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1. In a coalescent tree T of n sequences, for j = n, n− 1, ..., 2 the times Tj while j ancestors
of the sample remain are independent and Tj has an exponential distribution with rate
parameter

(
j
2

)
. At the times of coalescence events, pairs of edges are chosen at random,

and coalesce. Mutations occur on edges of the coalescent tree at rate θ/2, according to
the in�nite-sites model.

(a) (13 marks)

(i) At a time in the past with k ancestral lineages, let Z1, Z2, . . . , Zk be the number
of sequences descended from each respective labelled lineage. Prove that

P (Z1 = z1, Z2 = z2, . . . , Zk = zk) =

(
n− 1

k − 1

)−1
where z1, z2, . . . , zk are integers greater than zero and z1 + z2 + . . .+ zk = n.

(ii) Deduce that

P (Z1 = b) =

(
n−b−1
k−2

)(
n−1
k−1
) , b = 1, 2, . . . , n− k + 1.

What is the distribution of the number of sample members that carry a mutation
occurring while 2 ancestors remain in T ?

(iii) By considering a mutation in a small region [x, x+δx), show that the probability
qnb that the number of leaves in T carrying a given mutation is b is given by

qnb =

∑n
k=2 P (Z1 = b) kE (Tnk )∑n

k=2 kE
(
Tnk
) .

(b) (12 marks) In a sample of n = 4 DNA sequences labelled a to d, 4 mutant sites
segregate in the following con�guration:

Sequence\Site 1 2 3 4

a 1 1 1 0
b 1 1 1 0
c 1 0 0 1
d 0 0 0 0

At each site the ancestral allele is denoted by 0, and the model of the beginning of
the question holds.

(i) By �rst sketching a gene tree, or otherwise, sketch a possible coalescent tree for
the sample. When mutations 1 and 4 occur, respectively, what possible values
are there for the number of ancestors to the sample?

(ii) While j ancestors remain in a coalescent tree, write down the probability that
two speci�c lineages k and l coalesce, and the probability that a speci�c lineage
k mutates.

(iii) Show that the likelihood of the observed data as a function of the mutation rate
θ is equal (up to a constant independent of θ) to:

θ4

54(1 + θ)2(2 + θ)3(3 + θ)
×
(

3

3(2 + θ)
+

1

4(3 + θ)

)
.
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(iv) A researcher applies a commonly used Monte-Carlo approach to estimate the
likelihood. Within this approach, coalescent trees producing the observed data
are sampled randomly so that backwards in time, with probability 2/3 the �rst
event in the tree is a coalescence between the ancestors of sequences a and b.
Show that the actual probability, conditional on the observed data, that this
coalescence is the �rst event exceeds 2/3 for any θ.
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2. In a dataset of n sequences, suppose that the in�nitely-many-sites mutation model holds.

(a) (8 marks) The history of the n sequences is described by a coalescent tree, whose
times Tn, Tn−1, . . . T2 while n, n − 1 . . . , 2 ancestors remain are independent with
exponential distributions of rates

(
n
2

)
,
(
n−1
2

)
, . . .

(
2
2

)
respectively. Mutations occur at

rate θ/2 along each edge of the tree.

Show that the total number Mn of mutations on the tree has probability generating
function

E
(
zMn

)
=

n−1∏
j=1

j

j + θ (1− z )
.

Derive the expectation of Mn, and its behaviour as n→∞.
(b) (6 marks) A sample of n = 7 DNA sequences shows the following 7x8 incidence

matrix, ordering mutations from left to right along the DNA sequence. The ancestral
type is denoted by zero at each site.

Sequence\Site 1 2 3 4 5 6 7 8

a 1 0 1 0 0 0 1 0
b 0 1 0 0 1 1 0 0
c 0 0 1 1 0 0 0 0
d 1 0 1 0 0 0 1 1
e 0 0 1 0 0 0 0 0
f 0 1 0 0 0 1 0 0
g 0 0 1 0 0 0 1 0

Use Gus�eld's algorithm to draw a rooted gene tree for the sample.

(c) (11 marks) The incidence matrix of part (b) is extended by adding rows, corre-
sponding to DNA sequences from additional individuals. This extended incidence
matrix now indicates recombination events in the sample history. For each pair of
sites i and j, for 1 ≤ i < j ≤ 8, a non-negative lower bound Rij on the number of
recombination events between these sites is obtained. De�ne W to be the minimum
number of recombination events, between sites 1 and 8, required to satisfy these
bounds simultaneously.

(i) Describe one approach that could be used to obtain the bounds Rij .

(ii) H18
M is calculated using the recursion

H11
M = 0; H1j

M = max
{
H1k
M +Rkj : k = 1, 2, . . . , j − 1

}
.

Explain why H18
M ≤W .

(iii) De�ne rj = H1j
M −H

1(j−1)
M for j = 2, 3, . . . , 8. Show that by placing rj recombi-

nation events between sites j − 1 and j for each j, each bound Rij is satis�ed.
Deduce that H18

M =W .

(iv) If R15 = 4, R23 = 1, R24 = 2, R27 = 4, R45 = 1, R46 = 2, R67 = 1, Rij = 0
otherwise, obtain H18. Show that there are multiple possible recombination
event placements that are minimal.
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3. (a) (13 marks) In an ancestral recombination graph for n sequences, while there are j
ancestors of the sample, backward in time recombination events occur as a Poisson
process of rate ρj/2, and coalescence events occur as a Poisson process of rate j(j−
1)/2. The process terminates the �rst time the number of ancestors reaches j = 1.

(i) De�ne En to be the number of recombination events in the ancestral recombi-
nation graph. Show that for n = 2, 3, . . ., En satis�es the equation system:

En =
n− 1

n− 1 + ρ
En−1 +

ρ

n− 1 + ρ
En+1 +

ρ

n− 1 + ρ
. (1)

Give a boundary condition on this system.

(ii) By rearranging so that the left hand side of (1) becomes En+1−En, or otherwise,
show that a possible solution is

En = ρ

1ˆ

0

1− (1− x)n−1

x
eρxdx. (2)

(iii) Given equation (2) gives En, by considering ρ
´ 1
0

1−(1−x)n−1

x dx obtain the asymp-
totic behaviour of En as n→∞.

(b) (12 marks) Consider a time-homogeneous di�usion process Xt (t ≥ 0) on [0, 1] with
in�nitesimal mean b(x) ≡ 0 and in�nitesimal variance a(x) = x(1− x), 0 ≤ x ≤ 1.

(i) The generator L of a Markov process is de�ned as the functional operator

L (f) (x) = d

dt
(E [f(Xt |X0 = x)]) |t=0 = lim

t→0

EX0=x [f(Xt)]− f(x)
t

.

Write down the generator of Xt.

(ii) De�ne h(x), 0 < x < 1 to be the probability that Xt reaches 1 (�xation) given
X0 = x. Write down and solve a di�erential equation for h(x).

(iii) For a twice continuously di�erentiable function g : [0, 1] → R, a �xed time
s > 0 and 0 ≤ x ≤ 1 de�ne u(s, x) = E [g(Xs |X0 = x)] = EX0=x [g(Xs)]. By
conditioning on Xt, show that for any t > 0

u(s+ t, x) = EX0=x [u(s,Xt)] .

(iv) Deduce that u satis�es the partial di�erential equation:

∂u(s, x)

∂s
=

1

2
x(1− x)∂

2u(s, x)

∂x2
.

(v) In the particular case where g(x) = 2x(1 − x), called the heterozygosity, show
that u(s, x) = 2x(1−x)e−s solves the partial di�erential equation of part (b)(iv).
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