Stochastic Models in Mathematical Genetics MSc Problem Sheet 1

Michaelmas Term 2020

- 1. In a coalescent tree of three haplotypes, let T_3, T_2 be the times respectively while there are three and two ancestors of the haplotypes. Derive a formula for the density of the time to the most recent common ancestor $W = T_3 + T_2$.
- 2. Four haplotypes can have two possible different unlabelled coalescent trees. Sketch the two trees and work out the respective probabilities of their occurrence.
- 3. Simulate five coalescent trees of ten haplotypes and sketch them. If T_{10}, \ldots, T_2 are times while there are $10, 9, \ldots, 2$ edges in the coalescent tree, then a distribution identity useful for simulation is

$$T_j = -\binom{j}{2}^{-1} \log U_j, \quad j = 10, \dots, 2,$$

where U_{10}, U_9, \dots, U_2 are independent uniform random variables on (0,1).

- 4. Let $T_n, T_{n-1}, \ldots, T_2$ be the times while there are $n, n-1, \ldots, 2$ ancestors of a sample of n genes. In a coalescent model these times are distributed as independent exponential random variables with means $2/n(n-1), \ldots, 2/2(2-1)$. Mutations occur along the edges of the coalescent tree as a Poisson process of rate $\theta/2$, conditional on edge lengths.
 - (a) Derive formulae for the mean and variance of the time $T_n + \cdots + T_2$ to the most recent common ancestor of the sample.
 - (b) Show that the probability generating function of the number of mutations M_n on the coalescent tree is

$$\prod_{j=1}^{n-1} \left(1 - \frac{(z-1)\theta}{j} \right)^{-1}.$$

- (c) Using the probability generating function find a formula for
 - (i) $P(M_2 = m)$
 - (ii) $P(M_3 = m)$

for m = 0, 1, ...

(d) In a sample of DNA sequences, suppose that every mutation happens at a unique site. This is called the infinitely-many-sites model, and means the number of segregating sites in any sample is the same as the number of mutations in the history of that sample. Let d_{ij} be the number of sites which differ between sequences i and j, $i \neq j$ and Π_n be the average of the pairwise site differences defined by

$$\Pi_n = \binom{n}{2}^{-1} \sum_{1 \le i < j \le n} d_{ij}.$$

Find the expected value of Π_n , and hence derive a moment estimator of θ based on Π_n .

(e) Define the total site heterozygosity as

$$H_n = \sum_{i=1}^{s} \frac{2r_i(n-r_i)}{n(n-1)},$$

where r_i is the number of sequences with a mutation at site i and s is the number of segregating sites. Show that $\Pi_n = H_n$.

- (f) A sample of 200 DNA sequences has 18 segregating sites and $H_{200}=1.9$. Assuming the infinitely-many-sites model, find two estimates of θ ;
 - (i) based on the number of segregating sites
 - (ii) based on H_{200} .