − βxi)
2 .
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Polynomial Regression.

We could include an x2 term in the model:

Yi = α + βxi + γx2
i + ǫi ,

and estimate α, β, γ by minimizing

n
∑

i=1

(yi − α − βxi − γx2
i )

2 .

The simplest way to see if a linear regression

model Yi = α + βxi + ǫi is appropriate is to

plot the points (xi, yi), i = 1,2, . . . , n.

Although computer packages may be used

to fit a regression (i.e. find the MLEs of

α and β), you should always plot the points

to see whether it is sensible to describe the

variation in Y as a linear function of x.
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Consider the model

Yi = a + bwi + ǫi ,

where wi = xi − x̄.

We have

â =
1

n

n
∑

i=1

Yi ,

b̂ =

∑n
i=1 wiYi

∑n
i=1 w2

i

.

Are these MLEs unbiased?
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Note E(Yi) = a + bwi, so

E(â) =
1

n

n
∑

i=1

E(Yi)

=
1

n

n
∑

i=1

(a + bwi)

=
1

n
(na + b

n
∑

i=1

wi)

= a ,

and

E(̂b) =
1

∑n
i=1 w2

i

· E(
n

∑

i=1

wiYi)

=
1

∑n
i=1 w2

i

·
n

∑

i=1

wi(a + bwi)

=
1

∑n
i=1 w2

i

· (a
n

∑

i=1

wi + b
n

∑

i=1

w2
i )

= b .
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We can also calculate the variances of â and

b̂. First,

var(â) = var(Ȳ ) =
σ2

n
,

and

var(̂b) =
1

(

∑n
i=1 w2

i

)2
· var(

n
∑

i=1

wiYi)

=
1

(

∑n
i=1 w2

i

)2
·

n
∑

i=1

w2
i · var(Yi)

=
1

(

∑n
i=1 w2

i

)2
·

n
∑

i=1

w2
i · σ2

=
σ2

∑n
i=1 w2

i

.
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In the models:

1. Yi = α + βxi + ǫi ;

2. Yi = a + b(xi − x̄) + ǫi ,

b = β is usually the parameter of interest.

(We are rarely interested in a or α.)

Confidence Interval for β

We note that since

β̂ =

∑n
i=1 wiYi

∑n
i=1 w2

i

is a linear combination of Y1, Y2, . . . , Yn, β̂ is

normally distributed.

So, from the above calculations, β̂ ∼ N(β, σ2
β)

where σ2
β = σ2/

∑n
i=1 w2

i .
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Hence,

β̂ − β

σβ
∼ N(0,1) .

So,

P(−zα/2 ≤ β̂ − β

σβ
≤ zα/2) = 1 − α

(N.B. α = 0.05 is NOT a regression param-

eter) and therefore

P(β̂ − zα/2 · σβ ≤ β ≤ β̂ + zα/2 · σβ) = 1 − α .
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If we assume σ is known then σβ is also

known, and therefore the endpoints of a 1−α

confidence interval for β are
∑n

i=1 wiyi
∑n

i=1 w2
i

± zα/2 · σ
√

∑n
i=1 w2

i

. (5)

In practice, however, σ2 is rarely known.

It turns out that an unbiased estimate of σ2

is

1

n − 2

n
∑

i=1

(yi − α̂ − β̂xi)
2 .

If we use the square root of this in place of σ

in (5), we get an approximate 100(1 − α)%

confidence interval for β.

As usual, n must be large for a good approx-

imation. In fact, it would be more accurate

to use a t-distribution, than the N(0,1) dis-

tribution.
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