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World tree from (3-globin data.
Time units are in 100,000 years.
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This gene tree is constructed from 326 (3-globin
DNA sequences.

Vertices represent mutations at different posi-
tions along the DNA sequences.

B2, B4, ... are labels of sequence types (haplo-
types), and the numbers are split into subpopu-
lation numbers where sequences were collected.
The time scale on the right is in units of 100,000
years. The inferred time to the most recent com-
mon ancestor of the sample of sequences is over
700,000 years. Expected numbers of ancestors
are to the left of the axis on the right.

This is an example of an evolutionary gene tree.
Mathematical tools used in its construction are
graph theory, stochastic processes, statistical in-
ference and computationally intensive methods.
DNA data is from research conducted at the In-
stitute of Molecular Medicine, University of Ox-
ford. The reference for the paper with the gene
tree is:

Harding R. M., Fullerton S. M., Griffiths R. C.,
Bond J., Cox M. J., Schneider J. A., Moulin D.,
and Clegg J. B. (1997).

Archaic African and Asian lineages in the genetic
ancestry of modern humans.

American Journal of Human Genetics, 60, 772—

789.



Evolutionary models

Wright-Fisher model

A population of M genes.

Discrete generations.

Reproductive mechanism:

Generation £+ 1 is formed from generation k by
choosing M genes at random with replacement.
Some genes in generation £ may have no off-
spring, while others have multiple offspring.

Generation k

/\\
. / \

Generation k£ + 1



Problem. What is the probability p;; that i genes
from generation k + 1 have j parents in genera-
tion k7

Answer. This is the probability that when ¢
balls are placed at random in M boxes, exactly j
boxes are non-empty. Here parents are identified
with boxes and offspring as balls.

The distribution (for ¢ fixed) is

M.
where
M[j] =MM-1)---(M—j5+1)

and {S(i,j)} are Stirling numbers of the second
kind, defined by coeflicients in the expansion

i ZS(i,j)a}[j].
j=1

A formula is
1 N
S(.3) = 5 20 (3 )k
J: k=0

S(i,7) is the number of ways of partitioning a
set of 7 elements into j non-empty subsets.

: M
exercise: ) iy Pij = 1.



The number of ancestors {£(7),7=0,1,...} of a
sample of £(0) = i genes at generation 7 back in
time is a homogeneous Markov chain with transi-
tion matrix P. This assumes that the population
can be extended back in time forever, if not and
the founding generation is 7y generations back,
the process stops with a random number of an-
cestors £(7p) in the founders.

The population size M is usually assumed to be
large, then with high probability the number of
ancestors of a sample of j genes one generation
back is either j or j — 1.

M M-1 M-j+1
M M M

(1
Pii=t =\ 9 ) M
M

Pj,j




The formula for p; ;1.

Distinct parents

[

Two with the same parent

T TA

There are (%) unordered pairs of genes from the
7 to choose as a pair with the same parent. The
probability is 1/M that the second gene has the
same parent as the first. The other 5 — 2 have

distinct parents with probability

M-1 M-1-(j-2)+1
M M |




Terms omitted are of order M 2.



The coalescent.

If time is measured in units of M generations,
and M — oo, then the ancestral tree in the
Wright-Fisher model converges to a coalescent
tree.

Two ancestral lineages coalesce when they have
a common ancestor forming a vertex in the tree.
The coalescent process is quite famous in Mathe-
matical Genetics and has an Oxford connection
of being developed by Sir John Kingman who
was a Professor at Oxford.

Kingman, J. F. C. (1982). The coalescent.
Stochastic Processes and their Applications 13,
235-248.

Coalescent tree.




Coalescent tree of n = 5 genes.

Ty, Tyn_1,...,T5 are the times while

n,n —1,...,2 ancestors of the sample.

{Tj;j =N,..., 2} are independent exponential
random variables with

2

B(T)) = <1y

The probability density function of T is

fi(t) = (;) eXp(— (“;>t), t> 0.
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Wright-Fisher limait

Let 7, T,—1,...T2 be the times spent while
n,m—1,...,2 ancestor genes

in the Wright-Fisher model.

Distribution of 7.

1 1

— 1 - — —
P22 M7p21 V&

]_ ]_ k—1
— 1——) k=12
M( M

7o has a geometric distribution (starting at 1),
with mean E(7m5) = M. Measuring time in units

of M, so that TQ(M) = 1o /M,

P(TM <) = P(ry < [MH)])

Thus T Q(M) has a limit exponential distribution.

11



Let the scaled waiting time while r ancestors be
TT(M) =7./M.
Then

p(T(M) <t)=1 — plMi])

T — rr

T — T

~1— (1— @)[Mﬂ

~1-ex (- (3)0)

T, #M) has a limit exponential distribution with
mean ﬁ

It follows that in the coalescent limit the times
Ty, ..., Ty while n,...,2 ancestors are indepen-
dent exponential random variables with T; hav-
ing a probability density function

(e~ ()i} e

12



The time to the most recent common ancestor
(TMRCA) of n genes is

W,=1T,+1T,_1+ -+ 1.

The mean time to the MRCA is

(-1
7 1 1
=3[y
-1

Coalescence is so fast that it is possible to have a
coalescent tree with an infinite number of genes

(thought of as the whole population).
The TMRCA is

j=2

and E(W4) = 2.
In units of generations E(W.,) = 2M genera-
tions, so if the generation time is GG years,

E(Ws) = 2MG years.

13



The number of ancestors at time t back.

Let A, (t) be the number of ancestors of a sample

of n genes at time ¢ back from the present.
Then

(An(®) <KY={Tp+- -+ Ts <t}

{A,(t),t > 0} is a death process in the sense of
a birth and death process in probability theory
with zero birth rates and death rates

k
i = (2>, k=nn—1,...,2.

In the coalescent tree A, (t) is the number of
edges in a cross section of the tree at time ¢ back.

AT T

14



Denote the ancestor transition functions as

gij(t) = P(A(t) = 5 | A(0) =1).
It is possible to show that for 2 < 5 <,

Zp (2k — 1)(—1)% 7 jk—1) ik
k . . ’
g1k — J)!@(k)

giz(t
where pi(t) = exp ( — (g)t), and

ga(t) =1- pilt
k=2

In these equations

(2k — 1)(—1) i |

L(k)

ap =ala—1)...(a—-k+1)
ap =ala+1)... (a+k—1)

The mean is

( ) Zpg )(20 — 1) ‘e

"(f)

In the whole population with ¢ = oo the formulae
still hOld, with Z[g]/l(g) = 1.

A reference is

Tavaré, S. (1984) Line-of-descent and genealog-
ical processes and their applications in popula-

tion genetics models.
Theoretical Population Biology, 26, 119-164.

15



Ancestral configurations in the coalescent tree

Problem. At a time instant suppose that A;(t) =
k. Let Zi,...Z; be the number of genes sub-
tended by the k edges Z1 + Zo + - - - + Zp = 1.
What is the probability distribution

of Z1,...,Z7 We suppose the k edges are la-
belled in some way 1, ..., k.

In the picture the three edges (kK = 3) cut by
the horizontal line are such that there are 1 = 8
sample genes,

21:4,22:1,23:3.

16



Answer. Zy,...,Z; is uniform on partitions of ¢
21+ 2904+ -+ 2 =1, with

i—1\ "
P(z1,...,21) = (k—l) :

The proof is by induction on . It is true for
1 = 2,k = 2. Suppose it is true as an induction
hypothesisupto:—1,k=2,...,7 — 2.
If K =1 we are done. If £ < 7, then consider the
1 — 1 edges before the last vertex.

k

20 — 1
P(z1,...,25) = —
/=1
P21y 201,20 — 1, 2001, -+ 0y 21).

Coalescence is to an edge subtended by edge /,
and the configuration when ¢ — 1 lines is (for
ze>1) v+ +zp 1tz —14+-+zp=1—1.
The probability that edge ¢ branches is (Z, —

1)/(i —1).

By the induction hypothesis the sum is

=1 fi—2\"
0 — S

/=1

ik (i—-2\""
i —1\k—1
i1\
\k—1 '

The induction proof is complete.

17



Problem. Take a single edge while k ancestors.
What is the probability distribution of the num-
ber of individuals Z subtended in the sample of
1 below?

Answer. In the notation of the last problem sup-
pose without loss of generality that Z = Z;, and
7' =794 ...+ Zr. Then

7+ 7 =i

and for fixed Z = z there are (";i ;1) partitions

of 2o +---+ 2z, = 2/ =17 — z. Therefore

1—z—1
(%)
i—1y
(k-1
Important note. This result holds for a general

binary coalescent tree with an exchangeable co-
alescent structure. It doesn’t depend on times

{15}

P(Z =2z =

18



An urn model approach.

Identify edges in the tree with coloured balls in
an urn. Let the k edges in a cross section be
represented by k different coloured balls.

When the tree branches, in the direction of the
root to the leaves, this is identified with adding
a ball of the same colour as the parent edge to
the urn.

The urn model is thus the following.

Begin with k different coloured balls in an urn.
A ball is drawn out and replaced with one of the
same colour. This is repeated until there are 7
balls in the urn.

A classical result in probability theory is that the
numbers of different coloured balls Z1, ..., Z; is
uniform on the (;:11) partitions of ¢ into k£ parts.
Taking a limit where ¢ — oo, so the coalescent
tree has an infinite number of leaves, the limit
density of the relative proportions Xq,..., X
of the k£ colours has a uniform distribution on
the set (z1,...,xx) such that 0 < z; < 1,7 =
I,....kand z1 4+ ---+x = 1.

19



Kingman’s formula for an ancestral partition

If leaves in the coalescent tree are labelled
1,2,...,n, then the probability that edges in
the tree while £ edges have families of leaves

01,02,...,Ck 18

El(k—1)l(n—k)!
Al !

n!(n —1)! ! o
where Aq,...,\r are the sizes of C7,...,C%. In
this formulation C4,...,C) is a partition of
{1,2,...,n}. The formula can be expressed as

n—1\"" Al

k—1 n!
Note that

Al A!
n!

is the probability of the (ordered) partition,
given numbers A1 + Ao + -+ + Ax = n and the
term k! comes from unordering C1, ..., Ck.

20



Mutations on genes.

Wright-Fisher model.

Mutations occur with probability u on offspring
between generations. The total expected num-
ber of mutations per generation is thus Mu.

In the coalescent process the mutation rate u is

scaled such that 6 = 2Mu.

Coalescent tree.

REER

Mutations occur at a rate of #/2 on the edges
of a coalescent tree in the coalescent time scale
according to a Poisson process, given the edge
lengths of the tree.

21



The number of mutations on a coalescent tree

LetT,,.,T,_1,...,15 be times whilen,n—1,...,2
ancestors of a sample of n genes. The random
variables {7} are independent and 7} has an
exponential distribution with density

fi(t) = (”;) exp ( — (;)t), t > 0.
The total edge lengths in the tree are

nT, +(n—1)T,_1+ -+ 2715,

so the number of mutations M on the coalescent
tree has a probabilily generating function

P.(z) = Eexp{(z — 1)g(nTn + - --QTQ)}.

This is the pgf of a Poisson random variable with
a random mean.

22



If M} is the number of mutations while k£ ances-
tors, then M; has a geometric distribution

0 ¢ k-1
P(Mk_g)_(k—ue) k—14+6’
(=0.1,...

andM:Mn+Mn_1—|—...—|—M2.
The pgf of My, is

)= (1-G7)
Q) = =2( )

The expected number of mutations on the coa-
lescent tree is

n—1
1
EM)=0%" -,
=17

and the variance is

n—1

var(M) = 3 {(?)2 + g}

—1

Q



As n — oo,
E(M) ~ 0logn, var(M) ~ 6logn.

The distribution of M can be expressed as a
Poisson mixture

P(z) = nt (1 B (2 —] 1)(9)—1
S+ (1—2)0

~(n— DIT(14 (1 —2)0)
B T'(n+(1-2)0)
=(n—1)B(n—1,1+ (1 —2)0)

1
= (n— 1)/ "2 (1 — )12y
0

1
P.(z) = (n— 1)/ "G (z; v)dx,
0
where

G(z;z) =exp{(z —1)( — flog(l — z)) }.
Thus
P(M=m)=(n-1) /01 x”_Q)\(Ti#e_A(x)da:,

where \(z) = —f0log(1 — z).

24



The TMRCA of a sample of Y-chromosomes.

Robert Dorit, Hiroshi Akashi,

and Walter Gilbert.

Absence of polymorphism at the ZFY locus on
the human Y-chromosome.

Science, 268, 1183-1185, May 1995.

38 individuals were observed to have no variation
(ie no mutations) at the ZFY locus.

Problem. Estimate the TMRCA of the sample of
chromosomes, given no variation in the sample.

Their estimate is 270,000 years, with a 95% con-

fidence interval of (0,800,000) years.
Their incorrect equation used for estimating the

TMRCA:

P (No mutation | TMRCA =T)
H i — 1
B i— 14 pT’

where 1 is the mutation rate.

25



Coalescent theory approach.

The probability of no mutation given T} = ¢, the
time while 5 ancestors is

so the density of T} given no mutations is pro-
portional to

€_j°%t . 6_(%)t

_iG+e—1)
=e 2 Lt > 0.

1e. The conditional distribution is exponential
with mean 2/j(j + 60 — 1).

26



Assuming a 20 year generation and p = 1.96 X
107°,

E(TMRCA | no mutation)

= 20N
| Z +2N,u—1)

where N is the male effective population size.

N E(TMRCA |no mutation)
2,500 93,000

5,000 177,000

10,000 324,000

20,000 563,000

Dorit et al’s analysis drew comments from sev-
eral theoretical population genetics groups in
Science.

For a more extensive analysis see:

P. Donnelly, S. Tavaré, D. Balding and R.C.
Griffiths.

Estimating the age of the common ancestor of
men from the ZFY intron.

Science (1996), 272, 1357-1359.

27



There is a simple algorithm to simulate the
TMRCA of a sample conditional on £ mutations
in a sample.

The mean can then be found from the simulated
data.

This algorithm is in the paper:

S. Tavaré, D. Balding, R. C.Griffiths and P. Don-
nelly.

Inferring coalescence times from DINA sequence
data.

Genetics (1997), 145, 505-518.

28



1. Simulate {T},j = n,...,2}, independent expo-

nential random variables with parameters (;),

I ="y...,2.
2. Evaluate the TMRCA,

and the total edge length in the tree
L, =) jT;.
j=2

3. Keep W generated with probability u, defined
by
_ Poisson (k, L,0/2)

“ = " Poisson (k, k)

otherwise discard W generated and go to step 1.

29



3.

It is possible to replace step 3 with a MCMC
step.
Keep W generated with probability

min(1,u/u’)

where
u = Poisson (k, L,0/2)

and v’ is a similar, from the previous run.
If W is not accepted, keep W’ from the previous
run instead.

In the MCMC approach TMRCA generated val-
ues are possibly repeated and a typical realiza-
tion is like

Wi, Wy, ... Wy, W, ...

A burnin period is selected where the simulation
is run for some time before then sampling with
gaps of a fixed size from the sequence.

In this problem it is reasonable to have a burnin
of (say) 1000 and gap of 100 between sampling.

30



Variable population sized models.

The population size at the current time is Ny,
with the size at time ¢t back

N(t) = Nov(t).

Coalescence times {7} }.
Let
Sj :Tn+---Tj, Sn_|_1 = 0,

{S;} forms a reverse Markov process,

P(S; > s | Sj41 = sjt1)
N[5 dt
( 2) Js,is V(t))

A coalescent process with growth can be coupled
in distribution with a constant sized process.
Using the notation {5} for variable population
size coalescent times and {57} for constant size,
the coupling is that

Sy
o [T
o V()

31



Simulation.

For j =n,n—1,...,2 solve for S, (omitting the
superscript v) in

S5 dt A\
B log U
/ ) et
where {U;} are i.i.d. uniform random variables

on (0,1).
Exponential growth: v(t) = e P!

,38' ﬁ8'+1 ; 1
er°i — et J
3 __(2> tog U,

N —1
Sj = 51 log (eﬁsﬂ'“ — ﬁ(;) log Uj).

Exponential growth shortens coalescence times
and makes coalescent trees star like.

32



Mutant genes in a sample.

RRRE!

A general binary coalescent tree has continuous
coalescence times T),,...,T5 with an exchange-
able coalescence structure such that any pair of

edges while k edges have an equal probability
1

(g)_ of coalescing.

Denote

n—b—1
("s22)
n—1
(k=1)
as the probability that an edge while £ ancestor
lines subtends b descendants in the sample.
If a mutation falls on such an edge while k£ an-

cestors it will be represented in b genes in the
sample.

pnk(b) —

33



An urn representation.

‘

O O
©)
L O
O
L ]
L

(a) Put one black ball and k-1 white balls in an
urn.

(b) At each trial draw a ball at random and re-
place with an additional ball of the colour cho-

SEIl.

(c) Stop when n balls.

34



Forward in time branching in the subtree
is equivalent to drawing a black ball.

The distribution of the number of black balls is
the same as the number of descendents in the
subtree under the mutation.

35



Problem. A mutation is observed in b out of n
genes in a sample, where 0 < b < n.

What is the probability distribution of the num-
ber of copies of b?

It is helpful in this problem to label mutations as
independent uniform random variables on [0,1].
Then the probability that a mutation has a label
in (z,z+ h) is h.

Answer. Let Cy = C(x,b,h) denote the event
that there is a mutation with label U in the in-
terval (z,x + h) C (0,1) that subtends b copies
in the sample, and let I, denote the event that
this mutation arises while k& ancestors.

36



Then With T = (Tn, ... ,TQ),
P(Ch | T)
k

= pur(d)P(I;,U € (z,2 +h) | T)
k

= ank(b)(kagh +o(h))

Averaging over the distribution of T,
P(Ch) ~ — Y kpuu(b)E(T}), as h — 0.

Summing over b, the probability that there is a
mutation with label in (z,z 4 h) is

Oh
~ g ZkE(Tk), as h — 0.
k

The probability that a particular mutation has
b copies is thus

_ > s kpni (0) E(Tk)
> k=2 KE(Tk).

dnb , 0 <b<n.

Exercise. Show that the expected number of
mutant copies of a mutation in the distribution

37



{an} 1S o
= n ) g—o E(Tk)
ZZ:Q kE(Tk)

Constant population size.

L —1
E(Tk):(2> ,k:n,...,2.

As an exercise

and

The mean number of mutations in the distribu-
tion 1S

n—1
H= n—1 ._1°
D=1 J71
As n — oo,
n_ n?
s logn’ 2logn

38



The age of a mutation.

Problem. A mutation is observed to occur in b
genes out of n in a sample.

What is the expected age of the mutation?
Answer. The solution is similar to the derivation
of dnb-

Denote the age of the mutation by &,;. Given a
mutation occurs while k ancestors its age is

UTy + Tipr + -+ + T,

where U is a uniform random variable indepen-
dent of {T}}. The mean age is therefore

Y ma k(D) E(Ty (5T, + - - - + Tn)

39



In a constant size population the denominator
in the formula for F(&,;) is 20~!, and

I
VRN
N
N~

!
DO
—
-
| | —
}—\

|
S|
1

Now
_ (n—b—1)!
(k—1D)l(n—k)!
| (n —1)!
n—k L (n—1 —1
:k(k—l)(b_l).b ( : ) |

E(&n) = 2(”;1)12 (Z:{) 7:1(_]]—+1)1

n

=2(n-b)~" > i

j=b+1

40



The last identity is not immediate.
Exercise: Prove that it is true.

The age of an allele of frequency x in the popu-
lation.

To obtain a population analogue of E({,;) take
the limit as n — oo, b — oo, while b/n — .

E(&m) = 2b(n—b)~" 3 5~

j=b+1

=2(b/n)(L=b/n)"" > (j/n)""-n7t
j=b+1

— 2x(1 — :13)_1/ uwtdu

= —22(1 — 2) log(x).

41



This is a well known classical result, proved in
a different way before the coalescent was devel-
oped in:

Kimura, M and Ohta, T (1973). The age of a
neutral mutant persisting in a finite population.
Genetics 75, 199-212.

The coalescent approach is in:

Griffiths, R. C. and Tavaré (1998). The age of a
mutation in a general coalescent tree. Stochastic
models 14, 273-295,

Wiuf, C and Donnelly, P. (1999) Conditional
genealogies and the age of a neutral mutant.
Theor. Popul. Biol. 56, 183-201,

and a diffusion theory approach is in:

Griffiths, R. C. (2003). The frequency spectrum
of a mutation, and its age, in a general diffusion
model. Theor. Popul. Biol. 64, 241-251.

42



The infinitely-many-alleles model.

Each mutation that occurs in the coalescent tree
1s assumed to be new.

BERE:

A A B C DD

With an arbitary labelling the types in the sam-
pleare A AB C D D.

43



The probability distribution of the sample con-
figuration is known as the Fwens’ sampling for-
mula.

Denote a(j),1 < j < n as the number of alleles
with j representatives. The total sample size is

N, SO
> ja(j) =n.
j=1

The number of alleles (different types of gene) is

K = Za(j).

In the example tree a(l) = 2,a(2) = 2, and
K =4.
The probability distribution for the configura-
tion 1s

P({a(j)}) =
nlgk
a()! - a(n)! - 100 .. paln) . g,

with Z?:l ja(j) =n, k= Z?:l a(j), and
Q(n) =00+1)---(0+n—1).

K, the number of alleles in the sample, is a suf-
ficient statistic for 6.

44



Non-mutant lines of descent.

Let A% (t) be the number of non-mutant lines at
time t back. Lines can be lost by coalescence
at rate k(k — 1)/2 while k ancestors, or by mu-
tation at rate 6k/2.

Thus {A%(t),t > 0} is a death process with
death rates

k(k —1+0)
2

i = k=mn,..., 1.

The number of alleles.

Let X4,...,X,, be indicator variables as to
whether the ith line is lost by mutation or coa-
lescence.

v, _ 1 if lost by mutation,
* 10 if lost by coalescence.

Then
K=1+Xy+---+X,.

The last line must be lost by mutation so X; = 1.
{X,} are independent random variables and

oy 67/2
P =D =50"0m 05
0

T j+0-1

45



The mean and variance of X ; are

0
E(X;) =
(X;5) j+0—1
0(j —1)
var(X;) = (G+6—1)2

so the mean and variance of K are

Asn — oo, E(K) ~ flogn, var(K) ~ flogn.
The pgf of K is

W ,
H(jieilJerrZH—l)

46



To invert the pgf of K,

0(n)

Y

consider the expansion
Blp—1)-(p—n+1) Zsm ,

where ¢ is an arbitary variable and {S}'} are
Stirling numbers of the 1st kind.

91@

P(K =k) = i

The maximum likelihood estimate of # in a sam-
ple of n is found from solving

%{kloge—glog(e—kj—l)}zo,
ko~ 1
o ‘So+j-1
- 0
k=) —)
o+ -1

That is, the MLE is the 1st moment estimate of
6.

47



An urn model representation for the allele sam-
ple.

X X
o##
® e#
X

1. Start with 1 white ball of mass 6 in the urn.

. Select a ball from the urn. If it is white return
it with a ball of a new colour, if not add a ball
of mass 1 of the same colour as the ball drawn.

. Stop when n non-white balls and randomly label
them 1,2,...,k it k£ different colours.

The urn model is known as Hoppe’s urn model.

48



The identification of the coalescent model with
the urn representation is made by considering
what happens at the 1st event back in time in
the coalescent tree.

M

The probability that the 1st event back in time
was a coalescence is (n —1)/(n — 1+ #), and a
mutation /(n — 1+ 0).

These are the probabilities of choosing an exist-
ing coloured ball, or the ball of mass 6 from the
urn when it has n —1 coloured balls plus the ball
of mass 6.

Choosing a ball of an existing colour in the urn
and adding another is identified with branching
in the coalescent tree.

Ewens’ sampling formula can be proved by in-
duction from the urn model.
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Coalescent tree and Gene tree.

Coalescent tree. Gene tree.
1 1
([ ] [ ]
¢3 -5
®2 2
5 e 5
4 F_# ¢ ¢’ o6
a b ¢ d e a b ¢ d e

Mutation pattern on sequences

1 2 3 4 5 6 7

o o0 T o

o0



Infinitely-many-sites model.

Mutations occur at positions on the DNA se-
quences never before mutant.

Every mutation occurring in the coalescent tree
on an edge occurs in all genes subtended below
the edge.

A site with mutant and ancestor types is called
a segregating site.

The number of segregating sites in a sample of
DNA sequences

= the number of mutations on the coalescent
tree.

In a sample of n sequences with s segregating
sites the n x s incidence matrix S of mutations
on sequences is obtained by letting

L { 1 if sequence ¢ has mutation j
+ 0 otherwise.

In the example coalescent tree the incidence ma-
trix is

O QL O S &

= =0 O O
_—_ O O O N
SO = = = W
O OO = O -
O O = O O Ot
_o O O O O
O R O O O
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Gene tree.

1
o
‘3
&2
®°
7
04 ¢ Q6

a b ¢ d e

A gene tree has mutations as vertices and de-
scribes the mutation history of the sequences.
Paths to the root (denoted as 0) in the example
gene tree:

a 3 0

b 4 3 0
c 5 3 0
d 7 2 1 0
e 6 2 1 O

52



DNA sequences and Gene trees.

In a sample of n sequences suppose there are s
segregating sites, corresponding to s mutations.
Label the mutations 1,2,...,s and let
O1,...,04 be the sets of sequences containing
mutations 1,2,...,s.

Example.

U W DN+

__ O O O
__ O O O N
OO = = = W
OO O = Ok
OO = O O Ot
_o O O O O
SR OO O

01 = {4,5), 05 = {4,5},05 = {1,2,3},
Oy = {2}7 Os = {3}7 Og = {5}7 O7 = {4}
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The sets O+, ...,y are partially ordered by in-
clusion, that is, for ¢ # j either

O; COj,Oj C O, or OiﬂOj = .

This is easy to see from a tree.

O; C Oj, Oj N O is empty.
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Gusfield’s algorithm

1. Represent duplicate columns in the incidence
matrix as a single column with a label corre-
sponding to the identical columns, for example

(1,6,8).

2. Considering each column as a binary number,
sort the numbers into decreasing order, with the
largest number in column 1.

3. Construct paths from the leaves to the root in
the gene tree by labelling nodes by mutation col-
umn labels, and reading vertices in paths from
the right to the left where 1’s occur in rows.

Gusfield, D.(1991). Efficient algorithms for in-
ferring evolutionary trees. Networks, 21, 19-28.
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DNA sequences Incidence matrix

O OT

1 2 3 4 1 2 3 4
a 0 0 0 0

> b1 0 0 O
c 0 1 0 O

X d o 1 1 0
e 0 1 1 1

Hammer’s Y tree.

Paths to the root 2

a 0

b 1 0

c 2 0 3
d 3 2 0

e 4 3 2 0 ¢ 1 4
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A recent common ancestry

for human Y chromosomes
Michael F. Hammer, Nature 1995.

Three mutations e and an insertion .
D and E do not contain the insertion.

Take the mutation rate to be # = 0.97.
Calculated from 2.6 x 10° bases, at a rate of 1.9
10~ per base per year, 20 year generation, N, =
4900.

Sample size of n = 16 sequences.

Mike Hammer’s inferred tree:

D E C B A

D7



Theorem. The configuration of mutations on se-
quences is equivalent to a gene tree.

Proof. It is clear how to obtain an incidence
matrix of mutations on sequences from the gene
tree.

To construct a gene tree from the mutation con-
figuration on the sequences Gusfield’s algorithm
is used.

An induction proof on the number of mutations
shows that the algorithm constructs a gene tree.
Without loss of generality assume that there are
no duplicate columns.

If there is one mutation labelled 1 only in (say)
the 1st k£ sequences the algorithm gives paths to
the root (labelled 0) of:

1 0 for the 1st k sequences
0 for the last n — k sequences.

The incidence matrix is

1
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Suppose there are s mutations.
In the sorted order as binary numbers if

column 7 < column j

then O; C Oj or O; ﬂOj = Q.

Assume a unique tree is constructed from the 1st
s — 1 columns.

It O,NO; = ¢,j < s, then for each row contain-
ing a 1 in column s add s to the vertex path to
the root.
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Tree with Tree with
s — 1 mutations s mutations

0 s 0

0 s 0
0 0

Columns 5 and s in the incidence matrix have
the form

] s
1 0
Lo
0 1
01
0 0
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If instead O;,NO; =¢, j=s—1,...,k+1 and
O, C O} add s to the vertex path.

Tree with Tree with
s — 1 mutations s mutations

k...O sk...0
k...0 sk...0
k...0 k...0

Three rows k, j,s in the incidence matrix have

the form
kE 7 s

—_ == O
SO = =
— = O O O

0 O

Given the (s — 1)-tree the s-tree is unique.
This completes the induction proof.
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Duplicate columns in the incidence matrix.

1 2 3 4 5 6 7
1 001 0 0 0 0
2 0 01 1 0 0 O
300 1 01 0O
4 1 1 0 0 0 0 1
51 1 0 0 0 1 O

Columns 1 and 2 are identical.
The gene tree is unique up to a permutation of

labels 1 and 2.

Mutation pattern on sequences

1 2 3 4 5 6 7

o oo T W
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Unrooted trees.

If it is not known which type is the mutant base
and which is the ancestor base then the tree is
unrooted. Vertices are sequences in the unrooted
tree. There can be inferred sequences in the tree.
If there are s mutations then there are s + 1
possible rooted trees, to the left or right of each
mutation.

Coalescent tree.

Unrooted tree

o
o
Qo
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Mitochondrial DNA sample

Freq

19

4

1

Extensive mitochondrial diversity within a single

Ward, R. H. Frazier, B. L., Dew, K. and Paabo,
Amerindian tribe.

S. (1991)

% O O K ODOUDUHKBKBEEKEEKEDOERDODO
= HHHBHBEEBEEBREOEREBEEBEBH
2 H HEEHHBHEBEBHBHBEOOUDEBREBEEBH
0 OOV OLVLOLLLLULLLOLOUEKE
X H BHEOOUOUEKEEBKEDOLDOLOLLOLILDO
® O OVOLVUOLVLLLLELULLLIULDO
8 HF HBHEBEEREBEOUEKEEBHEBEERH
- F HEBHEBROOHKEBEEREBHBRH
S OB OOULOLLLLLULLLLDO
o F HEOKBREEEREBREEBEBREBHH
0 O OVLVLLVLLLLLLULLLED
- OOV OLVLLLLULLLOLOUHKE
© HEHEOOUHEBKOUDULDOLLOLOLDOLO
10 < << < <UL << a4 <<
< < <V U< <VUVTVLOUVUVVO
2 VU U<V UUVUUVLOUVUVUO
o VU< UV UUVUUVOUUUOU
— < < VUV UVTVUVTVLOUVLUVVO

SO UV O o e~ £

USA 88 8720-8724.

Proc. Nat. Acad. Sci.

the Nuu-Chah-Nulth from Vancouver Island.

North American Indian tribe,

600 (women).

N —
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Unrooted Nuu-Chah-Nulth tree

® pyrimidine sites; B purine sites
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Compatibility of mutations with the point muta-
ttons assumption

An n x s 0-1 matrix is compatible with a gene
tree if and only if no pattern

—_ = O
—_ O =

occurs in any two columns and three rows.

Necessity Label the three sequences 1,2,3, the
mutations 1,2 and consider Op, Oy the sets of
sequences containing mutations 1 and 2. Assume
the three sequences and two mutations form a
gene tree.

We know that O;,0s must be ordered by in-
clusion. However O, = {2,3} and O, = {1, 3},
and the sets are not ordered by inclusion because
01 N O = {3}.

This is a contradiction, proving the necessity.
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Sufficiency. Suppose there is no such pattern

—_ == O
—_ O =

An induction proof is given that it is possible to
construct a gene tree on the number of muta-
tions.

It is trivially true for 1 mutation.

Suppose the condition is sufficient for a tree with
up to s — 1 mutations. Let O; be the set of
sequences containing mutation 7, 7 =1,...,s.
If {O;} is partially ordered by inclusion it is pos-
sible to construct a gene tree from a previous
theorem.
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If O4 doesn’t fit into the partial ordering, then
for some 1 < s, O; N 04 # ¢,0;,05 and there
exist distinct sequences labelled a, b, ¢ such that

a < OZ',CLQ/OS
b € OS,bQOZ
ce 0;N0O,.

The mutation configuration at sites ¢ and s is

o QR
_ O = .
—_ = O W

This is a contradiction to there being no such
pattern, therefore O, must fit into the partial
ordering.

The induction proof is then complete, and so is
the full proof.
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Unrooted trees

If the mutant and ancestor base types are not
known at sites, then an n X s 0-1 matrix is com-
patible with a point mutation model if and only
if no two columns and four rows have a mutation
pattern of

__- O O
_ O = O

Furthur, if the columns are coded so that 0 is
the most frequent type, then an unrooted tree
exists if and only if this coded matrix represents
a rooted tree with the most frequent base at each
site.

(i) Suppose that the pattern above does occur.
The pattern is invariant under toggling 0 and
1’s in columns, so whichever pattern under tog-
gling potentially represents a rooted tree it must
contain

—_ = O

1
0
1

Therefore the matrix configuration is not com-
patible with any rooted tree.
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(ii) Suppose the pattern does not occur and con-
sider constructing a rooted tree from a mutation
configuration where 0 and 1’s in columns are tog-
gled so that 0 is the most or equally frequent.

Suppose that this configuration does not repre-
sent a rooted tree. Then there must be a pattern

—_ = O
—_ O =

occurring in the matrix.

However the matrix was chosen so that 0 was
the most or equally frequent in each column.
There are two 1’s in each column in the pattern,
so adding rows in the matrix with 0,1; 1,1 or
1, 0 configurations increases the number of 1’s in
a column.

Therefore there must be a row with pattern 0,0
in these columns and a pattern

O = -0
O, O =

This is a contradiction, so the rooted tree corre-
sponding to 0 (the wild type mutation) being the
most frequent exists, and thus does the unrooted
tree.
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(A,C)

'(T,C)

l +<A,G>* [__1<T,G>*

(A,C) (AG) (AC) (T,C) (T,G)

Parallel mutation C — G

(A,C)

’(T,C)

(T,G)

o) [

(T,G) (A,G) (T,C) (AC) (AC)

Back mutation T — A
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Probability distribution of gene trees (7', n)

25 : 1 2 O

I : 3 1 2 0
6 : 4 0

3 : 5 6 7 80
7: 9 10 5 6 780
I : 11 10 5 6 7 8 0
4 : 12 13 10 5 6 7 8 0

Gene tree T' contains sequences of mutation
paths from the leaves to the root.

n contains sequence multiplicities.

p(T,n) is the probability of a gene tree.
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Melanesian 3-globin sequences.

Site |1|2]|3|4|5|6|7|8]9|10]|11|12]13
Root | T T T A T C T C T C G G C

Lineage Freq
¢ |GGTATCTOCTO CG G C| 25
b GGCATCTCTG CG G C| 1
c T TTTTOCTOCTT C G G C| 16
d |TTTACTCATC CGGC| 3
e TTTACT CACGG G C| 7
f | TTTACTCATGAGC C]| 1
g T TTACT CATG G CT| 4

Melanesian 3-globin tree

2 ®
o
5
I °
_._._...1
$ 10
13
*9 119 19
¢ S I
a b ¢ d e f g
25 1 16 3 7 1 4




Melanesian 3-globin sequences.

Site |1|2]|3|4|5|6|7|8]9|10]|11|12]13
Root [T T T A T C T C T C G G C
Lineage Freq
a GGTATCTOCTTC CG G C| 25
b GGCATCTCTG CG G C| 1
c T TTTTOCTOCTT C G G C| 16
d |T T TACTCATTC CG G C| 3
e TTTACT CACGG G C| 7
f | TTTACTCATGAGC C]| 1
g T TTACTO CATG GG CT| 4
Site |1]|2|3|4|5]|6|7|[8|9]10]11]|12]13
Root | T T T A T C T C T C G G C
Lineage Freq
a 1100 00O0O0UO0UO0O O 0 0] 25
b 111 000O0O0O0TO0 OO0 0] 1
c 0001 0O0O0O0OUO0OTUO0O 0 0 0]16
d o000 011110 0 0 0 0] 3
e O 00011111 1 0 0 o0} 7
f loooo11 110 1 1 0o0][ 1
g o000 011110 1 0 1 1|4
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op
O 0 ©
IR A I T B
6
™
= © © o o o o o -
NN O O O O o o
Sl o ©O O o o o —H O
|10 O O O O = = -
o | H o o O o 4 o o
o | O o O O H H —~ -
~ | B o O O —~ = —
o| O O O O HA HA —~H
0 | H o o O A = —~H o
< | < O O 4 O o o o
| H o +H O O O o o
| H - - O O O O o
— | K - 4 O O o o O
O
< | o0
gl o] =
Bl d]l 0o 8D 0 O O Y~ O
20 ol =
—

Sorted columns, small to large

Tree paths are read left to right

Ne

12

13 11 9 10 8 4 3 2

o 0 0 0 0 0 0 1
0O 0 0 0 0 1

0
0

1

0O 0 0 0 1 0 O

0

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

0
1
1
1

0
1
0
0

0
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Probability distribution of gene trees (7', n)

25 : 1 2 O

I : 3 1 2 0
6 : 4 0

3 : 5 6 7 80
7: 9 10 5 6 780
I : 11 10 5 6 7 8 0
4 : 12 13 10 5 6 7 8 0

Gene tree T' contains sequences of mutation
paths from the leaves to the root.

n contains sequence multiplicities.

p(T,n) is the probability of a gene tree.
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Probability of a gene tree

p(T,n)
_ (n—1) (ng — 1)
_(n—1—|—9)k:nzk:>2 n—1 p(T,n = ey)
0 1
i (n—1+9);ﬁp(Tk’n)
" (n_§+e> 2 (nj; (e

Removing a mutation.

!

The system is recursive in the degree of (T, n),
defined as n + the number of vertices.

<o —
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Let H be the current configuration (7,n) and
H’ the configuration immediately prior to the
first event back in time corresponding to coales-
cence or mutation. H' has the form (T, n — ey),
(T}-,m), or (T} ;;,n"). Let C denote the event
that the last event was a coalescence, and M

that it was a mutation. The recursion for (7, n)
is derived by considering (H',C), (H', M).

P(H)=) P(H|H' C)P(H'C)

+Y P(H|H' ,M)P(H', M)
H/
n—1
— P(H | H',C)P(H'
gL [ HLC)PUT)

0
PH | H',M)P(H'

In the recursion for p(7T,n), (nx—1)/(n—1) is the
probability that a type k gene with n; —1 copies
while there were n — 1 edges in the coalescent
tree branched to ng genes while n — 1 edges. In
the term where a mutation occurred last, 1/n
and (n; + 1)/n are the probabilities that in a
coalescent tree of n the mutation falls on an edge
which will give the correct current configuration
(T,n) from the prior configuration H’.
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Ancestral Inference from Gene trees

Coalescent History Process

A 1 lrjfﬁﬂﬁﬂ
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History states Hj are Gene trees (T, n)

1 1 1 3 Hyg

Tree T'. Multiplicity of lineages n = (1,1, 1, 3).
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Sequential Importance Sampling

Let H; be the history configuration of gene types
at step 5 back in the coalescent process of the
sample, where at each step either a mutation or
coalescence has occurred back in time.

H_ ,,,H ,,11,...,H;, Hy is the history process
of the sample. A single MRCA is reached at —m.

p(H;) = > p(H; | Hj_)p(Hj_,) |

Summation is over possible configurations H; ;.
Forward transition probabilities | p(H; | H;_;)
are known.

p(H;) and {p(H)_,)} are unknown.
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Reverse IS transition probabilities T p(

p(Hj;)

H}—l ‘ Hj)

-3 H,‘l,;; (Hy_y | Hyp(H]_) |

The importance sampling representation is

p(Ho)

(p(Ho | Hoy)  p(H_mq | H—m)}
p(H-1 | Ho)  p(H-m | H-m+1)
(

o ay
=5 | 5y o)

p(Ho | H_1)...p(H_m41 | H—m))}
Lp(H | H—m+1) .p(H_1 | Ho)

The MRCA state H_,, is the single root of the

tree, and p(H_,,) = 1.

Simulate T under p repeatedly and average IS
weights on histories to obtain the likelihood of

the data p(Hy).
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Proposal distribution for gene trees p(H;_1 | H;).

Choose a gene in H;_; uniformly from the pos-
sible genes which may change by coalescence or
mutation.

Choose from b, ¢, d each with probability 1/3.
(i) b: Remove the mutation on lineage b.

(ii) ¢ or d: Coalesce the two lines ¢ and d.
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Proposal distribution and
importance weights for gene trees

H,_4 Proposal = Weights
P M Mo . nk_]_
(T7 n ek) No N n—140
/ 1 No . 0
(Tk— ) n) o n n—1+60
1 . 1 no . (nj+1)¢
(Tk—,jJr?n_'_eJ) No n n—146
J
/ "
Tk— k_aj+

The time spent in a configuration (7, n) is ex-
ponential with rate £ (n(n — 1) + 6s), where s is
the number of singleton mutations that are pos-
sibilities for removal in the next event back in
time.
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Example

]

A simple example is computing the probability
of the tree above by importance sampling.

In the first transition back in time either a co-
alescence takes place or a mutation is removed.
ng — 3.

H_4 Prob Weights
Coalescence % ﬁ

: 1 0
Mutathn 3 m

If coalescence took place then the next transition
must remove the mutation with probability 1,
and weight 6/(1460) and then finally coalescence
must occur with probability 1, and weight 1/(1+
0).

If a mutation was removed then the next two

transitions must be coalescences with probabili-
ties 1,1 and weights 2/(2 + 6) and 1/(1 + 0).

The algorithm is seen to be generating two types
of histories, given the topology, with probabili-
ties and weights
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Prob Weights
2 36

3 2(210)(116)2
1 60
3 210)2(110)

This shows that the algorithm will (correctly)
generate

0 2
2+0)1+02  2+02(1+0)

for the probability of the genetree, and

6 20
2+0)(1+02L (2+6)2(1+0)L

for the two different histories, conditional on the
topology.
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Simulated gene trees with relative likelihoods
conditional on tree topology

ek (1 adl o

mfﬁmm
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TMRCA and ages of mutations

Importance sampling simulates coalescent histo-
ries back in time that are compatable with the
topology of the gene tree. Each simulation run
gives a likelihood value [, and a history. If the
likelihood values returned in r runs are [, ..., [,
then an estimate of the likelihood is the mean

[. An empirical distribution of the TMRCA is
(t1,p1)s- .., (tr, pr) where the ¢; are simulated
TMRCA values, and p; = [;/I. The betaglobin
tree introduced in the first lecture is a gene tree
drawn to scale with mean ages and mean TM-
RCA from their empirical distributions. Soft-
ware genetree is available to compute the mean
ages of mutations and TMRCA.
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