Mods Statistics, Sheet 4, HT 2012

1. Suppose x_{1}, \ldots, x_{n} are known constants and that Y_{1}, \ldots, Y_{n} satisfy the 'regression through the origin' model $Y_{i}=\beta x_{i}+\varepsilon_{i}$, where the ε_{i} are independent $N\left(0, \sigma^{2}\right)$ random variables. Show that the maximum likelihood estimator of β is $\widehat{\beta}=\sum_{i} x_{i} Y_{i} / \sum_{i} x_{i}^{2}$.
What is the distribution of $\widehat{\beta}$?
The following data give the distance, in miles, by road (y) and in a straight line (x) for several different journeys. Why might we prefer to consider the model above to the model $Y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}$?

y	10.7	11.7	6.5	25.6	29.4	\ldots	25.7	40.5	26.5	14.2	33.1
x	9.5	9.8	5.0	19.0	23.0	\cdots	21.7	28.2	18.0	12.1	28.0

If the straight-line distance between two locations is 12 miles, how would you use the model to predict the expected distance by road?
2. In the model $Y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}, i=1, \ldots, n$, where $E\left(\varepsilon_{i}\right)=0$, show that the least squares estimator of β is

$$
\widehat{\beta}=\frac{n \sum x_{i} Y_{i}-\left(\sum x_{i}\right)\left(\sum Y_{i}\right)}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}
$$

Show that $\widehat{\beta}$ is unbiased for β. Under what additional assumptions is $\widehat{\beta}$ the maximum likelihood estimator of β ?
3. Suppose Y_{1}, \ldots, Y_{n} satisfy $Y_{i}=\alpha+\beta\left(x_{i}-\bar{x}\right)+\varepsilon_{i}$, where the ε_{i} are independent $N\left(0, \sigma^{2}\right)$ and the constants x_{i} are not all equal.
Find the maximum likelihood estimators $\widehat{\alpha}$ and $\widehat{\beta}$. Show that $\widehat{\alpha}$ and $\widehat{\beta}$ are unbiased, for α and β respectively, and find their variances.
Assuming σ^{2} is known, show how the distribution of $\widehat{\beta}$ can be used to construct a $100(1-\gamma) \%$ confidence interval for β.
4. Suppose that in the model $Y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}$, the errors ε_{i} are independent and normally distributed with mean 0 , but that $\operatorname{var}\left(\varepsilon_{i}\right)=\rho_{i}^{2} \sigma^{2}$ where the ρ_{i} are known constants.
Show that the maximum likelihood estimates of α and β can be found by minimizing

$$
\sum_{i=1}^{n}\left(y_{i}-\alpha-\beta x_{i}\right)^{2} \rho_{i}^{-2}
$$

and find these estimates of α and β.
Can you think of a situation in which this model might arise?

