Mods Statistics, Sheet 3, HT 2012

- Construct a central 100(1-α)% confidence interval for the unknown parameter μ based on a random sample of size n from a normal distribution with mean μ and variance 1. If α = 0.05 and the length of the interval is to be less than 1, how large must n be? What if the length is to be less than 0.1?
- **2.** Suppose X_1, \ldots, X_n is a random sample from a Bernoulli distribution with probability $P(X_i = 1) = p$.
 - (i) What is the variance of X_i ? Show that the estimator $\hat{p} = \overline{X}$ has expectation p and find its variance.
 - (ii) Using the central limit theorem construct a random variable which has an approximate standard normal distribution and indicate how this can be used to find a $100(1-\alpha)\%$ confidence interval for p.
 - (iii) Fifty female black ducks from locations in New Jersey were captured and radiotagged prior to severe winter months. Of these 19 died during the winter. Find a 95% confidence interval for the proportion surviving. Claims made by environmentalists suggested a 50-50 chance of survival. Is this reasonable?
- **3.** Suppose X_1, \ldots, X_n are independent Poisson random variables each with mean θ . Assuming *n* is large and using the central limit theorem, construct (i) a central confidence interval for θ , and (ii) an upper confidence limit for θ , each with an associated confidence of 1α .
- **4.** Suppose X_1, \ldots, X_n is a random sample from a Pareto distribution with probability density function

$$f(x;\lambda) = \lambda x^{-(\lambda+1)}$$
 for $x \ge 1$,

where $\lambda > 2$. Find the mean μ of this distribution, and explain why the sample mean \overline{X} might be suggested as an estimator of μ . Find the variance of the estimator \overline{X} .

Derive the following approximate 95% confidence interval for μ when the sample size is large

$$\left(\overline{x} - 1.96\sqrt{\frac{\overline{x}(\overline{x} - 1)^2}{n(2 - \overline{x})}}, \ \overline{x} + 1.96\sqrt{\frac{\overline{x}(\overline{x} - 1)^2}{n(2 - \overline{x})}}\right).$$

[In questions 2, 3, and 4, respectively, first assume that it is permissible to replace p, θ , μ , by \overline{x} to obtain an estimate of the variance of \hat{p} , $\hat{\theta}$, $\hat{\mu}$. For 2 and 3, can you find a confidence interval without doing this?]