Mods Statistics, Sheet 1, HT 2012

1. Suppose X_{1}, \ldots, X_{n} is a random sample from a distribution with mean μ and variance σ^{2}. Let $\bar{X}=\sum_{i=1}^{n} X_{i} / n$ and $S^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} /(n-1)$ be the sample mean and variance.
(i) Find $E(\bar{X})$ and $\operatorname{var}(\bar{X})$.
(ii) Using $\sum\left(X_{i}-\bar{X}\right)^{2}=\sum\left\{\left(X_{i}-\mu\right)+(\mu-\bar{X})\right\}^{2}$ show that

$$
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}-n(\bar{X}-\mu)^{2}
$$

By taking expectations show that $E\left(S^{2}\right)=\sigma^{2}$.
2. Let X_{1}, \ldots, X_{n} be independent identically distributed random variables. Find the maximum likelihood estimators of the parameter θ for the following distributions. (In each case r is a known positive integer.)
(i) X_{i} has a binomial distribution with parameters r and θ.
(ii) X_{i} has a negative binomial distribution with probability mass function

$$
f(x ; \theta)=\binom{r+x-1}{x} \theta^{r}(1-\theta)^{x}, \quad x=0,1,2, \ldots
$$

(iii) X_{i} has a gamma distribution with probability density function

$$
f(x ; \theta)=\frac{\theta^{r}}{(r-1)!} x^{r-1} e^{-\theta x}, \quad x>0 .
$$

3. Suppose that in a population of twins, males (M) and females (F) are equally likely to occur and that the probability that twins are identical is θ. If twins are not identical, their sexes are independent.
(i) Show that $P(M M)=P(F F)=(1+\theta) / 4$ and $P(M F)=(1-\theta) / 2$.
(ii) Suppose that n twins are sampled. It is found that n_{1} are $M M, n_{2}$ are $F F$, and n_{3} are $M F$, but it is not known which twins are identical. Find the maximum likelihood estimator of θ.
4. Suppose X is a normal random variable with mean μ and variance σ^{2}.
(i) If a and b are constants, show that $a X+b$ has a normal distribution and find its mean and variance.
(ii) If $Z=(X-\mu) / \sigma$, deduce that $Z \sim N(0,1)$.
(iii) Using (ii) find $P(X<x)$ in terms of Φ, where Φ is the cumulative distribution function of a $N(0,1)$ random variable.
(iv) If $c>0$ is a constant, show that $P(\mu-c \sigma<X<\mu+c \sigma)$ does not depend on μ or σ.
5. It is a fact, which you may assume, that if X and Y are independent and normally distributed random variables, then $X+Y$ is normally distributed.

Suppose X_{1}, \ldots, X_{n} are independent normal random variables, X_{i} having mean μ_{i} and variance σ_{i}^{2}. If a_{1}, \ldots, a_{n} are constants, show that $\sum_{i=1}^{n} a_{i} X_{i}$ is normally distributed and find its mean and variance.

