Mods Statistics, Sheet 2, HT 2012

1. If X_{1}, \ldots, X_{n} is a random sample from a geometric distribution with parameter p, find the maximum likelihood estimator \widehat{p} of p.
Let $\theta=1 / p$. Find the likelihood as a function of θ, the maximum likelihood estimator $\widehat{\theta}$, and verify that $\widehat{\theta}=1 / \widehat{p}$.
Show that $\widehat{\theta}$ is unbiased. In the case $n=1$ show that $E(\widehat{p})>p$.
2. Suppose X_{1}, \ldots, X_{n} is a random sample from a $N\left(\mu, \sigma^{2}\right)$ distribution, where $\mu=\sigma^{2}=$ θ. Show that the maximum likelihood estimator of θ is

$$
\widehat{\theta}=\frac{1}{2}\left\{\left(1+\frac{4}{n} \sum_{j=1}^{n} X_{j}^{2}\right)^{1 / 2}-1\right\}
$$

3. The number of organisms in volume v of a liquid has a Poisson distribution with mean ρv, where ρ is the unknown density of organisms per unit volume. To estimate ρ an experimenter takes independent samples of liquid of volumes v_{1}, \ldots, v_{n}. Find the maximum likelihood estimator $\widehat{\rho}$ of ρ. Show that $\widehat{\rho}$ is unbiased and that its variance is the same for all choices of v_{1}, \ldots, v_{n} with $\sum v_{i}=V$ (where V is fixed).
4. Suppose X_{1}, \ldots, X_{n} is a random sample from a distribution with probability density function

$$
f(x ; \theta)= \begin{cases}e^{-(x-\theta)} & \text { if } x \geqslant \theta \\ 0 & \text { otherwise }\end{cases}
$$

Find the maximum likelihood estimator of θ.
5. The following data (from Dyer (1981)) are annual wages (in multiples of 100 US dollars) of a random sample of 30 production line workers in a large American industrial firm.

Annual wages (hunderds of US \$)									
112	154	119	108	112	156	123	103	115	107
125	119	128	132	107	151	103	104	116	140
108	105	158	104	119	111	101	157	112	115

A standard probability model used for data on wages is the Pareto distribution, which has probability density function

$$
f(x ; \theta)=\theta \alpha^{\theta} x^{-(\theta+1)} \quad \text { for } x \geqslant \alpha,
$$

where $\theta>0$ and the constant α represents a statutory minimum wage. Find the maximum likelihood estimator of θ from a random sample $X_{1}, X_{2}, \ldots, X_{n}$, and, assuming $\alpha=100$, the maximum likelihood estimate for the above dataset (for which $\left.\sum \log x_{i}=143.5\right)$.
Now suppose there is no statutory minimum wage, so that α is also an unknown parameter. Show that the mle for α is $\widehat{\alpha}=\min _{i} X_{i}$.
Hence show that

$$
P(\widehat{\alpha}>y)=\left(\frac{\alpha}{y}\right)^{n \theta},
$$

(use the fact that $\min _{i} X_{i}>y$ iff $X_{i}>y$ for $i=1,2, \ldots, n$) and thus that for $\varepsilon>0$,

$$
P(|\widehat{\alpha}-\alpha|>\varepsilon) \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

