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Population genetics
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Figure 2: Nests with both host and parasitic common cuckoo eggs, illustrating near-perfect
mimicry to the human eye. Black arrows identify cuckoo egg.
© 2010 Nature Education Courtesy of M. Honza, T. Grim, & C. Moskat. All rights reserved

All organisms differ — due to

o sesisaiwsaees  genetic variation

] — Unrelated people differ more
than relatives

— Still, people share
characteristics

* Hair colour, eye colour,
disease susceptibility,

3 2R 5 ioaisaBMX

T R I colour-blindness, blood
4 i . group.....

Chvomosoms

(Wellcome Trust, 2016)

* These characteristics are all the result of genetic variation
* Why, and how, do we expect mutations to be shared?

*The answer comes only by carefully considering models for
genetic data, and their implications

* We need to look “back in time” to discover how mutations
arise and spread in a population


http://www.nature.com/scitable
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* The axis is time in thousands of years, for a sample of 1,371 human
males. Tree built using DNA sequences.

* Black circles represent mutations seen in those samples

» Shared characteristics come from rare mutations in the distant past
* This tree and the times on it were inferred based on the coalescent
model

» Computationally intensive inference (Griffiths and Tavaré, 1994)

* This model, its derivation, its properties and inference under the
model are what we will look at first, using : stochastic processes ,and
graph theory.



Outline of the course

* Two parts, of 8 lectures each

e Part | (weeks 1-4)
— The “neutral model”
— Modelling genetic data
— Genealogical relationships
— Mutation patterns in populations

e Part Il (weeks 5-8)

— Extending the neutral model

— Recombination and “shuffling of
genetic material”

— Natural selection
— Diffusion process models in genetics



The Wright-Fisher model

* Suppose we are interested in a
fragment of DNA, which might
look like this:

AC. .AAACGTTTAGCCGAT. ..GG

 There are M (very similar) copies
of this fragment in the whole
population

* M is often very large (>>1000)

* For now, we view each fragment
as an “object”, called a haplotype
or gene or sequence

— Could be a few positions as shown

above, or the whole Y-chromosome
of 58,000,000 letters (bases)

* QOur task: model the history of
these fragments in the population



The Wright-Fisher model

Fisher, Wright (1930-31)

“The simplest imaginable inheritance
model”

Models the evolution of a population
forward in time from one generation to
the next

We then (approximately) go back in time
Constant size population of M haplotypes

Generations are discrete, and
independent: in a generation, a complete
new set of M haplotypes is created, and
all M existing haplotypes die

Each of the M new haplotypes inherits
their genetic material from the previous
generation, choosing their “parent”
independently and uniformly at random



A picture makes this clearer.
Formally, we form generation k+1 by choosing M
“parents” at random in generation k with
replacement
If parent of haplotype i in generation k+1 is Z;
P(Z. =j)=1M
j=1....M
Some population members have O children,
others more than 1 child:

| |
‘ ‘ \I I/ ‘ ‘ ‘ Each haplotype
chooses parent

in previous
generation

If haplotypes
share a parent
back in time, this
is called a
coalescence
event

If we continue
back in time,
eventually a
single parent is
reached, the
Most Recent
Common
Ancestor
(MRCA) : =
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A picture makes this clearer.
Formally, we form generation k+1 by choosing M
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We can examine historical relationships in a sample



Looking back in time

* We seek to understand the distribution of
the relationships among individuals
(haplotypes) backward in time

— Why? Our DNA today is inherited from
our ancestors

— Looking at only “real” ancestors means we
don’t have to keep track of the entire
population

* Given there are i ancestral lineages at
generation k+1, define p; as the probability
there are j parents in generation k, j=1,2,...,i

 Our “roadmap” is to proceed as follows:
— We characterise p;
— We assume M is large compared to i

— This means the population size is big compared to
a sample we take from it

— In this setting, we use p;to approximate the
distribution of the total time while exactly i
ancestors remain

— We rescale this time, to measure it in natural units

— We show that as M becomes large, the whole
(rescaled) backward process converges
(beautifully) to a limit, called the coalescent



Example: two lineages

* Suppose we have two ancestors in
generation k+1. Then in generation k there
are 1 or 2 ancestors:

P =1/M
P, =(1-1/M)

 Generations are independent =
* Define 1, as the time until a

coalescence event occurs, then —
M

* Obviously, this is geometric . What happens if
M is very large? Note the mean time E(z,) =M

17" 1
P(Tz — k) :(1__j M k :1121"'

* If we measure time in units of M generations,
the mean time is 1; independent of M.
Proposition 1.0 shows that as M becomes
large, this rescaled time has an exp(1)
distribution.



Example: two lineages

Proposition 1.0

In a Wright-Fisher model with population size M, for a
sample of size two taken from the population define t, as
the time back until a coalescence event occurs. Then
setting T,=1,/M to measure time in units of M generations,
in the limit as M—->eo, T, has an exponential distribution:
T,~exp(1).

Proof From above:

P(r, <k) =1-P(z, > K)

3]

P(T, <t) = P(r, =Mt) = P(z, <[ Mt )

[ M|
ey
M

—1-etasM — g
foranyt > 0:the c.d.f of exp(1)
Note: by independence of generations, this extends

to give the limiting time back until coalescence from
any time point where we have two lineages.



M and coalescence times in
humans and other animals

In humans, it is known that “appropriate” values
for M are surprisingly small. This is
approximation is called the “effective
population size”:

M = 20,000 in Europe

M = 19,000 in East Asia

M < 50,000 for all human populations, highest
in Africa




M and coalescence times in
humans and other animals

The mean coalescence time for two lineages is
just E(T,) =1in units of M generations, so if we
have G=28 years per generation, the average
ancestry depth for 2 human chromosomes is

1 xM xG in years
(20,000-50,000) x 28 =480,000-1,400,000 years

M varies widely across species (Charlesworth,
Nature Reviews Genetics 2009):

25,000,000 for E.coli
2,000,000 for fruit fly
D. Melanogaster

<100 for Salamanders
(Funk et al. 1999)




Samples of size n

Suppose we are now following the history
back in time of a sample of size n.

Measure time backwards and suppose T
generations back, there are é(t) lineages
remaining, é(0)=n

Generations are independent, so é(t) behaves
as a Markov process {é(t), t=0, 1, ...}

— In other words, given &(0), &é(1),..., é(t) the
distribution of é(t+1) depends only on &(1)

— The Markov process is homogeneous (does not
vary across generations)

Our p;’s define the transition matrix P:
p; =P(&(r+1) = j|&(r) =1)

Question — given j lineages currently, what is
the distribution of the time until the next
coalescence event?

At the next coalescence event, how many
lineages coalesce?



Samples of size n

We consider the transition matrix:

p; =P(&(r+1) = j|§(r) =i)=P(i > )

so the probability of no coalescence, | —>1I:
(I\/l—l) (M—Zj (I\/I—i+1j
pii = X X...X
’ M M M
:(1—1jx(1—2jx...x(l—i_lj
M M M
ko) I I I I I

:1—M2k+OM
(2) (M—Z) i=5i—>i

=1-—+0
M

and the probability one pair of lineages coalesce,

sol—I-1is:

pm_l(;jx(MM—ljx...x(M—Miwjx@
(3 ot j+o<M )
A




Samples of size n

What is the probability that more than one pair of
lineages coalesce at the same time? This is

P(E(r+D) <i-1&(z) =i) =1-p;; — Py

=1- 1—|%|)+O(IVI 2)_—Igzi/l)+o(|\/| 2)

=0+ O(M ‘2)
Putting this together, supposing M is large and we have i
lineages, in a single generation, to Ofl\/l ‘2)

3

Pi i zl_ﬁ
Piia zIEZ/I)
p; =0

forany j<i-1
1. In words, asymptotically, only one pair of lineages can
coalesce at a time — we have a binary tree.

2. By symmetry, each time a coalescence occurs, all
pairs of lineages are equally likely to coalesce

3. To characterise the asymptotic distribution of trees,
we then just need to derive the distribution of times
between coalescence events. First, the answer.



The coalescent

(Kingman, Stochastic processes and their application, 1982)

As for the two lineage case, for the general case we will
measure time in unit of M generations

We will show that the ancestral tree distribution in the
Wright-Fisher model converges to the coalescent

This is one of the greatest discoveries in population genetics

The coalescent limit actually applies much more widely than
just the W-F case (e.g., models with non-discrete gens)

The coalescent can be adapted to include many realistic
features, some which we will see (mutation, population size
changes, recombination) and others we will not (population
splits and merges, migration......)

The coalescent is a distribution| on binary trees:




The coalescent

(Kingman, Stochastic processes and their application, 1982)

Definition 1.1

The coalescent is a distribution on binary trees. Starting with n
lineages, pairs of lineages coalesce backward in time until a single
common ancestor is reached. Defining times T, T, ,,...,T, while
n,n-1 ,..., 2 ancestors remain, the times Tj are independent and
exponentially distributed:

j i) 2
T, ~exp f,(t)= e, t>0 E)=——
2 2 1(J-1)
At the time of coalescence from j to j-1 lineages, a pair of lineages
is chosen at random from the j(j-1)/2 possibilities and coalesces.

The coalescent:

T, ~exp(l) E(T,)=1

[ T,~exp(3) E(T,)=1/3

T, ~exp(6) E(T,)=1/6

{ Ts ~ exp(10) E(T;) =1/10
1 e £ i




The coalescent limit

(Kingman, Stochastic processes and their application, 1982)

Proposition 1.2

In the Wright-Fisher model, as the population size M
converges to infinity, if time is measured in units of M
generations then the distribution on ancestral trees for a
sample of n sequences converges to the coalescent.

Proof:
We previously showed that as M—> <o, only one pair of
lineages coalesce at a time, so the limiting tree is binary.

In the Wright-Fisher model, sequences choose parents at
random, so obviously all pairs of lineages are equally likely
to be the one to coalesce at a coalescence event

It remains to show only that the coalescent gives the

correct distribution on the rescaled times T, while j edges

remain in the tree. Suppose a sample has j ancestors at

some time in the past. Recall we showed the probability j

ancestors remain in the previous generation is given by
]

2
P :1_M+O(M )
If 7 is the total time while j ancestors remain then
— . —k
j
SR .
P(z, >k):[pjj] = 1_M+O(M 2) (independence)




The coalescent limit

(Kingman, Stochastic processes and their application, 1982)

Proposition 1.2

In the Wright-Fisher model, as the population size M
converges to infinity, if time is measured in units of M
generations then the distribution on ancestral trees for a
sample of n sequences converges to the coalescent.

Proof:

Now we rescale time in units of M generations. Set Tj=rj/lw.

We need to obtain the cdf of Tj in the limit M — oo.

Let t > 0 be any non - negative real.

P(T, <t)=P(r, <Mt) =1-P(r, > Mt )

AT SN
L)

—1-e¢ asM — oo,

This is just the c.d.f of an exp[(zj)] random variable.
2

E(Tj) —

1(-1)



Properties of the coalescent

The coalescent is the limit of a range of models.
From now on, we will work using only this
model (until week 6).

The coalescent describes what evolutionary
history looks like in populations

We will see it allows us to study variation, its
main use.

It also allows us to understand population
history

What properties does it predict?
We will ask two things in particular:

1. How deep are genealogies in time? How
variable are these depths?

2. What is the distribution of tree shapes
under the coalescent — e.g. are they
approximately symmetrical?



Times in the coalescent

In the coalescent the number of lineages
decreases from n to 1. The time at which the
final coalescence takes place is called the
time to the most recent common ancestor
(TMRCA)

W =T +T ,+...+T,

1.3 Mean and variance of the TMIRCA
Immediately:

E(W )=E(T )+E(T _)+...+E(T,)
2 2 2

— + +...
n(n-1) (n-1)(n-2) 2x1

C 2 2 2
= 2

= =1 =]

A




Times in the coalescent

1.3 Mean and variance of the TMRCA
Also, the times T are independent, so

Var(W.) =Var(T )+Var(T _,)+...+Var(T,)

(problem sheet 2)
As sample size becomes very large: n—>oo

EW,) = 2(1—Ej —>2asN —>
n
Var(W,) < oo

We can interpret this as saying the expected time
to coalescence of the whole population is
finite, with mean 2. We can build a tree for the
whole population. In units of generations:

E(W_) =2M generations
~ 40,000 =~ 900,000 years for humans



The “shape” of the coalescent

We could draw some tree shapes and ask “which
is more likely”?

We need to be a bit more precise about what we
mean. To do this, consider the number of
descendants Z=(Z,,Z,,...,Z,) of each of the

lineages when k ancestors remain
|

i

Z,=1 Z,=4 Z,=2
n=7
What is the distribution of Z? ANSWER: It is
uniform on the possibilities




The “shape” of the coalescent

Proposition 1.4

Suppose we have a sample of size n sequences,
and that at some time back in the past, there
are k sample ancestors. Then the number of
descendants Z=(Z,,Z,....,Z,) of each lineage
has a uniform distribution on partitions of n :

Forz,+2,+...+2, =n, z, >1foralli

n—1)"
P(z,.2,,...,2,) :(k—lj (1.4.1)

Proof

We will use (backward) induction. The result is
trivial for k=n. For the induction, suppose it is
true for k>m say. We only need to prove the
hypothesis for k=m-1.

(If so, then the hypothesis is obviously true for
k=2,....,n)



The “shape” of the coalescent

Proposition 1.4 proof ctd:
Clearly, when we have k lineages,

(i)
(ii)

(iii)

(iv)

(v)

z,| zZ,| z,

Z Z, Zs

some pair of lineages coalesced to go from k+1 to k
lineages

each of the k current lineages, say i, has probability 1/k
of being the one that coalesced last (i.e. branches next)

Conditional on i branching next, we can write down a
condition on the number of descendants of the k+1
lineages:

k+1

By the induction hypothesis, the probability of any

configuration while k+1 ancestors remain is known, so
using (iii):
P(z,2,...., Z,|i branches )

i—1

— + ’ yoeooy "’ i "H-“’
z :Pk 1[21 Z2 ZI ZI ZI Zk]
|:1

P R

Last, we need to sum over j according to (ii):



The “shape” of the coalescent

Proposition 1.4 proof ctd:

P(z,2,....,2,)

k
=ZPk(zl,zz,...,zk

>
5

i branches):’(i branches)

ibranches)x%

= y ,completing the proof

Example: how many copies of a mutation that occurs
when k=2 are present in the sample?

The same as the number of descendants of one of
the lineages when k=2 (Sheet 1, Question 5)

Conclusion: coalescent trees are not very symmetric



The “shape” of the coalescent

Note: We didn’t use times in the last proof — so
Proposition 1.4 holds more generally, for any
binary tree with random coalescence.

Corollary: Suppose there are k lineages and let Z be
the number of descendants of one particular
lineage. What is the distribution of Z?

Answer: This is just the marginal distribution of Z, in
the previous proof. If Z,=z, then the number of
descendants of lineages 2,....,k must form a
partition of n-z, into k-1 boxes. Thus

P(Z=2)=R(2,=1)

oo
L

-1
n-1
— { j X (# of partitions of n—zinto k-l)




Simulating the coalescent

 We'd like to apply all this theory to the real
world!

 In practice, we can usually only learn about
history by looking at patterns of mutation in data

* One thing we’d like to be able to do is simulate
the coalescent to see if patterns “match up” with
expectations

— If so, happy. If not, refine model or infer new model
parameters

— Several free programs do this, e.g. makesamples, “ms”
(R.R. Hudson)

e How can we simulate the coalescent?

— We must simulate exponential times T, T_ ..., T,
between coalescence events (and record these)

— Then, at each coalescence event we must sample a
random pair, record the answer, remove the original
pair and replace with a new label to mark the
coalesced pair

—  Problem 4 on the sheet



Urn models (supplementary!)

Instead of the whole coalescent tree, suppose we only
wish to simulate a sample from the number of
descendants of k lineages in a sample of size n

 Urn models are a classical tool in probability theory
* Also offer efficient simulation frameworks in genetics

Classical Grecian urn . -
| Classical probability urn

\ ‘
* Ingeneral, they are probability distributions on sets of
coloured balls, sitting in an urn

«  We remove balls, and add balls, according to specified
rules
—  This makes simulation trivial

 Balls often represent other things (e.g., lineages)

* There’s a nice urn model representation of the distribution
of descendants of k lineages

« Uses the only thing we needed for our induction proof —
when there are k lineages, each is equally likely to branch
forward in time to give k+1 lineages. Gives an algorithm:



P w e

Urn model representation

Begin with k balls in an urn, of different colours
Take out a ball at random from those in the urn
Replace this ball with two of the same colour
Repeat 2 and 3 until there are n balls —then stop

k=4

k initial balls represent lineages, and balls sampled
represent lineages that branch forward in time

Viewing it this way, our uniform distribution on partitions:
forz,+z,+...+2, =n, z;, >21foralli

N —1}1 (1.4.1)

P(zl,zz,...,zk)z[k_1

is just a classical result in probability theory.



2.0 Mutation

* In practice, we can only really learn about population
history using mutation patterns

— We can’t just look — slow pace of change in populations
— Inany case, histories of interest are usually...historical

— We have to infer what happened by looking at the
patterns of mutations in samples from the population

— This will be the subject of much of the rest of the
course

e We won’t need to know much about the details in some
cases, but it helps to have an idea

*  What is mutation? DNA can change in a variety of ways:

Per gen.
Event probability
TGCATTCCGTAGGC
: : ~1.25-
Point mutation 2 5x10-8
TGCATTGCGTAGGC
TGCATT---TAGGC <108
Deletion
TGCATTGCGGCGTAGGC )
. <108
Duplication
TGCTCATCATCATCAGC —> TGCTCATCA-————- GC <5%
Tandem repeat variation

Selfish element insertion



Mutation in the coalescent

¢ o
® -
Distinct
mutation
P events

/Q

* In order to develop a model for genetic variation, we need to
include mutation

* We extend the coalescent to allow mutation

* Recall edges represent ancestral lineages back in time

* So: mutations in ancestors can be represented on the edges (as
circles)

* The descendants of a mutant edge inherit that mutation (unless
another mutation reverses it)

* Assume that with constant probability u« per generation, there is a
mutation (e.g. 1 =2.5x109),

* In coalescent time, there are M 1 mutations per unit time

* We model this by taking a parameter 6=2M u

* Mutations happen (in the limit as M—eo) continuously along
edges, according to a Poisson process of rate &/2 on each edge



Mutation in the coalescent

Poi(0/2[ T+ T+ T, +T;+T5)) e

* o

‘1'
Poi(0/2[ T,+T++T))) ® ® ‘
!

Tl
Poi(6/2T)) |

??? Poisson process???

* Let us refresh our memories, with a simple characterisation of a
Poisson process

Definition 2.1 Poisson process.

A Poisson process N(t) of rate A is a continuous time process
counting events in time, such that the number of events
E(T)=N(T+t)-N(t) in any time interval [t,t+T) of length T has a
Poisson distribution with mean A7, independently of all other time
intervals.

| O ® E(T)~Poi(47)

€ > N(t):O, N(t+T):3
t t+T E(T)=3



The number of mutations

Sums of independent Poisson random variables
are Poisson

Define S=M_+ M, , +...+ M,to be the total
number of mutations for a sample of size n,
where M, is the number of mutations while j
ancestors.

Proposition 2.2
S has probability generating function

f (2)= ﬁ[l_(z 1)«9)

Further, for each j, M; is independent, and has a
geometric distribution with parameter

pi=(-1)/(6+j-1).
Proof.
By properties of Poisson processes, since total
edge length T =nT, +(n-T__, +...+2T,,
given T T .,..., T, we have
S~Pois(0/2[nT, +(n-DT_, +...+2T,])




The number of mutations

Proposition 2.2 proof ctd.
Thus

f,(2)=E(z°)=E (El°[T))
= E(exp|(z—1)dT / 2]from the Poisson p.g.f.
Recall that the independ. T, ~exp( j(]J-1)/2)

f (z)=E(exp[(z-1)0(nT, +(n-1)T _, +...+2T,)/ 2]
(Hexp[(z 14T, /2]]
= (exp[(z -1)aT, /2])(|ndepend)

=]IM,, ((z-1)d/ 2) (m.gfof T))

: (1_ (2-1)4

2j(j—1)/2} (sinceT; ~exp(2/ j(J—-1)))

5

1
(1- ( Z__ll)HJ the required result
2 |

j=

Further the jth term in this product corresponds
to mutations in time T, so gives the p.g.f of M..



The number of mutations

Proposition 2.2 proof ctd.

We are essentially done, as this is the p.g.f of a
geometric random variable. Indeed, setting

P(szk):( 0 J( -1 jk 04,..
+]-1) 0+ )-1

o w & e Y[ -1

Qj(z)_E(Z )_kZ:(;Z (6?+j—1] (0+j—1j
w7
O+ ]-1 O+ ]-1
_ (1_ (z_—1)6?j1
]—-1

It is worth pointing out an interpretation here

 Mutations happen independently for each
epoch, while j ancestors

1

 Consider mutations, or coalescences, “events

 Whilejancestors remain, the probability the
next event is a mutation is 6/(6+j-1).

 Otherwise, it is a coalescence with probability
p;= (j-1)/(6+j-1),and we move to a state with j-
1 ancestors



The mean/variance of

mutation counts
Using the p.g.f of M,
Q,—'(l)—— Q,"(1) = 2( Qj so
-1
E(M,)=Q,'@,var(M,)=Q," (1) -Q," ) +Q,'()
0 oY o
A N

This immediately gives expectation and variance
for the total number of mutations S:

E(S)= ——6? —
( jZJ 1 le
n 9 2 n11 n-1 1
Var(S):Z(_] __gz 07y =
=\ )1 -1 = i-1 J
ASN —> oo

E(S)~@logn, Var(S)~élogn

This motivates Watterson’s estimator (1975) of &

S

n-1 1
J

j=1

0=

This moment estimator is unbiased,
and consistent as n—«



Example: Estimation of
population size

e As we have discussed, the coalescent is a limit
under very general population assumptions

 Time in units of M generations, where M is the
“effective population size”

 Estimation of M allows us to calibrate into years,
to understand time depth.

* | have given M estimates for humans
 The data only give information directly on
6=2M u

* Toinfer M or 1, we must know (or assume) the
other. This idea is how M is generally estimated

Example 1 (Zhao et al., PNAS, 2000): In sequence
data for 128 human chromosomes sampled
worldwide, 75 variant sites were identified. If the
mutation rate per DNA base per generation is 2.3
x 1078, and 9,901 bases were sequenced,
estimate the human effective population size



Example 1 (Zhao et al., PNAS, 2000): In sequence
data for 128 human chromosomes sampled
worldwide, 75 variant sites were identified. If the
mutation rate per DNA base per generation is
2.3x1078, and 9,901 bases were examined,
estimate the human effective population size

Solution:
Watterson’s estimator:

= £ =13.82

1 271
J'Z;‘J

Because we are given 1, we can estimate M.

"U)

0 =

n—

IN
[FY

J

0=2Mu=2x9901x2.3x10°xM =4.55x10"*xM
M =2195.7x 68 = 30,353

This is a fairly typical value for a worldwide human
sample. Finally...how does one get 4? Two ways:
— Chimpanzee genome comparisons
— Direct measurement in families

Note: Watterson’s estimator does not use all the
information in data for &.



Example: Time conditional on
number of mutations

 Genealogy depth is stochastically variable

* Longer trees have more mutations (segregating
sites) on average

 The distribution of tree depth is altered given the
number of segregating sites seen in data

Example 2 ( Dorit et al., Science, 1995): In sequence
data for 38 human Y chromosomes sampled
worldwide, no variant sites were identified at the
ZFY locus. If the mutation rate at this gene per
generation is 1.96 x 10™, and generations last 20
years, derive an equation for the expected
TMRCA conditional on this data and a population
size N



Solution

If there is no variation in the sample, this means
there are no mutation events in the coalescent
history of the sample:

M, =M, ,=.=M,=0

We can consider the times T; while j ancestors
remain. Recalling that over time T, the number
of mutations on each of the j edges is
independently Poisson with mean 67,/2, we
have:

P(M, =0|T, =t,)=e'""* and so
P(M, =0[T, =t;)f,(t;)

f(t.|M.=0)=

(1M =0) P(M, =0)
oc ejﬂ’”[;jej(”)t”z using the pdf of T,
oc exp[— i(] _21+ e)t 11 (up to a constant)

Thus conditional on M =0, T; has the exponential
distribution with a (reduced) mean

2
=L I =0 =50 10)




Solution continued

Finally, we can give the expected TMRCA (in
years) conditional on no mutations:

W =T +T ,+...+T,
E(VVn|S=O):ZE(Tj|Mj=O)
j=2

=» — (in N gens)

—ZONi 2
i j(] —1+ 2N x1.96 x10°

)(in years)

Tabulating, we see our knowledge of no mutations
(in 729 bp) does not have a huge effect:

Population size | Mean TMRCA Mean TMRCA
N given no unconditionally
variation

2,500 92,000 97,000
5,000 173,000 195,000
10,000 313,000 389,000



Solution continued
Dorit et al. made an error, writing:

P(S =0|W,)

38 J _1 _ _
= [ 111.96x10°xW (in generations)
j=2 J ' n

This led to strange conclusions — 95% CI of
(0,800,000 years) and estimate of 270,000 years

This in turn led to a number of rapid critical
responses, e.g. “Estimating the age of the
common ancestor of men from the ZFY locus”
Donnelly, Tavare, Balding and Griffiths, Science
1996

These data are actually compatible with a very wide
range of times.

Humans are not very variable — on average 1
mutation every 1,000bp between 2 human
chromosomes.



Supplement: distribution of

number of mutations

 We derived the p.g.f of the total number S of
mutations. What is the full distribution of S?

 We can apply the Gamma function property that
for real z, F(z:orl)=zF (2):

f,(2)=3 2'P(s = )

n-1 _(2_1)0 _1_ n-1 J
,-1(1 j j ‘H(Ha—z)ej

—(n-1) (n=-2)II'1+(1-2)0)
I'(n+(1-2)0)
=(n-1)p(n-11+(1-2)0) defnof"F—fun."

1
=(n —l)j X" (1—x)*2?dx (properties of )
0

=(n —l)jx“ (1—x)? exp[- 20 In(1- x) Jdx

_ ,i) Z/ (rjf!‘l)ix“ (L= x)°[-In(L-x)] dx
soif 1(X) =—-0In(l—x)and f(X)=(n-Dx"*,0<x <1,
p(S = i) :j f () e *OA(x)] dx

, J!




Time

past

PN

Variable size populations

Real populations don’t have constant size. Suppose
the population size a time t in the past is N(t)=N(0)v(t)

We need a “clock” — as before, measure time t in units
of N(0) generations, N(0) now present day size

We will extend the coalescent to this setting

Recall that while j ancestors remain in a Wright-Fisher
model, the probability, i.e. “rate” at which coalescence
occurs is j(j-1)/2M per generation

In the new setting, the new per generation
coalescence rate is

J0-9_14-H 1

2N (1) 2v(t) N(O)
Measuring time in units of N(0) generations, while |
ancestors, coalescence occurs at rate j( ] —1)

2v (1)




Variable size populations

Definition 2.3

The coalescent with variable population size is a distribution on
binary trees. Starting with n lineages, randomly chosen pairs of
lineages coalesce backward in time until a single common
ancestor is reached. Suppose the relative population size at time t
in the past is v(t). While j edges remain at time t, coalescence
events occur with instantaneous rate j(j-1)/2v(t). Equivalently,
defining times T, T, ,,...,T, while n,n-1 ,..., 2 ancestors remain:

j S+t 1
To+T o+ 4T, = s): exp{—[zj V(u)du}

(2.3.1)

p(T, >t

Comments
1. The standard coalescent case is v(t)=1

2. Equation 2.3.1 can be derived directly as the
Wright-Fisher limit

3. Intuitively, in (2.3.1), if there arej lineages
from time s to time t+s, the coalescence rate
changes from j(j-1)/2v(s) to j(j-1)/2v(s+t)

This is the reason for the integral term, which
“averages out” the coalescence rate



Variable size populations

How do we, e.g., simulate the coalescent with
variable size?

The answer: we can use a coupling of times with
the standard coalescent case.

ldea: we transform time into new units. Define

S; =T, +T,,+...4T;, S,,; =0 (coalescence times)

Proposition 2.3
In the variable population size coalescent with relative population

size v(t) at time t in the past, if time is rescaled by setting

V4

then the transformed times S,’, S, ,’,...,S,” at which coalescence
events occur are distributed according to the standard coalescent

with constant size population

Comments

1. Note that transformed time increases more
quickly when the population size is small

2. We invert the transformation to give each S,

3. To recover coalescence times, we take
differences: T, =5,-S,,;



Variable size populations

Proposition 2.3
In the variable population size coalescent with relative population
size v(t) at time t in the past, if time is rescaled by setting

t
, 1
t'=|——du
o v(u)
then the transformed times S,’, S, ,’,...,S,” at which coalescence

events occur are distributed accordlng to the standard coalescent
with constant size population

Proof

Define the untransformed coalescence times S, S, 1,...,S,.
Restating (2.3.1) in terms of these times, we have:

S+t

P(S >s+1S, =5 ) exp{ 10 - DJ L u} Vs,t>0 <
| 4

(u)

-1 1
P( >S‘SJ+1 J+1):exp 1= )Iv(u Vs;>s;,>0
anditisS.T.P
P(Sj'>sj' j+1'=sj+1'):exp 1= )jdu Vs;'>s;,'>0

Now it is clear the transformation is well defined, so for every
positive t'=s,” there is a corresponding untransformed t=s,.

Further the transformatlon is increasing so S; > SJ+1 =S;>S;,



Variable size populations

Proposition 2.3
In the variable population size coalescent with relative population
size v(t) at time t in the past, if time is rescaled by setting
t
, 1
t'=|——du
o v(U)

then the transformed times S’ S S,” at which coalescence

n? n1' )

events occur are distributed according to the standard coalescent
with constant size population

Proof
Using this reverse transformation, for any S > SJ+1 >0:

P(S,'> 5,15 4'= 5,0} = P(S, > 5[5, =5,

_ s Df 1
v(u)

=exp| —

B J(J H(t 1 . F 1
=exp| — uv(u)du 0 v(u)duj

:exp_— j(j2—1) (s,s,., )}:exp - j(j2—1) S'jdu

Sj+-1

A key use of this idea is in simulation of histories under this model
(and inference).



Simulation

e Simulation under a variable size model can be
accomplished simply, by the following:

/7

1. Simulate coalescence timesS,’, S, ;/,...,S,” under the

neutral coalescent. Set S, ,,’=0, and then:

Tj'zsj'—sm':—[

;jlog(uj), Jj=nn-1...2

where the U/’s are i.i.d U(0,1) random variables.

2. Convert these back to untransformed times
S, Sir-9, USING
Sj 1
S.'=|——du

J
o v(U)
3. Given times, coalescence events are easy to sample,

and mutation event counts have the usual Poisson
distribution given tree times (note the mutation
process in each ancestral lineage is independent of the
population size).

Example
In exponential expansion v(t)=exp(-ft), so
S.
: 1 | 1
_ Jo _ IBSJ _ 1
Sj_je du_—(e —1):>Sj_—log(1+,88j)
0 p B

(sheet 2 question 4)



“Star-like” genealogies

T e

¢

Exponential expansion (or expansion generally) makes times
relatively shorter in the top parts of the tree

Question: What is the effect of variation in population size on
genetic variation data?

This could offer us a way to learn about population sizes in the
distant past

To do that, we need to think about the frequency spectrum of
mutations

We start by thinking about single mutations



3.0 The spread of diversity

The red mutation happens while there are k=4 lineages
remaining.

It spreads and is seen in 3 of 6 sample members — the
descendants of the lineage on which it occurs

More generally, the shape of the coalescence tree
(Proposition 1.4 corollary) tells us that for any mutation that
occurs while k ancestors remain from an initial sample size of
n, the probability of b descendants is in general:

[n—b—lj £6—3—1j
b ()= K2 p (=2 ) 1

o o) "




3.0 The spread of diversity

Almost always in practice, we only see diversity patterns.

We know n=6, b=3 but we do not know the number of lineages
when the mutation occurred

What is the unconditional probability, q,,,, for a site which
varies, that we observe b mutant copies in a sample of size n?
This is called the (expected) frequency spectrum of mutations

Q. = Z P (b mutant copies |while k lineages)P(k lineages)
k=2

= > p(b)PKlineages)

k=2

We can also ask, how old is a mutation seen in b of n copies?



The infinite-sites model
|

®0.224 ® 0330
@ 0.802
® 0.83
0.676 0.83 AN Not allowed!
@0.965
0.543 @
0.0

Strictly, we need to make an assumption here.

If we see a mutation in some sample members but not others,
we assume it is the result of one historical event, not e.g. two
identical independent mutation events in different ancestors

Specifically — mutations always occur at a position never
before mutant. This is called the infinitely-many-sites model

In this model, each individual site has a vanishingly small
probability of mutating (but a region has a non-zero rate)

Without loss of generality, label mutations using independent
uniform random variables in [0,1] (i.e. labels always unique)
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3.0 The spread of diversity

A = Z P (b mutant copies |while k lineages)P(k lineages)

k=2
= P, (b)PKlineages)
k=2

The only thing we must work out is the probability a mutation
observed in a sample occurs while k lineages, given only that
the mutation segregates in the sample. Suppose the mutation
occurs at x in [0,1].

We will not (for now) make any assumptions about times in
the coalescent tree — so we are in the setting of the coalescent
with variable population size

It helps to write the following
P(klineages|mutationat X) = (Igimo P(k lineages|mutationin [X,X + ox))

P(mutationin[X,X + dx) while k lineages) P(l, =7

Z P(mutationin[X,Xx 4+ dx) while k lineages)
k=2

where I,=1 if a mutation occurs in [x,X+0X) while k ancestors

That is, we consider the probability of exactly one mutation
occurring, in a region containing X. The number of mutations in
[X,x+0X) while k ancestors is Poisson with mean KT, 85x/2, so

P(l, =1 =exp(—60oxKT, / 2)0XKT, /2
= OoXKT, / 2+ 0(X)



3.0 The spread of diversity

A = Z P (b mutant copies |while k lineages)P(k lineages)

k=2
= P, (b)PKlineages)
k=2

We can then sum over the distribution of T, to give unconditionally:

P(l, =1) = XKE(T, )/ 2+ 0(5X)

As ox—0, at most one mutation occurs, so

P(k lineages|mutation at X)

_ o OOKE(T,)/2+0(5K)

" OSKE (T,) 2+ 0(X)
k=2

KE(T,)

S KE(T,)

and finally:

Oy =, P (D)P(K lineages)
k=2

i%;)kam
22 0<b<n

SKE(T,)




Example: constant size
population

For a constant size population, recall:

i("ﬁ’;) y

2 (e R0k-Ln—k+y

= - = — (exercise)
1 1
3 3
k=1 k=1
(b1} k-2
n-b— =2 (1—y \n—k
(k_2 )j X" (1=x)n-kdx
k=2 0

1
(=) (0 pe 2o
0 k=2
o n-1
1
k
k=1
t b-1
[(L—x)""dx )
_0 — i '
= =N =N (details of algebraare exercise)
=



Real data vs. predictions

Our constant size model predicts there are more rare than common

mutations:

o
N
o L2

0.15
|

Probability
0.10
|
*

0.05
|
L 4

0.00
|
{

0 20 40 60 80 100

Frequency of mutation in sample of 100 haplotypes

What do we see for real populations? A remarkable match for a
new worldwide dataset with 6.5 million mutations:

LC SNPs

§ — |LC indels

— |LC large deletions
g 1,000/ _if T SNPs
© “A map of human genetic
_GC) variation from population
e 10- level sequencing”
8 Nature Oct. 2010
>
-
2 Errors cluster at
8 0.14 extreme frequencies

I I | | I I
0.0 0.2 04 0.6 0.8 1.0
Variant allele frequency



Supplement: how old is my
mutation?

* What is the expected age of a mutation if it is seen in b
copies out of n?

* We use the same basic idea as before, and condition on
when it occurs. Let the age be £, ,. If the mutation occurs
while k ancestors, its age is obviously uniform across the
period while k ancestors:

Ep=UT +T ,+...+T

where U is uniform on (0,1) and independent of the T/s.

* Applying the same argument as before, we condition on
when the mutation occurs and define an indicator /,=1 if a
mutation occurs in a small interval [x,x+dx) containing x while
k ancestors

3 E(£, | I, =Lbcopies) p,, (B)P(, =1)
E(ﬁnb): Ilm =2

X—0

> P 0PI, =1)

k=2

Zn: P, DKE(T /24T +...+T.[T)
k=2

3" p (DKE(T, )

We can consider the constant size case again




Example: constant size popn

> P OKE(T, /24Ty +..+ T, IT)
k=2

- kZ; 0, (D)KE(T, )
355 ety
- bt

The algebra missed out is tedious — it relies on certain
combinatoric identities. For more (but not quite full) details,
see RCG’s notes, linked to on the webpage

The age of a mutation at frequency x in the entire
population
We just set b= \_nxj and let n—«, so b/n —x and

x| &L . 2X
E = |lim = lim ——|log n —log nx
(é:X) n—>oon_|_nxj j_\_nz><j+11 n—>ool_X[ g g ]

. 2X
=lim——[logn-logn—logx| REFS:
n—ol— X Kimura and Ohta (1973)
_ 2 Griffiths and Tavare (1998)

— 1_ Iog X Wiuf and Donnelly (1999)
— X



Practical implications

This theory is very important in practice!

— We have seen coalescence times, and
hence the frequency spectrum, are
affected by historical population size

— So —we can use the former to infer the

Iatter (e.g. Adams and Hudson, Genetics 2004, Williamson et al.
PNAS 2005)

— But there are always multiple possible
histories exactly matching an observed

Spectru IM (Myers, Fefferman and Patterson Theor. Pop. Biol.
2008)

The age of a mutation “should” fit with its
frequency

— Selectively advantageous mutations can
spread more quickly to high frequency

— Essentially all the approaches to find real
selection, in humans and other species,
use this idea

— Look for mutations which appear young,
but are at high frequency



Estimates of ancient
human population size
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4.0 The number of different
types

‘W I__|!

o o ® 0 K=5
We have talked about the number of segregating sites as a
measure of diversity

Another natural measure of diversity is the number of distinct
haplotypes K in a sample. How does this behave?

It is helpful to us to understand the distribution of this number
First, a definition. We say the infinitely-many-alleles model
holds if every mutation makes a new type, never seen before

in the population

Note, the infinitely-many-sites model is different from, but
implies, infinitely-many-alleles



Following “non-mutant” lines

G

o o ® 0 K=5
We will derive the mean, variance and p.g.f of K, the number
of distinct alleles.

 Looking back in time, view alleles (distinct types) as created
at mutation events

 To count alleles, we follow the tree, allowing coalescence
events, until we see any mutation event — then we know that
mutant ancestor passes on a unique type

* We view this as a death process: lines “die”, through either
mutation or coalescence

* The last line to be lost always represents some final type



Following “non-mutant” lines

Proposition 4.1

Under the infinite-alleles model of mutation for the standard
coalescent with mutation rate ¢, the number of alleles K in a
sample of size n can be written

K=I+1_,+..+1,+1
where the indicator variables |, are independent and

0
==

Proof

Consider following the coalescent history of the sample back
in time, allowing lineages to coalesce, and “killing” lineages
that mutate, until one lineage remains, at which point the
process terminates.

The number of lineages clearly decreases monotonically from
n to 1. While j lineages remain, we are tracing the history of a
random sample of j lineages in the population, so coalescence
occurs at rate j(j-1)/2 and mutation as a Poisson process of
total rate | 6/2.

Define =1 if the jth lineage is lost by mutation and 1,=0
otherwise. The I;’s are clearly independent. Denoting M; to be
the number of mutations while j ancestors in the coalescent:

P(I, =1)=1-P(l, =0)=1-P(M, =0)=1— 1+ _ ¢
(Propn 2.2) o+1-1 0+]-1
From the previous discussion, each lineage lost by mutation
adds one extra allele, and the last line remaining is an allele,
SO K=+l ,+...+1,+1




Following “non-mutant” lines

K=+l ,+..+1,+1

0
0+ -1

P(I, =1) =

As a corollary, it is straightforward to calculate the mean,
variance and p.g.f of K:

E(K)=E(l, )+E(, _)+...+E(l,)+1
n n-1

9_ :1+ i
20+ ]-1 20+ ]

Var(K) = ZVar(I ) Z 9+JJ 11))

Z6?+J

By definition of the p.g.f:
fK (z) — E(ZK) = E(Z|n+|n_1+....+|2+1)

. '] : J-1 or
_le:!E<z ) H[H—I—j -1 0+ ]- 1)

=1
(6r)"
oF
X" =x(x+1)...(x+n=1);1" =n!

using rising factorials



Rates in the coalescent

* A nice, powerful way to think of the coalescent is in terms of
event rates. As usual we think backwards in time

» While j lineages remain, the total coalescence rate is j(j-1)/2

» We can think of this as each pair of lineages coalescing,
independently, at rate 1

 Similarly, while j lineages, the total mutation rate is j £/2, so
on each lineage, mutation occurs independently at rate /2.

» The rate at which some event occurs is the sum of all the
rates, and the probability of each type of event can be
obtained by the relative rate.

Example 1: In our death process representation of generating
alleles, while j lineages (j>1):

Deathrate =6j/2+ j(]—-1)/2
0j/2

P(l; =1) = P(next eventmutation) = -
&j/2+ J(]-1)/2

Example 2: In the general coalescent, the probability the next
event is a mutation on lineage i say is:
Eventrate=6;/2+ j(]-1)/2
0/2 0
0i/2+ 1(1]-D/2 j(j-1+6)

P(lineage I mutates) =



The distribution of K

We can get the distribution of the number of alleles by
expanding the p.g.f:

()= E@) =) 3

o Zz P(K =k)

We use an identity involving Stirling numbers of the first kind:

x™ :x(x+1)...(x+n—1):zn: Sy "
(62)" HS(” k)[(¢z )
OREE-ENCE

P(K =k) = HS(”’ P

"

If we observe k alleles, we can obtain the m.l.e of the mutation
rate.

(k) =log[P(K =k)]=klog&—log [ [ (6+ j—1)+const
=1

a k & 1

- = - p—

00 0 -_11—1+9

(=) -

j=1 J 1+9

- E(K|]p = 6)

Thus, the m.l.e. is the first moment estimator.



Large samples

We can deduce asymptotic behaviour for the number of

alleles:
E(K)= 1+Z—_1+623—ni. -

J j—lJ j=1 J(]‘I‘H)
E(K)~9Iognasn—>oo.
Var (K
(K)= Z 9+J)

Var(K) ~ 6?Iog nasn— o

Asymptotically, almost all segregating sites uniquely define a
new type in the sample and the number which do not is finite.



Supplement: Multiplicity of
alleles

G

o o ® 0 K=5
« Suppose we are interested in the full distribution of the
number of alleles and their frequencies in the sample.

* We will construct an urn model, Hoppe’s urn, to sample from
this.

* Note: the death process shown above defines both the
alleles (colours) and how many copies of each is in the
sample

* At coalescence events, pairs of lineages coalesce at random
* All lineages are associated with colours

* IDEA: We reverse time in the death process, so new types
are “born”



Supplement: Multiplicity of
alleles

G

o o 0 K=5
« Backward in time: While j of n lineages remain,
: : 0
P(death viamutation) = _
0+ )-1

* Forward in time, we start with 1 lineage, and while |:

. . %
P(allelebornviamutation) = ——

0+ |
P(particular lineage splits) = J _xl:i_
0+] | 6+

» At mutation events, we add a new “colour” to the tree
* At lineage branches, the number of copies of chosen colour
increases by 1



Supplement: Hoppe's urn

» We have effectively derived an urn representation

* Represent alleles by balls of different colours in an urn,
similarly to the “descendants” urn model we earlier introduced

* We add an extra detail. There’s an extra “mutation” ball, of
mass @ relative to the other balls with mass 1, and chosen with
probability proportional to its mass

Definition (Hoppe’s urn model):
Hoppe’s urn model constructs a sample of allelic types and
multiplicities for n haplotypes under the infinite-alleles model

1. Begin with a white and a coloured ball, of mass #and 1.

2. While ] non-white balls of mass 1, pull out one of the j+1
balls with probability proportional to its mass. If the white
ball, replace in the urn and add in a single ball of a new
colour. If a coloured ball, replace in the urn and add in an
additional ball of the same colour

3. When there are n non-white balls, stop.
The number of different colours is the number of haplotypes in

the sample, and the multiplicity of each colour the multiplicity
of these types, summing to n.



Supplement: birth/death and
Hoppe’s urn

| Probability

! 0+1
Q+2
o G
3‘!i’ 0+3
1 @

1
4 0+4
5 P S
93| ° 1, 0+5
e @ o %
rw | 6 +6
o o ® 0

The probabilities of numbered
events are identical in the urn and the genealogy



Ewen’s sampling formula

* Define afj) to be the number of
types occurring at frequencyj in
the sample for j=1,2,..,n. Then if

* Definition: Ewens’ sampling
formula gives the probability of

the sample configuration:

k n|

( (n) n
H i“Va(j)

P(a(1),a(2),...,a(n)) =

* This can be proved inductively
from the urn model

* Note (n,K) is sufficient for &



5.0 Gene trees!

e Coalescent trees are not, in
general, unique given
variation data

 We’d like a historical
representation of a sample
that is “well defined”, but
reflects historical relationships
among samples

e The solution is to construct a
gene tree

* We again assume infinite-
sites: each mutation occurs at
a position never before
mutant



Example gene tree

L P o o2
®6
®s 7 ®5 .7
o 1 ®s +4 1 @3
a b ¢ d e f a b ¢ d e
Coalescent tree Gene tree
= N W NG o ~ 0o
a ® oo
b —@ -
c —© -
d ® -
e @ o—
f ® ®

Data

f



5.0 Gene trees!

In a gene tree, vertices represent mutations
These are our information, from variation data

In general, the tree is not binary and a vertex can have
any number of descendants

We often cluster identical sequences and allow
multiplicities on the tips of the tree

Lineages below a mutation inherit the mutation
We will show

1. The data and the gene tree are exactly equivalent
2. One can check infinite-sites “compatibility” by deriving a necessary
and sufficient condition for a gene tree to exist
To begin constructing a tree, think of our data as binary,
with the mutant type denoted by 1, so the “ancestral”
type is 0. We define an nxs incidence matrix S

— Each column represents a segregating site, with the total number
of sites the number of mutations s in the sample history

— Each row represents a haplotype

o O O +» =, O
O B B B B =
R O O O O O
o O O O O B
o O O O O
R O O O O O
o O r = = O
o »r O O O O



The incidence matrix

o O O +» =, O
O L B B =k =
r O O O O O

o O o o ¥
o O O O O B
r O O O O O
o O r = = O
o »r O O O O

0
s; =lifind.Imutantatsite |, s; = Ootherwise
1<i<n,1<J<s

 We say a sequence is ancestral if it perfectly matches the
type of the ancestor

* This corresponds to a row of zeros in the incidence matrix
(mutation occur since the ancestor)

* Forsite i, define the set of carriers of the mutation:

O ={m:s_.=1}1=12...,s
Example above:

O, ={2,3},0, ={1,2,3,4,5},0, = O, ={6},
O4 = 05 :{1}’07 :{213’4}108 :{5}
Notice that in these data, we have the following:
0,c0,c0,0,cO,
0,c0.c0,,0, cO,
O, N O, = @ otherwise



Ordering by inclusion

This pattern turns out to be general, and a powerful way
to test the infinitely-many-sites assumption with the
incidence matrix:

Proposition 5.1

If the infinitely-many-sites model holds, then defining O,
to be the set of individuals in a sample of size n
carrying the ith mutation j=1,2,...,s, the O/s are
ordered by inclusion:

foralll<i, j <s,either
0, c0,,0,c0,0r0,NO,; =

Proof

Consider the coalescent tree for the sample. For any i and
j, under infinite-sites the ith and jth mutations occur
on tree edges. One of the following must occur: the
mutation j edge is ancestral to the mutation j edge,
the opposite occurs, or neither, respectively leading to
the three conditions above.




Example

* Isthe following dataset, with sequence ¢ ancestral,
compatible with infinite-sites?

> O 0O >
— 4 4
0O 0o 4 o0
> > r» P
4 0o 4 o
O O > O
O O 0O 0O o

A G C G C G

Incidence matrix, noting c is ancestral:

R B, O O B
) O O O
©O O O »r O
m, O O O O
O B O KL, O
O O O » O
S = I = N =
R B O O B

Check ordering by inclusion. Note that
O, ={1,4,5},0, ={2,4},0,nO, # ®,0, £ O;,0, O,

Thus the data are not ordered by inclusion, so not
compatible with infinite-sites
We will explore this idea more later on.

Note: removing sequence b would fix things.

S rr O +~» O



Building gene trees

* Suppose we take a gene tree and trace a “path
to the root” for each sequence:

2
8
4
3
5
9
1 6
.
f b C a e d g
 Denote the root as 0 and go backwards in time:
a: 6520
b: 1520
c: 520
d: 794820
e: 94820
f: 320
g: o

* These “paths to root” are enough to build the
gene tree, so equivalent to a gene tree

* We need an algorithm to order mutations from
variation data — Gusfield’s algorithm




Gusfield’s algorithm

Gusfield, D.(1991). Efficient algorithms for inferring
evolutionary trees. Networks, 21, 19-28.

Algorithm 5.2

For data compatible with the infinite-sites model, the
following algorithm allows the generation of a gene
tree based on an incidence matrix consisting of 0’s and
1’s, with the ancestral type always denoted by O.

1. Reorder the columns, and column labels, by
considering each column as a binary number, and
ordering so the columns are decreasing. If duplicate
columns occur, choose an arbitrary non-increasing
column order.

2. For each sequence, construct a path to the root by
reading from right to left in the corresponding row of
the incidence matrix, recording mutation labels
where 1’s occur in rows, and append O to this list.

3. Given paths back to the root, use these to draw the
gene tree.



Example

A recent common ancestry for human Y chromosomes
Michael F. Hammer, Nature 1995. 16 sequences, 4

segregating sites seen. 1.

0O 0 0 O O 0 0 O
0O 1 0 O 1 0 0 O
1 0 0 O O 1 0 O
1 0 1 1 O 1 1 1
1 0 0 1 O 1 1 O

Incidence matrix Reordered incidence matrix

2. 3.

a: o

b: 20

c: 10

d: 3410

e: 410

Paths to root

a7 b:l c:3 el di4
Gene tree



Variation data <& Gene tree

Proposition 5.3

Any variation dataset expressed in the form of an
incidence matrix, where the sets of carriers of each
mutation are ordered by inclusion, is equivalent to a
gene tree.

Notes

1. Thisimplies that ordering by inclusion is both
necessary (proposition 5.1) and sufficient for a gene
tree to exist, and hence for the data to be consistent
with infinite-sites, so this is a complete check

2. Clearly a gene tree can be used to give an incidence
matrix, which is automatically compatible with
infinite-sites, so we must only prove a gene tree
exists given an incidence matrix.

3. We will prove that Gusfield’s algorithm correctly
produces such a gene tree.



Variation data <& Gene tree

Proof of proposition:

We prove Gusfield’s algorithm yields a set of paths to root
giving a valid gene tree by induction on the number
of sequences so far included in the gene tree. We
consider constructing the tree, successively adding in
seguences.

First, assume wlog all columns in the incidence matrix are
unique (identical columns can be collapsed into one,
if present)

After reordering the matrix, viewing each column as a
binary number, note that
columni < column | = 0 cO =

O, c0O;,0r0,NO; = columni < column |

The first two algorithm steps obviously lead to a set of
sequences of paths to root for each row in the
incidence matrix. For the first sequence, we simply
add the ordered sequence of mutations that
sequence carries, iy i, ...i; =0 0

X 1
g Irl—l
0,

Suppose we have successfully added k-1 sequences to the

gene tree.



Variation data <& Gene tree

Proof ctd:

We consider adding the kth sequence and Gusfield’s
algorithm provides an ordered sequence of
mutations this sequence carries:

i iy 'rkk =0

Each of these mutations is carried by sequence k, so they
are not disjoint, and as noted above:

columniy < columni, <...<co|umnirkk =

0,c0,..cO, ={12,...,n}

(5.1)

Mutations on this list are either included on the current
gene tree or not. Let i:f be the first mutation already
included in the current gene tree. Then form a new
edge containing mutations i ,i,,...i;, and attach it

to node i;-(, to include individual k in the gene tree:

We must now only show that the sequence of mutations
on the pre-existing path from i;‘ to the root is exactly

i, .01 =0

IS RERR



Variation data <& Gene tree

Proof ctd:
Note that by equation (5.1):
Oik O | ...COik ={12,...,n} (5.2)

j+
We know that some previous sequence m carries
mutation I;-(and hence by (5.2), m must carry all the
mutations

-k =k ko
iy -0 =0

Because we successfully added sequence m in, according
to the inductive hypothesis, these mutations all lie on
the pre-constructed gene tree, and by (5.2), since
we add mutations in the order specified by Gusfield’s
algorithm, they lie on the path upward from node
to the root.

Conversely, any mutation g on the path from node i;‘ up
to the root is carried by sequence m, and since m
carries i;‘, ordering by inclusion implies:

O, <O,
J

Thus sequence k also carries mutation g, so for some r>j

qa=i

Thus, the mutations on the path from sequence k to the

root are exactly those carried by sequence k, and we
successfully add this additional sequence in



Bells and whistles

* Mutations with identical patterns in the sample can be
randomly permuted on the edge on which they occur

f b ¢ a e d g f b ¢ a e d g
8, 4, 9 all equivalent

* |dentical sequences by convention share a single edge,
labelled with multiplicity of the sequence

e Unrooted trees do not assume we know the ancestral
type at each mutation

— Given say A/G types at a site, we may not be able
to infer which is ancestral

— An unrooted tree incorporates the set of all
possible rooted trees.



Unrooted trees

An unrooted tree has sequences (instead of sites) as
vertices. Some sequences are inferred in general

Edges between sequences contain the mutations
separating them

A simple way to construct an unrooted tree from data
is to construct a rooted tree, then “remove” root

In general, multiple (rooted) gene trees can give the
same unrooted tree.

Straighten line to root, slide each mutation up from its
vertex, and collapse edges with no mutations:

cC a e d g

Rooted



Unrooted trees

Example 1

f b cac ¢ @ O OO0 O

Rooted tree 1. Slide mutations up

6
OO0 O o0

2. Remove terminal edges

3. Unrooted tree



Example 2

Mitochondrial DNA sample

S. (1991)

Extensive mitochondrial diversity within a single
Amerindian tribe.

Proc. Nat. Acad. Sci. USA 88 8720-8724.
North American Indian tribe,

the Nuu-Chah-Nulth from Vancouver Island.

N = 600 (women).

1 213|456l 7]ls]l@ol1011j12113 1141511617 |18
Freq
illa ¢ ¢ A A|lTCCTOC T T C T C T T C 2
b A G G A AT CCT T T T ¢ T C T T C 2
Clec A~ ¢ ¢ aA|lCCcCcT C T T ¢ ¢ ¢ T T T 1
d G G A G A|lCCCCC T T C Cc C T T C 3
el ¢ ¢ A A|lTCCTOC T T C T C T T C 19
f c G G A Gg)|TCCTOC T T C¢ T C T T C 1
gl G GG AlCCCcT C C CCCOCT T T| 1
h- c G G G AlCCCT C ¢ ¢ T ¢ ¢ T T T 1
’E.- c G G g aAa|lCCCc T C T T ¢ ¢ C C C T 4
j G G G G A)lCCCc T C T T C C C Cc T T ]
;1.7 c G G G Aa)lCCCc T C T T C ¢ C T T C 5
J c ¢ G G AlCcCCcT C T T ¢ Cc C T T T 4
mj|jc ¢ ¢ ¢ AalCccTTOC T T C C C T T C 3
n|ea ¢ ¢ g alCcCTCTC T T ¢ ¢ T T T C 1
Ward, R. H. Frazier, B. L., Dew, K. and Paabo,




Example 2

123456789111111111
01234561738
a0/100101000000010000
b|1100101000100010000
c|/010000000O00O0OO0O0OO0O0OO01
d|/0010000010000000O0O
e|/000101000000010000O0
f/|000111000000010000
g|0000000O00O0O0O0O11000O0O01
h|000000000O0O11100001
i {100000000O0O0O0OO0OOOOOO0O111
j |10000000O0O0OO0O0OO0OOOOOO1IO01
k|0000O0O0OO0OOOOOOOOOOOOO
/| 10000000000O00O0O00O0O0OO0OO0OO01
mi00O00O00O0O0O100000O0OO0O0OO00O
nl0000001000000O01000O0

A rooted tree can be constructed using Gusfield’s
algorithm from above incidence matrix (root is
sequence k)



Example 2 continued

Unrooted Nuu-Chah-Nulth tree

® pyrimidine sites; B purine sites

For these data | gave one possible choice of ancestral
sequences leading to a rooted tree. We could have, e.g.,
used sequence | as ancestral

In general, for an unrooted tree containing s mutations,
the total number of different sequences on edges
(including tips) is s+1. Any of these could be the ancestor

type.

Hence, there are s+1 possible rooted gene trees for a
given unrooted tree, in this example 19 rooted gene trees.

Different root choices “toggle” 0 and 1 within columns



Conditions for trees

* The infinite-sites model might be a strong assumption
for some species

* @Given data, it is of interest to test this model
* Suppose we know ancestral types

* A natural approach is to ask if we can build a rooted
gene tree, and hence a coalescent tree.

* |f so, we say our data is compatible with the infinite-
sites model.

* |tis easy to prove the following:

Proposition 5.4

A variation dataset expressed in the form of an incidence
matrix is compatible with the infinite-sites model if
and only if the sets of carriers of each mutation are
ordered by inclusion.

Proof

Proposition 5.1 shows necessity of ordering-by-inclusion.
The proof of Gusfield’s algorithm (Proposition 5.3)
shows we can build a gene tree whenever ordering-
by-inclusion holds, which immediately implies
sufficiency



Conditions for trees

* There is a simple way to test this
condition

Corollary 5.5

A variation dataset expressed in the form of an incidence
matrix, where ancestral types are coded 0 and
mutant types coded 1, is compatible with the infinite-
sites model if and only if no pair of sites shows the

pattern 1 0
0 1
1 1

in any 3 rows of the incidence matrix



Example revisited

* Isthe following dataset, with sequence ¢ ancestral,
compatible with infinite-sites?

> O 0O >
— 4 4
0O 0o 4 o0
> > r» P
4 0o 4 o
O O > O
O O 0O 0O o

A G C G C G

Incidence matrix, noting c is ancestral:

R B, O O B
) O O O
©O O O »r O
m, O O O O
O B O KL, O
O O O » O
S = I = N =
R B O O B
©O B O L O

Check new condition.

Note that for sites 1 and 5, rows 1, 2 and 4 respectively give
the pattern 1 0

01
1 1

so these data are incompatible with infinite-sites.



Conditions for trees

Proof of Corollary.

Suppose we see this pattern at two sites, i and j say and
some 3 rows.

R RO -

[
| 1
m O
n 1
Clearly
O, 2{l,n}, O, o{m,n},O; o{m}, O; o{l}
O, ctOj,Oj ¢ 0O, O, mOj = O

so ordering by inclusion does not hold, and the data are
incompatible with infinite-sites, proving necessity.

Conversely if the data are incompatible with infinite sites,
by the previous proposition for some pair of columns
i, jordering by inclusion does not hold:

O ¢0;,=31€0,1¢0,
O, 0, =Img0,,meO,
O0,NO;#® =3dne0;,ne0,

For columns iand jand rows /, m, nin the incidence
matrix:

so the pattern is seen,
proving sufficiency

P PO -

[
| 1
m O
n 1



Unknown ancestral types

* |f we don’t know ancestral types, at each site we can’t
tell who has the mutation, only who differs

* The incidence matrix is defined up to “toggling” 0-1
status at each site

 The compatibility question becomes whether it is
possible to find a toggling to allow a rooted tree

Corollary 5.6

A variation dataset expressed in the form of an incidence
matrix, where ancestral types are unknown, is
compatible with the infinite-sites model if and only if
no pair of sites shows the pattern

0 0
1 0
0 1
1 1

in any 4 rows of the incidence matrix



Conditions for trees

Proof of Corollary.
Suppose we see this pattern at two sites, i and j say and
some 4 rows. 0 0
10
01
11

Clearly, toggling 0-1 status at either site this pattern

remains. Therefore for any toggling the pattern
10

0 1
11
is seen, and the data are incompatible with a rooted tree

and hence infinite-sites. This proves necessity.

For the converse, suppose there is no such pattern in any
pair of columns. Toggle the matrix columns, so the
first sequence is a row of zeros (i.e. pick this to be
ancestral). Consider columnsiandj. They do not

show the pattern 0 0
10

0 1
11
The first row of these two columnsis 0 0 by
construction, so no other 3 rows have the pattern1 o
0 1
11

Hence with this choice of ancestral sequence, there is a
rooted gene tree by Corollary 5.3, giving sufficiency.



Unknown ancestral types
and unrooted trees

Any rooted tree can “build” an unrooted tree
An unrooted tree can “build” multiple rooted trees.

Notice an unrooted tree is invariant to 0-1 toggling of
sites (because mutations on edges just show
differences between sequences).

Thus:

1. We can view an unrooted tree as the “ancestral type
unknown” equivalent of a (rooted) gene tree

2. The unrooted tree is unique even if ancestral types are
unknown (up to permutation of equivalent mutations)

3.  Corollary 5.6 can be viewed as a condition on the existence of
an unrooted tree:

Ancestral types 1
Rooted No

known < <> 0

Infinite sites tree pattern

Ancestral types 0
unknown tUnrooted @ Nott 1
Infinite sites ree pattern

1

O O



6.0 The probability of a
dataset

Suppose we observe some
variation data

What is its likelihood?

We can equivalently think of this
as the probability of a gene tree

We only consider the infinite-sites
case

We begin with a simple example



6.0 Example

* Consider the following dataset,
with O ancestral:

1 1
1 1
0O O

e What is the likelihood of the data as a
function of &?

e What is the distribution of the TMRCA
conditional on &and the data?

* First, note there is only one possible

coalescent tree:

Gene tree Coalescent tree




Coalescent histories

‘_:::::::::::::::::::::::::||:||:_1
¢
¢
[ ]
* R H.y
O T Hj
®
T T L F

Define the history of a set of sequences:
H=(H,,H,,....H,)

where H; defines what occurs at the jth mutation or
coalescence event back in time, i.e. whether this event is a
mutation or coalescence event, and which lineage(s) are
involved. E.g. H; shown above is a mutation on lineage 5.



Coalescent histories

Suppose there are k lineages remaining before the jth event.
H; Is either a coalescence between two lineages m and n,
C,(m,n) or a mutation on some lineage m, M, (m):

k
Totaleventrate: £2j+ k@/2=k(k-1+86)/2

p[|—|_ :Ck(m,n)]: 1 _ 2
| K(k—1+0)/2  Kk(k—1+0)
0/2 0 (6.1)

PIH, =M, (m)]= k(k—1+6)/2  k(k—1+6)

Different events are independent, conditional on the number of
edges k remaining, due to the Markov property of Poisson
processes.

For the example: L= P[C3 1,2),M,(1),M,(2),C, (1,2)]
2 0
T3(3-1+0) 2(2-1+0)

0 2
“202-1+0) 2(2-1+0)

92
6(2+0)(1+0)°

H, is a coalescence, H, and
H, are mutations, H, coales.



Times conditional on history

Having sampled the sample history, suppose there are k
lineages remaining immediately before the jth event, H; .
Events happen as a Poisson process, so times between
events are independent and exponential:

K
Total eventrate: (2j+ k@/2=k(k-1+8)/2

Let timebetween events J—1land Jbe E;
E, ~exp(k(k-1+6)/2)

2
E[Ej]:
k(k—1+6)

For the example we can write the TMRCA as a sum of 4
independent exponentials. Then for example:

E(T,+T,) = 2 +3x 2
3(3-1+06) 2(2-1+6)
2 3 |
3(2+60) 1+6 4
The oldest mutation has Es
expected age E,

s o
+ E,
3(2+60) 1+6



Times given data

Alternatively - and equivalently - obtain the joint distribution
directly: |

S
B

1E(t?,’tz | D) c P(D |t3’t2)f(t3’t2)

2
= %[exp(— t,0/2) ;(%j exp(—t,8/2)exp(~|t, +t,]0/2)

x 3exp(—3t,) exp(-t,)

This expression integrates to give the likelihood
Normalise to obtain the joint conditional density

The conditional density can be used to give the expected

TMRCA: 2%
E(Ts +T2 | D) — jj(ts "'tz) f (ts’tz | D)dtsdtz
00

2 N 3
3(2+60) 1+6

Problem sheet 4 has another example




Complex datasets

* For a general dataset, we have seen
there is no unique coalescent tree.

e We can still sum over histories

* Given data D, define H(D) to be the
(finite) set of possible histories
producing the data

* The likelihood is just:

L(D)= » P(HND)= » P(H)

HeH(D) HeH(D)
= » P(H;,H,,....,H;)
HeH(D)
f
= Z HP(Hilki)
HeH(D) i=1

* To obtain expected ages of mutations,
average over histories given data



Review

140

Hammer et al.
1 (PNAS, 2000)
q

120+

1

http://www.pnas.org/content/97/12/676
9/F1.expansion.html

100 -

3
x 10" years
fas]
=
t

&
=
i
T
L

| |
3-‘ & 15

2¢ ! 0e 16
& 11 * 17 18
(432 | 149

Ht 1A 2 1B 1F 3G 3A 4. 45 5 1R Med 1Ha 1THe 1L 11 1C 1L 1G 1D

20+

In the Y-chromosome data.

* The model is the constant-size coalescent we derived

» The calibration into years uses M=5,000, estimated as we
have seen (and 20 years per generation)

 The structure of the gene tree is drawn using Gusfield’s
algorithm

» The ages of the mutations are obtained conditional on the
data, as we have seen, by “summing” over possible histories

* The supplement describes how this summing was done
efficiently, using importance sampling (1S).



Supplement: Importance
sampling (IS)

There is typically an extremely large space of
histories to sum...e.g. n!(n-1)!/2" trees of n segs.

Direct summation often computationally infeasible

Most histories have a negligible contribution to the
likelihood

Can we add up the “important” terms?
We use a simple rearrangement to do this

L(D)= > P(H)

For ANY distribution
HeH(D)

on histories with p.m.f
<—— Q, giving non-zero

=3 ﬁQ( H) orobabilities over

HeH(D) Q(H) H(D)
—E P(H ) Q is called a proposal
°| Q(H) distribution

P(H ) <

where we sample H' using Q

—Z



Importance sampling

ith importance
weight

We simulate M different histories by sampling each
independently using the proposal Q

Calculate the M corresponding importance weights
and average

Each importance weight is an i.i.d random variable.

The previous page shows the mean of the importance
weight distribution, sampling under Q, is the
likelihood we seek.

The WLLN then implies the likelihood approximation
above is exact as M— e~ for any valid proposal
How to pick a “good” proposal distribution, i.e. Q?

— We must be able to write down Q

— Picking a “good” proposal just means trying to make
importance weights have low variance

— In the coalescent setting, that means picking “likely
histories” given the data



Supplement: IS

ith importance
weight

The best (known) scheme for infinite sites is due to
Stephens and Donnelly (JRSS B, 2000).

They construct a proposal distribution Q on histories as
follows.

Sample historical events successively back in time.

2. Before eventj, identify the subset of n, lineages to whom
the next event could occur

3. Choose one of these lineages uniformly at random:
P(lineage i)=1/ n, and perform the (unique) corresponding
mutation or coalescence event

4. Return to step 2 until common ancestor reached

[Note: no @ The mutation rate comes in to the
importance weights only through P]



a b

Example

Consider a dataset corresponding to the below gene tree, and
sampling using Stephens’ and Donnelly’s Q.

C

IfH, =M,(2):

I—Q—I

l

d

For the first event in history
lineage b could mutate, or lineages
c and d might coalesce.

Lineage a cannot be involved

Thus ny,=3 and
P[H,=M,(2)]=1/3
P[H,=C,(34)]|=1/3+1/3=2/3
We choose a first event.

Next event chosen same way, until
common ancestor reached

All lineages can have an event, n,=4:

P[H, =C,(L2)|H, =M, (2)]=1/4+1/4=1/2
P[H, =C,(34)|H, =M, (2)]=1/4+1/4=1/2

Continuing, for example:
Q[H =M, (2),C,(3,4),M,(3),C,(1,2), Mz(l),Cz(l,Z)]:gxzxgxlxlxl

1 11



Importance sampling
example

4 possible
histories:

0
1

History 1: C5(1,2),M,(3),C,(1,2)

ot |

History 2: M;(3),C,4(1,2), History 3: M;(3),C4(2,3),C,(1,2)
C,(1,2) History 4: M;(3),C,4(1,3),C,(1,2)

Initially: Sequence 1 or 2 can coalesce, sequence 3 can
mutate so ny,=3. Any one of the 3 sequences can be chosen
for the first event, with probability 1/3.

Q(Hist1) = Q(C, (L2).M, (3),C, (12)) = %xlxl

Q(Hist2) = Q(M, (3),C, (12),C, (12)) = %x%xl:%

Q(Hist3) :Q(Hist4)=é



Importance sampling
example
2

Q(Hist1) = Q(C,(12),M,(3),C,(1,2)) = gxlxl

Q(Hist2) =Q(M,(3).C,(1.2).C (1z)>_%x;x1_é

1 Q(Hist3)=Q(Hist4)==

2 y % y 2
3(2+60) 2(01+60) 2(1+6)
% 2 2
X X
3(2+60) 3(2+60) 2(1+06)

% 2 2

P(Hist3) = P(Hist4) = 321 0) X 32+ 0) x 2010) by equation (6.1)

P(Hist1) = P(C,(1,2),M,(3),C,(1,2)) =

P(Hist2) = P(M,(3),C,(12),C,(1,2)) =

History Likelihood terms Importance
weight

History 1 32 +9)(1+9) 2(2+9)(1+ 0)?
History 2 9(2+92)€(1+9) W %
History 3 9(2+92)6;(1+ 0) 1/9 %
History 4 9(2+92)f(1+0) 1/9 m;ﬁ
Likelihood (p)- 3(2+90)(1+ 0) [1ie+ 2-39} i _

N.B. For any fvalue, mean importance weight is true likelihood.
If 6=2, importance weights all identical — scheme is optimal



Glossary of terms used

Allele: a mutation or combination of mutations forming a distinct type in the
population, within the region spanned by a haplotype

Coalescence event: An event back in time where two or more sequences share a
single ancestor

Effective population size: the size of the Wright-Fisher population (which may
change through time) that most accurately models evolutionary history in a real-
world population

Frequency spectrum of mutations: the distribution of the number of mutant copies
in a sample of size n over mutations segregating in a sample. We can define the
observed frequency spectrum seen in an actual sample, the hypothetical expected
frequency spectrum, and the population frequency spectrum (as n—>oo).

Gene tree. A graphical object representing the history of a sample of sequences,
with nodes representing mutations back in time. The type of the ancestor to the
sequences corresponds to the top of the tree.

Haplotype (also loosely referred to as sequence, or sometimes gene): the DNA
sequence of a region of DNA, sometimes interpreted to include only variable
positions, and sometimes viewed as a binary sequence of 0’s and 1’s

Incidence matrix. A matrix of 0’s and 1’s representing variation in a sample when
there are only two types present at each segregating site. Rows represent
sequences, and columns correspond to sites. If known, the ancestral type is often
represented by O at each site.

Infinitely-many-sites model. The idea that mutation is rare (true in many species) so
that mutations always hit different positions in the genome. This means if a
segregating site is observed, it is always the result of a single historical mutation,
never two independent, identical mutations at the same position.

Infinitely-many-alleles model. The related idea that mutations always create new
alleles in the population. Thus if two haplotypes are identical, there are no
mutations on the history between them before their MRCA. NB — the infinitely-
many-sites model implies the infinitely-many-alleles model, so is a special case
(under infinite-sites, each mutation is new in the population so trivially defines a
new allele).

Most recent common ancestor (MRCA): the first ancestor in the history of a sample
of n sequences who all n sequences are descended from.



Glossary of terms used

Root sequence: A sequence whose type is identical to that of the MRCA. In the
binary infinite-sites model representation of variation, this corresponds to a
sequence whose type is all zeros and can be used to define which type is
represented as 0, which as 1, at each mutation.

Segregating site: a mutation seen in some, but not all, members of a sample of size n
Time to the most recent common ancestor (TMRCA): the time back at which the
MRCA lived

Unrooted tree. A graphical object representing the relationships among a sample of
sequences, with nodes representing sequences and mutations along edges. The
type of the ancestor to the sequences does not need to be known.

Watterson’s estimator: A moment-based estimator of the population scaled
mutation rate, based on the number of observed segregating sites in a sample of
size n.



