Stochastic Models in Mathematical Genetics
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1. In a coalescent tree T of n sequences, for j = n,n —1,...,2 the times T} while j ancestors
of the sample remain are independent and 7} has an exponential distribution with rate
parameter (%) At the times of coalescence events, pairs of edges are chosen at random,
and coalesce. Mutations occur on edges of the coalescent tree at rate 6/2, according to
the infinite-sites model.

(a) (13 marks)

(i) At a time in the past with k ancestral lineages, let Z1, Zs, ..., Zj be the number
of sequences descended from each respective labelled lineage. Prove that

n—1\""
P(Zl:Zl,ZQZZQ,...,Zk:Zk): <k—1>

where 21, 22, ..., 2z are integers greater than zero and z; + 29 + ... + 2 = n.
(ii) Deduce that
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n—1
(:=1)
What is the distribution of the number of sample members that carry a mutation

occurring while 2 ancestors remain in 77

P(Z; =b) = L b=1,2,....n—k-+1.

iii) By considering a mutation in a small region [z, z+dx), show that the probability
g g
gnp that the number of leaves in T carrying a given mutation is b is given by

YL P(Z = b KE(T})
>k=o KE (T}?)
(b) (12 marks) In a sample of n = 4 DNA sequences labelled a to d, 4 mutant sites
segregate in the following configuration:

dnb

Sequence\Site 1 2 3 4
a 1 1 1 0
b 1 1 1 0
c 1 0 0 1
d 0 0 0 0

At each site the ancestral allele is denoted by 0, and the model of the beginning of
the question holds.

(i) By first sketching a gene tree, or otherwise, sketch a possible coalescent tree for
the sample. When mutations 1 and 4 occur, respectively, what possible values
are there for the number of ancestors to the sample?

(ii) While j ancestors remain in a coalescent tree, write down the probability that
two specific lineages k and [ coalesce, and the probability that a specific lineage
k mutates.

(iii) Show that the likelihood of the observed data as a function of the mutation rate
6 is equal (up to a constant independent of ) to:
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(iv) A researcher applies a commonly used Monte-Carlo approach to estimate the
likelihood. Within this approach, coalescent trees producing the observed data
are sampled randomly so that backwards in time, with probability 2/3 the first
event in the tree is a coalescence between the ancestors of sequences a and b.
Show that the actual probability, conditional on the observed data, that this
coalescence is the first event exceeds 2/3 for any 6.
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2. In a dataset of n sequences, suppose that the infinitely-many-sites mutation model holds.

(a)

(8 marks) The history of the n sequences is described by a coalescent tree, whose
times Ty, Tn—1,...15 while n,n — 1...,2 ancestors remain are independent with
exponential distributions of rates (Z), ("51), . (3) respectively. Mutations occur at
rate 6/2 along each edge of the tree.

Show that the total number M, of mutations on the tree has probability generating
function

n—1 .
J
E(zM) = —_—
(=) ]lill Jj+6(1—2)

Derive the expectation of My, and its behaviour as n — oo.
(6 marks) A sample of n = 7 DNA sequences shows the following 7x8 incidence
matrix, ordering mutations from left to right along the DNA sequence. The ancestral
type is denoted by zero at each site.

Sequence\Site 1 2 3 4 5 6 7 8
a 1 01 0 0 0 1 0
b 01 0 0 1 1 0 0
c 0 01 1.0 000
d 1 01 0 0 0 1 1
e 0 01 00 0 00
f 01 0 0 0 1 0 O
g 001 000 10

Use Gusfield’s algorithm to draw a rooted gene tree for the sample.

(11 marks) The incidence matrix of part (b) is extended by adding rows, corre-
sponding to DNA sequences from additional individuals. This extended incidence
matrix now indicates recombination events in the sample history. For each pair of
sites ¢ and j, for 1 < ¢ < j < 8, a non-negative lower bound R;; on the number of
recombination events between these sites is obtained. Define W to be the minimum
number of recombination events, between sites 1 and 8, required to satisfy these
bounds simultaneously.

(i) Describe one approach that could be used to obtain the bounds R;;.
(ii) H:% is calculated using the recursion

Hil =0, H;g:max{ﬂﬁ+Rkj: k=1,2,..-7j—1}-

Explain why H}V? <W.

(iii) Define r; = H}VJ[ — Hjl\/y_l)for Jj =2,3,...,8. Show that by placing r; recombi-
nation events between sites j — 1 and j for each j, each bound R;; is satisfied.
Deduce that H}WS =W.
otherwise, obtain Hjg. Show that there are multiple possible recombination
event placements that are minimal.



3.

(a) (13 marks) In an ancestral recombination graph for n sequences, while there are j
ancestors of the sample, backward in time recombination events occur as a Poisson
process of rate pj/2, and coalescence events occur as a Poisson process of rate j(j —
1)/2. The process terminates the first time the number of ancestors reaches j = 1.

(i) Define E, to be the number of recombination events in the ancestral recombi-
nation graph. Show that for n =2,3,..., E, satisfies the equation system:
n—1

En = 7En71 + LETIA»I +

: M)
n—14p n—1+4+p

_r

n—1+p
Give a boundary condition on this system.

ii) By rearranging so that the left hand side of (1) becomes E,, .1 — F,,, or otherwise

(i) By ging + ) :
show that a possible solution is

1

1—(1—a)" !
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(iii) Given equation (2) gives E,,, by considering p fol il )

1
-~ dx obtain the asymp-
totic behaviour of F, as n — oo.

(b) (12 marks) Consider a time-homogeneous diffusion process X; (¢ > 0) on [0, 1] with
infinitesimal mean b(x) = 0 and infinitesimal variance a(z) = z(1 —z), 0 <z < 1.

(i) The generator L of a Markov process is defined as the functional operator

‘ (E[f(X:| Xo =2)]) [t=0 = lim Exo=a [f(Xy)] — f(:p)

L(f) (@)= lim "

Write down the generator of X;.

(ii) Define h(z), 0 < x < 1 to be the probability that X; reaches 1 (fixation) given
Xo = x. Write down and solve a differential equation for h(z).

(iii) For a twice continuously differentiable function g : [0,1] — R, a fixed time
s> 0and 0 <z <1 define u(s,z) = E[g(Xs | Xo =2)] = Ex,=» [9(Xs)]. By
conditioning on Xy, show that for any ¢ > 0

u(s +t,x) = Exy=s [u(s, X¢)] .
(iv) Deduce that u satisfies the partial differential equation:

ou(s,z) 1 0%u(s, x)
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(v) In the particular case where g(z) = 2z(1 — x), called the heterozygosity, show
that u(s,z) = 2x(1—x)e™*® solves the partial differential equation of part (b)(iv).
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