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• Class problem sheets (7 sheets) are 
posted online
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weeks.)
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Population genetics

• All organisms differ – due to 
genetic variation

– Unrelated people differ more 
than relatives

– Still, people share 
characteristics

• Hair colour, eye colour, 
disease susceptibility, 
colour-blindness, blood 
group..... 

Figure 2: Nests with both host and parasitic common cuckoo eggs, illustrating near-perfect 

mimicry to the human eye. Black arrows identify cuckoo egg.

© 2010 Nature Education Courtesy of M. Honza, T. Grim, & C. Moskat. All rights reserved

• These characteristics are all the result of genetic variation

• Why, and how, do we expect mutations to be shared?

•The answer comes only by carefully considering models for 

genetic data, and their implications

• We need to look “back in time” to discover how mutations 

arise and spread in a population

(Wellcome Trust, 2010)

http://www.nature.com/scitable


Y-chromosome 
“genealogical tree”

• The axis is time in thousands of years, for a sample of  1,371 human 
males.  Tree built using DNA sequences.
• Black circles represent mutations seen in those samples 
• Shared characteristics come from rare mutations in the distant past
• This tree and the times on it were inferred based on the coalescent 
model
• Computationally intensive inference (Griffiths and Tavaré, 1994)
• This model, its derivation, its properties and inference under the 
model are what we will look at first, using : stochastic processes ,and 
graph theory.

Hammer et al.
(PNAS, 2000)
http://www.pnas.org/content/97/12/676
9/F1.expansion.html



Outline of the course

• Two parts, of 8 lectures each

• Part I (weeks 1-4)

– The “neutral model”

– Modelling genetic data

– Genealogical relationships  

– Mutation patterns in populations

• Part II (weeks 5-8)

– Extending the neutral model

– Recombination and “shuffling of 
genetic material”

– Natural selection

– Diffusion process models in genetics



The Wright-Fisher model

• Suppose we are interested in a 
fragment of DNA, which might 
look like this:

AC..AAACGTTTAGCCGAT...GG

• There are M (very similar) copies 
of this fragment in the whole 
population

• M is often very large (>>1000)

• For now, we view each fragment 
as an “object”, called a haplotype 
or gene or sequence

– Could be a few positions as shown 
above, or the whole Y-chromosome 
of 58,000,000 letters (bases)

• Our task: model the history of 
these fragments in the population



The Wright-Fisher model

• Fisher, Wright (1930-31)

• “The simplest imaginable inheritance 
model”

• Models the evolution of a population 
forward in time from one generation to 
the next

• We then (approximately) go back in time 

• Constant size population of M haplotypes

• Generations are discrete, and 
independent: in a generation, a complete 
new set of M haplotypes is created, and 
all M existing haplotypes die

• Each of the M new haplotypes inherits 
their genetic material from the previous 
generation, choosing their “parent” 
independently and uniformly at random



A picture makes this clearer.
Formally, we form generation k+1 by choosing M
“parents” at random in generation k with 
replacement
If parent of haplotype i in generation k+1 is Zi

Some population members have 0 children, 
others more than 1 child:

Each haplotype 
chooses parent 
in previous 
generation

If haplotypes 
share a parent 
back in time, this 
is called a 
coalescence 
event
If we continue 
back in time, 
eventually a 
single parent is 
reached, the 
Most Recent 
Common 
Ancestor 
(MRCA) :
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Looking back in time
• We seek to understand the distribution of 

the relationships among individuals 
(haplotypes) backward in time

– Why? Our DNA today is inherited from 
our ancestors

– Looking at only “real” ancestors means we 
don’t have to keep track of the entire 
population

• Given there are i ancestral lineages at 
generation k+1, define pij as the probability 
there are j parents in generation k, j=1,2,...,i

• Our “roadmap” is to proceed as follows:
– We characterise pij

– We assume M is large compared to i

– This means the population size is big compared to 
a sample we take from it

– In this setting, we use pij to approximate the 
distribution of the total time while exactly i
ancestors remain

– We rescale this time, to measure it in natural units

– We show that as M becomes large, the whole 
(rescaled) backward process converges 
(beautifully) to a limit, called the coalescent



Example: two lineages

• Suppose we have two ancestors in 
generation k+1. Then in generation k there 
are 1 or 2 ancestors:

• Generations are independent

• Define t2 as the time until a

coalescence event occurs, then

• Obviously, this is geometric . What happens if 
M is very large? Note the mean time

• If we measure time in units of M generations, 
the mean time is 1; independent of M. 
Proposition 1.0 shows that as M becomes 
large, this rescaled time has an exp(1) 
distribution.
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Example: two lineages
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Proposition 1.0
In a Wright-Fisher model with population size M, for a 
sample of size two taken from the population define t2 as 
the time back until a coalescence event occurs. Then 
setting T2=t2/M to measure time in units of M generations, 
in the limit as M→∞, T2 has an exponential distribution: 
T2~exp(1).

Proof From above:

Note: by independence of generations, this extends 
to give the limiting time back until coalescence from 
any time point where we have two lineages.



M and coalescence times in 
humans and other animals

In humans, it is known that “appropriate” values 
for M are surprisingly small. This is 
approximation is called the “effective 
population size”:

M ≈ 20,000 in Europe

M ≈ 19,000 in East Asia

M < 50,000 for all human populations, highest 
in Africa



M and coalescence times in 
humans and other animals

The mean coalescence time for two lineages  is 

just                 in units of M generations, so if we 

have G=28 years per generation, the average 

ancestry depth for 2 human chromosomes is

1 ×M ×G in years

(20,000-50,000) × 28 =480,000-1,400,000 years

M varies widely across species (Charlesworth, 
Nature Reviews Genetics 2009):

25,000,000 for E.coli

2,000,000 for fruit fly 

D. Melanogaster

1)( 2 TE

<100 for Salamanders 

(Funk et al. 1999)



Samples of size n

• Suppose we are now following the history 
back in time of a sample of size n. 

• Measure time backwards and suppose τ
generations back, there are ξ(τ) lineages 
remaining, ξ(0)=n

• Generations are independent, so ξ(τ) behaves 
as  a Markov process {ξ(τ), τ = 0, 1, . . .}
– In other words, given ξ(0) , ξ(1) ,..., ξ(τ) the 

distribution of ξ(τ+1) depends only on ξ(τ)

– The Markov process is homogeneous (does not 
vary across generations)

• Our pij’s define the transition matrix P:

• Question – given i lineages currently, what is 
the distribution of the time until the next 
coalescence event?

• At the next coalescence event, how many 
lineages coalesce?

))()1(( ijPpij  tt



Samples of size n
We consider the transition matrix: 
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Samples of size n
What is the probability that more than one pair of 

lineages coalesce at the same time? This is

Putting this together, supposing M is large and we have i
lineages, in a single generation, to 

1. In words, asymptotically, only one pair of lineages can 
coalesce at a time – we have a binary tree.

2. By symmetry, each time a coalescence occurs, all 
pairs of lineages are equally likely to coalesce 

3. To characterise the asymptotic distribution of trees, 
we then just need to derive the distribution of times 
between coalescence events. First, the answer.

 
 

 
 

 2

2222

1,,

0

11

1))(1)1((



























MO

MO
M

MO
M

ppiiP

ii

iiiitt

 

 

1

0

1

,

2

1,

2

,











ij

p

M
p

M
p

ji

i

ii

i

ii

 any for

 2MO



The coalescent 
(Kingman, Stochastic  processes and their application, 1982)

• As for the two lineage case, for the general case we will 
measure time in unit of M generations 

• We will show that the ancestral tree distribution in the 
Wright-Fisher model converges to the coalescent

• This is one of the greatest discoveries in population genetics

• The coalescent limit actually applies much more widely than 
just the W-F case (e.g., models with non-discrete gens)

• The coalescent can be adapted to include many realistic 
features, some which we will see (mutation, population size 
changes, recombination) and others we will not (population 
splits and merges, migration......)

• The coalescent is a distribution on binary trees:



The coalescent 
(Kingman, Stochastic  processes and their application, 1982)

Definition 1.1
The coalescent is a distribution on binary trees. Starting with n
lineages, pairs of lineages coalesce backward in time until a single 
common ancestor is reached. Defining times Tn, Tn-1,...,T2 while 
n,n-1 ,..., 2 ancestors remain, the times Tj are independent and 
exponentially distributed:

At the time of coalescence from j to j-1 lineages, a pair of lineages 
is chosen at random from the j(j-1)/2 possibilities and coalesces.

The coalescent:
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The coalescent limit
(Kingman, Stochastic  processes and their application, 1982)

Proposition 1.2
In the Wright-Fisher model, as the population size M
converges to infinity, if time is measured in units of M
generations then the distribution on ancestral trees for a 
sample of n sequences converges to the coalescent.

Proof: 
We previously showed that as M→∞, only one pair of 
lineages coalesce at a time, so the limiting tree is binary.

In the Wright-Fisher model, sequences choose parents at 
random, so obviously all pairs of lineages are equally likely 
to be the one to coalesce at a coalescence event

It remains to show only that the coalescent gives the 
correct distribution on the rescaled times Tj while j edges 
remain in the tree. Suppose a sample has j ancestors at 
some time in the past. Recall we showed the probability j 
ancestors remain in the previous generation is given by

If tj is the total time while j ancestors remain then
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The coalescent limit
(Kingman, Stochastic  processes and their application, 1982)

Proposition 1.2
In the Wright-Fisher model, as the population size M
converges to infinity, if time is measured in units of M
generations then the distribution on ancestral trees for a 
sample of n sequences converges to the coalescent.

Proof: 

Now we rescale time in units of M generations. Set Tj=tj/M.
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Properties of the coalescent

The coalescent is the limit of a range of models. 
From now on, we will work using only this 
model (until week 6). 

The coalescent describes what evolutionary 
history looks like in populations

We will see it allows us to study variation, its 
main use. 

It also allows us to understand population 
history

What properties does it predict?

We will ask two things in particular:

1. How deep are genealogies in time? How 
variable are these depths?

2. What is the distribution of tree shapes 
under the coalescent – e.g. are they 
approximately symmetrical?



Times in the coalescent

In the coalescent the number of lineages 
decreases from n to 1. The time at which the 
final coalescence takes place is called the  
time to the most recent common ancestor 
(TMRCA)

1.3 Mean and variance of the TMRCA

Immediately:

21 TTTW nnn   



































n

jjjj

nnnn

TETETEWE

n

j

n

j

n

j

nnn

1
12

2

1

2

1

2

12

2

21

2

1

2

222

21

)()(

))(()(

)()()()(







Times in the coalescent
1.3 Mean and variance of the TMRCA

Also, the times Tj are independent, so

(problem sheet 2)

As sample size becomes very large: n→∞

We can interpret this as saying the expected  time 
to coalescence of the whole population is 
finite, with mean 2. We can build a tree for the 
whole population. In units of generations:







  )()()()( 21 TVarTVarTVarWVar nnn













)(

2
1

12)(

n

n

WVar

n
n

WE  as 

humans for years 

sgeneration 

000,900000,40

2)(



 MWE



The “shape” of the coalescent

We could draw some tree shapes and ask “which 
is more likely”?

We need to be a bit more precise about what we 
mean.  To do this, consider the number of 
descendants Z of each of the 
lineages when k ancestors remain

What is the distribution of Z? ANSWER: It is 
uniform on the possibilities

n=7

k=3

Z1=1 Z2=4 Z3=2

 kZZZ ,,, 21 



The “shape” of the coalescent
Proposition 1.4

Suppose we have a sample of size n sequences, 
and that at some time back in the past, there 
are k sample ancestors. Then the number of 
descendants Z                          of each lineage 
has a uniform distribution on partitions of n :

Proof

We will use (backward) induction. The result is 
trivial for k=n. For the induction, suppose it is 
true for k≥m say. We only need to prove the 
hypothesis for k=m-1. 

(If so, then the hypothesis is obviously true for 
k=2,....,n)
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The “shape” of the coalescent
Proposition 1.4 proof ctd:
Clearly, when we have k lineages, 

(i) some pair of lineages coalesced to  go from k+1 to k
lineages

(ii) each of the k current lineages, say i, has probability 1/k
of being the one that coalesced last (i.e. branches next)

(iii) Conditional on i branching next, we can write down a 
condition on the number of descendants of the k+1 
lineages:

(iv) By the induction hypothesis, the probability of any 
configuration while k+1 ancestors remain is known, so 
using (iii): 

(v) Last, we need to sum over i according to (ii):
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The “shape” of the coalescent
Proposition 1.4 proof ctd:

Example: how many copies of a mutation that occurs 
when k=2 are present in the sample?

The same as the number of descendants of one of 
the lineages when k=2 (Sheet 1, Question 5)

Conclusion: coalescent trees are not very symmetric
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The “shape” of the coalescent
Note: We didn’t use times in the last proof – so 

Proposition 1.4 holds more generally, for any
binary tree with random coalescence.

Corollary: Suppose there are k lineages and let Z be 
the number of descendants of one particular 
lineage. What is the distribution of Z? 

Answer: This is just the marginal distribution of Z1 in 
the previous proof. If Z1=z, then the number of 
descendants of lineages 2,....,k must form a 
partition of n-z, into k-1 boxes. Thus
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Simulating the coalescent
• We’d like to apply all this theory to the real 

world!

• In practice, we can usually only learn about 
history by looking at patterns of mutation in data

• One thing we’d like to be able to do is simulate 
the coalescent to see if patterns “match up” with 
expectations
– If so, happy. If not, refine model or infer new model 

parameters

– Several free programs do this, e.g. makesamples, “ms” 
(R.R. Hudson)

• How can we simulate the coalescent?
– We must simulate exponential times Tn, Tn-1,..., T2

between coalescence events (and record these)

– Then, at each coalescence event we must sample a 
random pair, record the answer, remove the original 
pair and replace with a new label to mark the 
coalesced pair

– Problem 4 on the sheet



Urn models (supplementary!)
Instead of the whole coalescent tree, suppose we only 
wish to simulate a sample from the number of 
descendants of k lineages in a sample of size n

• Urn models are a classical tool in probability theory

• Also offer efficient simulation frameworks in genetics

• In general, they are probability distributions on sets of 
coloured balls, sitting in an urn

• We remove balls, and add balls, according to specified 
rules

– This makes simulation trivial

• Balls often represent other things (e.g., lineages)

• There’s a nice urn model representation of the distribution 
of descendants of k lineages

• Uses the only thing we needed for our induction proof –
when there are k lineages, each is equally likely to branch 
forward in time to give k+1 lineages. Gives an algorithm:

Classical Grecian urn
Classical probability urn



Urn model representation
1. Begin with k balls in an urn, of different colours

2. Take out a ball at random from those in the urn

3. Replace this ball with two of the same colour

4. Repeat 2 and 3 until there are n balls – then stop

• k initial balls represent lineages, and balls sampled 
represent lineages that branch forward in time

• Viewing it this way, our uniform distribution on partitions:

is just a classical result in probability theory.
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2.0 Mutation
• In practice, we can only really learn about population 

history using mutation patterns

– We can’t just look – slow pace of change in populations

– In any case, histories of interest are usually...historical

– We have to infer what happened by looking at the 
patterns of mutations in samples from the population

– This will be the subject of much of the rest of the 
course

• We won’t need to know much about the details in some 
cases, but it helps to have an idea

• What is mutation? DNA can change in a variety of ways:

TGCATTGCGTAGGC
TGCATT---TAGGC

TGCTCATCATCATCAGC

TGCATTCCGTAGGC

TGCATTGCGGCGTAGGC

TGCTCATCA------GC

Point mutation

Event
Per gen. 

probability

Deletion

Duplication

Tandem repeat variation

Selfish element insertion

~1.25-

2.5×10-8

<10-8

<10-8

≤5%

?



Mutation in the coalescent

• In order to develop a model for genetic variation, we need to 
include mutation 
• We extend the coalescent to allow mutation
• Recall edges represent ancestral lineages back in time
• So: mutations in ancestors can be represented on the edges (as 
circles)
• The descendants of a mutant edge inherit that mutation (unless 
another mutation reverses it)

• Assume that with constant probability m per generation, there is a 
mutation (e.g. m =2.5×10-8). 
• In coalescent time, there are M m mutations per unit time
• We model this by taking a parameter q=2M m

• Mutations happen (in the limit as M→∞) continuously along 
edges, according to a Poisson process of rate q/2 on each edge

Distinct 

mutation 

events



Mutation in the coalescent

??? Poisson process???

• Let us refresh our memories, with a simple characterisation of a 
Poisson process

Definition 2.1 Poisson process. 

A Poisson process N(t) of rate l is a continuous time process 
counting events in time, such that the number of events 
E(T)=N(T+t)-N(t) in any time interval [t,t+T)  of length T has a 
Poisson distribution with  mean lT, independently of all other time 
intervals.

t t+T

E(T)~Poi(lT)

N(t)=0, N(t+T)=3

E(T)=3

Poi(q/2T6

Poi(q/2T6T5T4

Poi(q/2T6T5T4T3T2



The number of mutations
Sums of independent Poisson random variables 

are Poisson

Define S= Mn + Mn-1 +…+ M2 to be the total 
number of mutations for a sample of size n, 
where Mj is the number of mutations while j
ancestors. 

Proposition 2.2

S has probability generating function 

Further, for each j, Mj is independent, and has a 
geometric distribution with parameter        
pj=(j-1)/(q+j-1). 

Proof.

By properties of Poisson processes, since total 
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The number of mutations
Proposition 2.2 proof ctd.

Thus

Further the jth term in this product corresponds 
to mutations in time Tj, so gives the p.g.f of Mj. 
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The number of mutations
Proposition 2.2 proof ctd.

We are essentially done, as this is the p.g.f of a 
geometric random variable. Indeed, setting

It is worth pointing out an interpretation here

• Mutations happen independently for each 
epoch, while j ancestors

• Consider mutations, or coalescences, “events”

• While j ancestors remain, the probability the 
next event is a mutation is q/(q+j-1). 

• Otherwise, it is a coalescence with probability 
pj= (j-1)/(q+j-1),and we move to a state with j-
1 ancestors 
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The mean/variance of 
mutation counts

Using the p.g.f of Mj

This immediately gives expectation and variance 
for the total number of mutations S:

This motivates Watterson’s estimator (1975) of q:
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Example: Estimation of 
population size

• As we have discussed, the coalescent is a limit 
under very general population assumptions

• Time in units of M generations, where M is the 
“effective population size”

• Estimation of M allows us to calibrate into years, 
to understand time depth.

• I have given M estimates for humans

• The data only give information directly on 

q=2M m 

• To infer M or m, we must know (or assume) the 
other. This idea is how M is generally estimated

Example 1 (Zhao et al., PNAS, 2000): In sequence 
data for 128 human chromosomes sampled 
worldwide, 75 variant sites were identified. If the 
mutation rate per DNA base per generation is 2.3 
× 10−8, and 9,901 bases were sequenced, 
estimate the human effective population size



Example 1 (Zhao et al., PNAS, 2000): In sequence 
data for 128 human chromosomes sampled 
worldwide, 75 variant sites were identified. If the 
mutation rate per DNA base per generation is 
2.3×10−8, and 9,901 bases were examined, 
estimate the human effective population size

Solution:

Watterson’s estimator:

Because we are given m, we can estimate M:

This is a fairly typical value for a worldwide human 
sample. Finally...how does one get m? Two ways:
– Chimpanzee genome comparisons

– Direct measurement in families

Note: Watterson’s estimator does not use all the 
information in data for q.
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Example: Time conditional on 
number of mutations

• Genealogy depth is stochastically variable

• Longer trees have more mutations (segregating 
sites) on average

• The distribution of tree depth is altered given the 
number of segregating sites seen in data

Example 2 ( Dorit et al., Science, 1995): In sequence 
data for 38 human Y chromosomes sampled 
worldwide, no variant sites were identified at the 
ZFY locus. If the mutation rate at this gene per 
generation is 1.96 × 10−5, and generations last 20 
years, derive an equation for the expected 
TMRCA conditional on this data and a population 
size N



Solution

If there is no variation in the sample, this means 
there are no mutation events in the coalescent 
history of the sample:

Mn = Mn-1 =…= M2=0

We can consider the times Tj while j ancestors 
remain. Recalling that over time Tj, the number 
of mutations on each of the j edges is 
independently Poisson with mean q Tj/2, we 
have: 

Thus conditional on Mj=0, Tj has the exponential 
distribution with a (reduced) mean
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Solution continued

Finally, we can give the expected TMRCA (in 
years) conditional on no mutations:

Tabulating, we see our knowledge of no mutations 
(in 729 bp) does not have a huge effect:
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2,500 92,000 97,000

5,000 173,000 195,000

10,000 313,000 389,000



Solution continued

Dorit et al. made an error, writing:

This led to strange conclusions – 95% CI of 
(0,800,000 years) and estimate of 270,000 years

This in turn led to a number of rapid critical 
responses, e.g. “Estimating the age of the 
common ancestor of men from the ZFY locus” 
Donnelly, Tavare, Balding and Griffiths, Science
1996

These data are actually compatible with a very wide 
range of times. 

Humans are not very variable – on average 1 
mutation every 1,000bp between 2 human 
chromosomes.
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Supplement: distribution of 
number of mutations

• We derived the p.g.f of the total number S of 
mutations. What is the full distribution of S? 

• We can apply the Gamma function property that 
for real z, G(z+1)=zG (z):

 

 

 





















































G

G




















 




1

0

)(

2

1

0

2

0

1

0

2

1

0

)1(2

1

1

1
1

1

1

!

)(
)()(

,10)1()()1ln()(

)1ln()1(
!

)1(

)1ln(exp)1()1(

)1()1(

))1(1,1()1(

))1((

))1(1()!2(
)1(

)1(

)1(
1

)()(

dx
j

xe
xfjSP

xxnxfxx

dxxxx
j

nz

dxxzxxn

dxxxn

znn

zn

zn
n

zj

j

j

z

jSPzzf

jx

n

jn

j

j

n

zn

n

j

n

j

j

j

n

l

ql

q

q



q

q

q

q

q

l

q

q

q

 , and if  so

)of  s(propertie 

fun." "of  defn     



Variable size populations
• Real populations don’t have constant size. Suppose 

the population size a time t in the past is  N(t)=N(0)ν(t)

• We need a “clock” – as before, measure time t in units 
of N(0) generations, N(0) now present day size

• We will extend the coalescent to this setting

• Recall that while j ancestors remain in a Wright-Fisher 
model, the probability, i.e. “rate” at which coalescence 
occurs is j(j-1)/2M per generation

• In the new setting, the new per generation 
coalescence rate is

• Measuring time in units of N(0) generations, while j 
ancestors, coalescence occurs at rate

Time
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Definition 2.3
The coalescent with variable population size is a distribution on 
binary trees. Starting with n lineages, randomly chosen pairs of 
lineages coalesce backward in time until a single common 
ancestor is reached. Suppose the relative population size at time t
in the past is ν(t). While j edges remain at time t, coalescence 
events occur with instantaneous rate j(j-1)/2ν(t). Equivalently,
defining times Tn, Tn-1,...,T2 while n,n-1 ,..., 2 ancestors remain:

Comments
1. The standard coalescent case is ν(t)≡1

2. Equation 2.3.1 can be derived directly as the 
Wright-Fisher limit

3. Intuitively, in (2.3.1), if there are j lineages 
from time s to time t+s,  the coalescence rate 
changes from j(j-1)/2ν(s) to j(j-1)/2ν(s+t)

This is the reason for the integral term, which 
“averages out” the coalescence rate

Variable size populations
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How do we, e.g., simulate the coalescent with 
variable size?

The answer: we can use a coupling of times with 
the standard coalescent case.

Idea: we transform time into new units. Define 

Proposition 2.3
In the variable population size coalescent with relative population 

size ν(t) at time t in the past, if time is rescaled by setting 

then the transformed times Sn’, Sn-1’,...,S2’ at which coalescence 
events occur are distributed according to the standard coalescent 

with constant size population

Comments
1. Note that transformed time increases more 

quickly when the population size is small
2. We invert the transformation to give each 
3. To recover coalescence times, we take 

differences:

Variable size populations
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Proposition 2.3
In the variable population size coalescent with relative population 

size ν(t) at time t in the past, if time is rescaled by setting 

then the transformed times Sn’, Sn-1’,...,S2’ at which coalescence 
events occur are distributed according to the standard coalescent 
with constant size population

Proof
Define the untransformed coalescence times Sn, Sn-1,...,S2. 

Restating (2.3.1) in terms of these times, we have: 

Now it is clear the transformation is well defined, so for every 
positive t’=sj’  there is a corresponding untransformed t=sj. 
Further the transformation is increasing so 
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Proposition 2.3
In the variable population size coalescent with relative population 

size ν(t) at time t in the past, if time is rescaled by setting 

then the transformed times Sn’, Sn-1’,...,S2’ at which coalescence 
events occur are distributed according to the standard coalescent 
with constant size population

Proof
Using this reverse transformation, for any 

A key use of this idea is in simulation of histories under this model 
(and inference).
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• Simulation under a variable size model can be 
accomplished simply, by the following:

1. Simulate coalescence times Sn’, Sn-1’,...,S2’  under the 
neutral coalescent. Set Sn+1’=0, and then:

where the Uj’s are i.i.d U(0,1) random variables.

2. Convert these  back to untransformed times               
Sn, Sn-1,...,S2 using

3. Given times, coalescence events are easy to sample, 
and mutation event counts have the usual Poisson 
distribution given tree times (note the mutation 
process in each ancestral lineage is independent of the 
population size).

In exponential expansion ν(t)=exp(-t), so
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“Star-like” genealogies

Exponential expansion (or expansion generally) makes times 

relatively shorter in the top parts of the tree

Question: What is the effect of variation in population size on 

genetic variation data?

This could offer us a way to learn about population sizes in the 

distant past

To do that, we need to think about the frequency spectrum of 

mutations

We start by thinking about single mutations



3.0 The spread of diversity

The red mutation happens while there are k=4 lineages 

remaining. 

It spreads and is seen in 3 of 6 sample members – the 

descendants of the lineage on which it occurs

More generally, the shape of the coalescence tree 

(Proposition 1.4 corollary) tells us that for any mutation that 

occurs while k ancestors remain from an initial sample size of 

n, the probability of b descendants is in general:
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3.0 The spread of diversity

Almost always in practice, we only see diversity patterns.

We know n=6, b=3 but we do not know the number of lineages 

when the mutation occurred

What is the unconditional probability, qnb, for a site which 

varies, that we observe b mutant copies in a sample of size n?

This is called the (expected) frequency spectrum of mutations

We can also ask, how old is a mutation seen in b of n copies?
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The infinite-sites model

Strictly, we need to make an assumption here.

If we see a mutation in some sample members but not others, 

we assume it is the result of one historical event, not e.g. two 

identical independent mutation events in different ancestors

Specifically – mutations always occur at a position never 

before mutant. This is called the infinitely-many-sites model

In this model, each individual site has a vanishingly small 

probability of mutating (but a region has a non-zero rate)

Without loss of generality, label mutations using independent 

uniform random variables in [0,1] (i.e. labels always unique)
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The infinite-sites model
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3.0 The spread of diversity

The only thing we must work out is the probability a mutation 

observed in a sample occurs while k lineages, given only that 

the mutation segregates in the sample. Suppose the mutation 

occurs at x in [0,1]. 

We will not (for now) make any assumptions about times in 

the coalescent tree – so we are in the setting of the coalescent 

with variable population size

It helps to write the following

where Ik=1 if a mutation occurs in [x,x+dx) while k ancestors

That is, we consider the probability of exactly one mutation 

occurring, in a region containing x. The number of mutations in 

[x,x+dx) while k ancestors is Poisson with mean kTkqdx/2, so
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3.0 The spread of diversity

We can then sum over the distribution of Tk to give unconditionally:

As dx→0, at most one mutation occurs, so

and finally:
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Example: constant size 
population

For a constant size population, recall:
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Our constant size model predicts there are more rare than common 
mutations:

What do we see for real populations? A remarkable match for a 
new worldwide dataset with 6.5 million mutations:

Real data vs. predictions

“A map of human genetic 

variation from population 

level sequencing”

Nature Oct. 2010

Errors cluster at 

extreme frequencies



Supplement: how old is my 
mutation?

• What is the expected age of a mutation if it is seen in b
copies out of n?

• We use the same basic idea as before, and condition on 
when it occurs. Let the age be ξnb. If the mutation occurs 
while k ancestors, its age is obviously uniform across the 
period while k ancestors: 

where U is uniform on (0,1) and independent of the Ti’s.

• Applying the same argument as before, we condition on 
when the mutation occurs and define an indicator Ik=1 if a 
mutation occurs in a small interval [x,x+dx) containing x while 
k ancestors 

We can consider the constant size case again
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Example: constant size popn
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The algebra missed out is tedious – it relies on certain 

combinatoric identities. For more (but not quite full) details, 

see RCG’s notes, linked to on the webpage 

The age of a mutation at frequency x in the entire 

population 

We just set and let n→∞, so b/n →x and
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Practical implications

1. This theory is very important in practice!

– We have seen coalescence times, and 
hence the frequency spectrum, are 
affected by historical population size

– So – we can use the former to infer the 
latter  (e.g. Adams and Hudson, Genetics 2004, Williamson et al. 

PNAS 2005)

– But there are always multiple possible 
histories exactly matching an observed 
spectrum (Myers, Fefferman and Patterson Theor. Pop. Biol. 

2008)

2. The age of a mutation “should” fit with its 
frequency

– Selectively advantageous mutations can 
spread more quickly to high frequency

– Essentially all the approaches to find real 
selection, in humans and other species, 
use this idea 

– Look for mutations which appear young, 
but are at high frequency



67

Li and Durbin

(Nature, 2011)

(Marie Forest, Jonathan Marchini, me, unpublished, building trees)

Split: About 80-120,000YBP

Estimates of ancient 
human population size



4.0 The number of different 
types

We have talked about the number of segregating sites as a 

measure of diversity

Another natural measure of diversity is the number of distinct

haplotypes K in a sample. How does this behave?

It is helpful to us to understand the distribution of this number

First, a definition. We say the infinitely-many-alleles model 

holds if every mutation makes a new type, never seen before 

in the population 

Note, the infinitely-many-sites model is different from, but 

implies, infinitely-many-alleles

K=5



Following “non-mutant” lines

We will derive the mean, variance and p.g.f of K, the number 

of distinct alleles. 

• Looking back in time, view alleles (distinct types) as created 

at mutation events

• To count alleles, we follow the tree, allowing coalescence 

events, until we see any mutation event – then we know that 

mutant ancestor passes on a unique type

• We view this as a death process: lines “die”, through either 

mutation or coalescence

• The last line to be lost always represents some final type

K=5



Following “non-mutant” lines
Proposition 4.1

Under the infinite-alleles model of mutation for the standard 

coalescent with mutation rate q, the number of alleles K in a 

sample of size n can be written

where the indicator variables Ij are independent and

Proof

Consider following the coalescent history of the sample back 

in time, allowing lineages to coalesce, and “killing” lineages 

that mutate, until one lineage remains, at which point the 

process terminates.

The number of lineages clearly decreases monotonically from 

n to 1. While j lineages remain, we are tracing the history of a 

random sample of j lineages in the population, so coalescence 

occurs at rate j(j-1)/2 and mutation as a Poisson process of 

total rate j q /2. 

Define Ij=1 if the jth lineage is lost by mutation and Ij=0 

otherwise. The Ij’s are clearly independent. Denoting Mj to be 

the number of mutations while j ancestors in the coalescent:

From the previous discussion, each lineage lost by mutation 

adds one extra allele, and the last line remaining is an allele, 

so
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Following “non-mutant” lines
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As a corollary, it is straightforward to calculate the mean, 

variance and p.g.f of K:

By definition of the p.g.f:
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Rates in the coalescent
• A nice, powerful way to think of the coalescent is in terms of 

event rates. As usual we think backwards in time

• While j lineages remain, the total coalescence rate is j(j-1)/2

• We can think of this as each pair of lineages coalescing, 

independently, at rate 1

• Similarly, while j lineages, the total mutation rate is j q /2, so 

on each lineage, mutation occurs independently at rate q /2.

• The rate at which some event occurs is the sum of all the 

rates, and the probability of each type of event can be 

obtained by the relative rate. 

Example 1: In our death process representation of generating 

alleles, while j lineages (j>1):

Example 2: In the general coalescent, the probability the next 

event is a mutation on lineage i say is:
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The distribution of K
We can get the distribution of the number of alleles by 

expanding the p.g.f:

We use an identity involving Stirling numbers of the first kind:

If we observe k alleles, we can obtain the m.l.e of the mutation 

rate.

Thus, the m.l.e. is the first moment estimator.
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Large samples

We can deduce asymptotic behaviour for the number of 

alleles:

Asymptotically, almost all segregating sites uniquely define a 

new type in the sample and the number which do not is finite.
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Supplement: Multiplicity of 
alleles

• Suppose we are interested in the full distribution of the 

number of alleles and their frequencies in the sample.

• We will construct an urn model, Hoppe’s urn, to sample from 

this.

• Note: the death process shown above defines both the 

alleles (colours) and how many copies of each is in the 

sample

• At coalescence events, pairs of lineages coalesce at random

• All lineages are associated with colours

• IDEA: We reverse time in the death process, so new types 

are “born”

K=5



Supplement: Multiplicity of 
alleles

• Backward in time: While j of n lineages remain, 

• Forward in time, we start with 1 lineage, and while j:

• At mutation events, we add a new “colour” to the tree

• At lineage branches, the number of copies of chosen colour 

increases by 1 

K=5
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Supplement: Hoppe’s urn
• We have effectively derived an urn representation

• Represent alleles by balls of different colours in an urn, 

similarly to the “descendants” urn model we earlier introduced

• We add an extra detail. There’s an extra “mutation” ball, of 

mass q relative to the other balls with mass 1, and chosen with 

probability proportional to its mass

Definition (Hoppe’s urn model):

Hoppe’s urn model constructs a sample of allelic types and 

multiplicities for n haplotypes under the infinite-alleles model

1. Begin with a white and a coloured ball, of mass q and 1.

2. While j non-white balls of mass 1, pull out one of the j+1 

balls with probability proportional to its mass. If the white 

ball, replace in the urn and add in a single ball of a new 

colour. If a coloured ball, replace in the urn and add in an 

additional ball of the same colour

3. When there are n non-white balls, stop.

The number of different colours is the number of haplotypes in 

the sample, and the multiplicity of each colour the multiplicity 

of these types, summing to n.



Supplement:  birth/death and 
Hoppe’s urn
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Ewen’s sampling formula

• Define a(j) to be the number of 
types occurring at frequency j in 
the sample for j=1,2,..,n. Then if 
K=k:

• Definition: Ewens’ sampling 
formula gives the probability of 
the sample configuration:

• This can be proved inductively 
from the urn model

• Note (n,K) is sufficient for q
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5.0 Gene trees!

• Coalescent trees are not, in 
general, unique given 
variation data

• We’d like a historical 
representation of a sample 
that is “well defined”, but 
reflects historical relationships 
among samples

• The solution is to construct a 
gene tree

• We again assume infinite-
sites: each mutation occurs at 
a position never before 
mutant



Example gene tree
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5.0 Gene trees!
• In a gene tree, vertices represent mutations

• These are our information, from variation data

• In general, the tree is not binary and a vertex can have 
any number of descendants

• We often cluster identical sequences and allow 
multiplicities on the tips of the tree

• Lineages below a mutation inherit the mutation

• We will show
1. The data and the gene tree are exactly equivalent

2. One can check infinite-sites “compatibility” by deriving a necessary 
and sufficient condition for a gene tree to exist

• To begin constructing a tree, think of our data as binary, 
with the mutant type denoted by 1, so the “ancestral” 
type is 0.  We define an n×s incidence matrix S

– Each column represents a segregating site, with the total number 
of sites the number of mutations s in the sample history

– Each row represents a haplotype

Sequence\Site 1 2 3 4 5 6 7 8

a 0 1 0 1 1 0 0 0

b 1 1 0 0 0 0 1 0

c 1 1 0 0 0 0 1 0

d 0 1 0 0 0 0 1 0

e 0 1 0 0 0 0 0 1

f 0 0 1 0 0 1 0 0



Example above:

Notice that in these data, we have the following:

The incidence matrix

• We say a sequence is ancestral if it perfectly matches the 
type of the ancestor

• This corresponds to a row of zeros in the incidence matrix 
(mutation occur since the ancestor)

• For site i, define the set of carriers of the mutation:

Sequence\Site 1 2 3 4 5 6 7 8

a  (1) 0 1 0 1 1 0 0 0

b (2) 1 1 0 0 0 0 1 0

c (3) 1 1 0 0 0 0 1 0

d  (4) 0 1 0 0 0 0 1 0

e  (5) 0 1 0 0 0 0 0 1

f   (6) 0 0 1 0 0 1 0 0

sjn, i

sjis ijij





11

01 otherwise  , site at mutant  ind.if  

}5{},4,3,2{},1{

},6{},5,4,3,2,1{ },3,2{

8754

6321





OOOO

OOOO

sismO mii ,2,1};1:{   

otherwise 

,

,,

28254

63271







ji OO

OOOOO

OOOOO



Ordering by inclusion
This pattern turns out to be general, and a powerful way 

to test the infinitely-many-sites assumption with the 
incidence matrix:

Proposition 5.1

If the infinitely-many-sites model holds, then defining Oi

to be the set of individuals in a sample of size n
carrying the ith mutation i=1,2,...,s, the Oi’s are 
ordered by inclusion:

Proof

Consider the coalescent tree for the sample. For any i and 
j, under infinite-sites the ith and jth mutations occur 
on tree edges. One of the following must occur: the 
mutation i edge is ancestral to the mutation j edge, 
the opposite occurs, or neither, respectively leading to 
the three conditions above.
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Example
• Is the following dataset, with sequence c ancestral, 

compatible with infinite-sites?

Sequence\Site 1 2 3 4 5 6 7

a  (1) A G C A C G G

b (2) C T T A T A C 

c (3) C T C A C G C

d  (4) A T C A T G G

e  (5) A G C G C G G

Sequence\Site 1 2 3 4 5 6 7

a  (1) 1 1 0 0 0 0 1

b (2) 0 0 1 0 1 1 0 

c (3) 0 0 0 0 0 0 0

d  (4) 1 0 0 0 1 0 1

e  (5) 1 1 0 1 0 0 1

Incidence matrix, noting c is ancestral:

Check ordering by inclusion. Note that

Thus the data are not ordered by inclusion, so not 

compatible with infinite-sites

We will explore this idea more later on. 

Note: removing sequence b would fix things.

15515151 ,,},4,2{},5,4,1{ OOOOOOOO //

1 5

a  (1) 1 0

b (2) 0 1

c (3) 0 0

d  (4) 1 1

e  (5) 1 0



Building gene trees
• Suppose we take a gene tree and trace a “path 

to the root” for each sequence:

• Denote the root as 0 and go backwards in time:

• These “paths to root” are enough to build the 
gene tree, so equivalent to a gene tree

• We need an algorithm to order mutations from 
variation data – Gusfield’s algorithm
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a: 6 5 2 0 
b: 1 5 2 0
c: 5 2 0
d: 7 9 4 8 2 0
e: 9 4 8 2 0
f: 3 2 0
g: 0



Gusfield’s algorithm
Gusfield, D.(1991). Efficient algorithms for inferring 

evolutionary trees. Networks, 21, 19–28. 

Algorithm 5.2 

For data compatible with the infinite-sites model, the 
following algorithm allows the generation of a gene 
tree based on an incidence matrix consisting of 0’s and 
1’s, with the ancestral type always denoted by 0.

1. Reorder the columns, and column labels, by 
considering each column as a binary number, and 
ordering so the columns are decreasing. If duplicate 
columns occur, choose an arbitrary non-increasing 
column order.

2. For each sequence, construct a path to the root by 
reading from right to left in the corresponding row of 
the incidence matrix, recording mutation labels 
where 1’s occur in rows, and append 0 to this list.

3. Given paths  back to the root, use these to draw the 
gene tree.



Example
A recent common ancestry for human Y chromosomes

Michael F. Hammer, Nature 1995. 16 sequences, 4 
segregating sites seen.

Sequence\Site 1 2 3 4

a  (7) 0 0 0 0

b (1) 0 1 0 0

c (3) 1 0 0 0

d  (4) 1 0 1 1

e  (1) 1 0 0 1

Incidence matrix

Sequence\Site 2 1 4 3

a  (7) 0 0 0 0

b (1) 1 0 0 0

c (3) 0 1 0 0

d  (4) 0 1 1 1

e  (1) 0 1 1 0

Reordered incidence matrix

1.

2.

a: 0
b: 2 0
c: 1 0
d: 3 4 1 0 
e: 4 1 0

Paths to root

3.

Gene tree

2

1

4

3

a:7 b:1 c:3 e:1 d:4



Variation data ↔ Gene tree
Proposition 5.3

Any variation dataset expressed in the form of an 
incidence matrix, where the sets of carriers of each 
mutation are ordered by inclusion, is equivalent to a 
gene tree.

Notes

1. This implies that ordering by inclusion is both 
necessary (proposition 5.1) and sufficient for a gene 
tree to exist, and hence for the data to be consistent 
with infinite-sites, so this is a complete check

2. Clearly a gene tree can be used to give an incidence 
matrix, which is automatically compatible with 
infinite-sites, so we must only prove a gene tree 
exists given an incidence matrix.

3. We will prove that Gusfield’s algorithm correctly 
produces such a gene tree.



Proof of proposition:

We prove Gusfield’s algorithm yields a set of paths to root 
giving a valid gene tree by induction on the number 
of sequences so far included in the gene tree. We 
consider constructing the tree, successively adding in 
sequences.

First, assume wlog all columns in the incidence matrix are 
unique  (identical columns can be collapsed into one, 
if present)

After reordering the matrix, viewing each column as a 
binary number, note that

The first two algorithm steps obviously lead to a set of 
sequences of paths to root for each row in the 
incidence matrix. For the first sequence, we simply 
add the ordered sequence of mutations that 
sequence carries, 

Suppose we have successfully added k-1 sequences to the 
gene tree.

Variation data ↔ Gene tree
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Proof ctd:

We consider adding the kth sequence and Gusfield’s
algorithm provides an ordered sequence of 
mutations this sequence carries:

Each of these mutations is carried by sequence k, so they 
are not disjoint, and as noted above:

Mutations on this list are either included on the current 
gene tree or not. Let be the first mutation already 
included in the current gene tree. Then form a new 
edge containing mutations                        and attach it 
to node    , to include individual k in the gene tree:

We must now only show that the sequence of mutations 
on the pre-existing path from      to the root is exactly 

Variation data ↔ Gene tree
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Variation data ↔ Gene tree
Proof ctd:

Note that by equation (5.1):

We know that some previous sequence m carries 
mutation     and hence  by (5.2), m must carry all the 
mutations 

Because we successfully added sequence m in, according 
to the inductive hypothesis, these mutations all lie on 
the pre-constructed  gene tree, and by (5.2) , since 
we add mutations in the order specified by Gusfield’s
algorithm, they lie on the path upward from  node      
to the root.

Conversely, any mutation q on the path from node     up 
to the root is carried by sequence m, and since m 
carries    , ordering by inclusion implies:

Thus sequence k also carries mutation q, so for some r>j

Thus, the mutations on the path from sequence k to the 
root are exactly those carried by sequence k, and we 
successfully add this additional sequence in 

},,2,1{
1

nOOO k

kr
k
j

k
j iii

 


01 

k

r

k

j

k

j k
iii 

(5.2)

k

ji

k

ji

k

ji

qi
OO k

j



k

riq 



Bells and whistles
• Mutations with identical patterns in the sample can be 

randomly permuted on the edge on which they occur

• Identical sequences by convention share a single edge, 
labelled with multiplicity of the sequence

• Unrooted trees do not assume we know the ancestral 
type at each mutation

– Given say A/G types at a site, we may not be able 
to infer which is ancestral

– An unrooted tree incorporates the set of all 
possible rooted trees.
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Unrooted trees
• An unrooted tree has sequences (instead of sites) as 

vertices. Some sequences are inferred in general

• Edges between sequences contain the mutations 
separating them

• A simple way to construct an unrooted tree from data 
is to construct a rooted tree, then “remove” root

• In general, multiple (rooted) gene trees can give the 
same unrooted tree.

• Straighten line to root, slide each mutation up from its 
vertex, and collapse edges with no mutations:

Example 1
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Unrooted trees
Example 1
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Example 2



Example 2
1 2 3 4 5 6 7 8 9 1

0
1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

a 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0

b 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0

c 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

d 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

e 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0

f 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0

g 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1

h 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1

i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

m 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

n 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

A rooted tree can be constructed using Gusfield’s

algorithm from above incidence matrix (root is 

sequence k)



Example 2 continued

For these data I gave one possible choice of ancestral 

sequences leading to a rooted tree. We could have, e.g., 

used sequence l as ancestral

In general, for an unrooted tree containing s mutations, 

the total number of different sequences on edges 

(including tips) is s+1. Any of these could be the ancestor 

type.

Hence, there are s+1 possible rooted gene trees for a 

given unrooted tree, in this example 19 rooted gene trees.

Different root choices “toggle” 0 and 1 within columns



Conditions for trees
• The infinite-sites model might be a strong assumption 

for some species

• Given data, it is of interest to test this model

• Suppose we know ancestral types

• A natural approach is to ask if we can build a rooted 
gene tree, and hence a coalescent tree. 

• If so, we say our data is compatible with the infinite-
sites model.

• It is easy to prove the following:

Proposition 5.4

A variation dataset expressed in the form of an incidence 
matrix is compatible with the infinite-sites model if 
and only if the sets of carriers of each mutation are 
ordered by inclusion.

Proof

Proposition 5.1 shows necessity of ordering-by-inclusion. 
The proof of Gusfield’s algorithm (Proposition 5.3) 
shows we can build a gene tree whenever ordering-
by-inclusion holds, which immediately implies 
sufficiency



Conditions for trees

• There is a simple way to test this 
condition

Corollary 5.5

A variation dataset expressed in the form of an incidence 
matrix, where ancestral types are coded 0 and 
mutant types coded 1, is compatible with the infinite-
sites model if and only if no pair of sites shows the 
pattern

in any 3 rows of the incidence matrix

11

10

01



Example revisited
• Is the following dataset, with sequence c ancestral, 

compatible with infinite-sites?

Sequence\Site 1 2 3 4 5 6 7

a  (1) A G C A C G G

b (2) C T T A T A C 

c (3) C T C A C G C

d  (4) A T C A T G G

e  (5) A G C G C G G

Sequence\Site 1 2 3 4 5 6 7

a  (1) 1 1 0 0 0 0 1

b (2) 0 0 1 0 1 1 0 

c (3) 0 0 0 0 0 0 0

d  (4) 1 0 0 0 1 0 1

e  (5) 1 1 0 1 0 0 1

Incidence matrix, noting c is ancestral:

Check new condition.

Note that for sites 1 and 5, rows 1, 2 and 4 respectively give 

the pattern 

so these data are incompatible with infinite-sites.

1 5

a  (1) 1 0

b (2) 0 1

c (3) 0 0

d  (4) 1 1

e  (5) 1 0

11

10

01



Conditions for trees
Proof of Corollary.

Suppose we see this pattern at two sites, i and j say and 
some 3 rows.

Clearly

so ordering by inclusion does not hold, and the data are 
incompatible with infinite-sites, proving necessity.

Conversely if the data are incompatible with infinite sites, 
by the previous proposition for some pair of columns 
i, j ordering by inclusion does not hold:

For columns i and j and rows l, m, n in the incidence 
matrix:
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Unknown ancestral types

• If we don’t know ancestral types, at each site we can’t 
tell who has the mutation, only who differs

• The incidence matrix is defined up to “toggling” 0-1 
status at each site

• The compatibility question becomes whether it is 
possible to find a toggling to allow a rooted tree

Corollary 5.6

A variation dataset expressed in the form of an incidence 
matrix, where ancestral types are unknown, is 
compatible with the infinite-sites model if and only if 
no pair of sites shows the pattern

in any 4 rows of the incidence matrix
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Conditions for trees
Proof of Corollary.

Suppose we see this pattern at two sites, i and j say and 
some 4 rows.

Clearly, toggling 0-1 status at either site this pattern 
remains. Therefore for any toggling the pattern

is seen, and the data are incompatible with a rooted tree 
and hence infinite-sites. This proves necessity.

For the converse, suppose there is no such pattern in any 
pair of columns. Toggle the matrix columns, so the 
first sequence is a row of zeros (i.e. pick this to be 
ancestral).  Consider columns i and j. They do not 
show the pattern

Hence with this choice of ancestral sequence, there is a 
rooted gene tree by Corollary 5.3, giving sufficiency.

The first row of these two columns is         by 

construction, so no other 3 rows have the pattern 
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Unknown ancestral types
and unrooted trees

• Any rooted tree can “build” an unrooted tree

• An unrooted tree can “build” multiple rooted trees.

• Notice an unrooted tree is invariant to 0-1 toggling of 
sites (because mutations on edges just show 
differences between sequences).

• Thus:
1. We can view an unrooted tree as the “ancestral type 

unknown” equivalent of a (rooted) gene tree

2. The unrooted tree is unique even if ancestral types are 
unknown (up to permutation of equivalent mutations)

3. Corollary 5.6 can be viewed as a condition on the existence of 
an unrooted tree:
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Infinite sites
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6.0 The probability of a 
dataset

• Suppose we observe some 
variation data

• What is its likelihood?

• We can equivalently think of this 
as the probability of a gene tree

• We only consider the infinite-sites 
case

• We begin with a simple example



6.0 Example

• Consider the following dataset, 
with 0 ancestral:

• What is the likelihood of the data as a 
function of q?

• What is the distribution of the TMRCA 
conditional on q and the data?

• First, note there is only one possible 
coalescent tree:

Sequence\Site 1 2

a 1 1

b 1 1

c 0 0

Gene tree Coalescent tree



Hf-1

Hf

Coalescent histories

Define the history of a set of sequences:

where Hj defines what occurs at the jth mutation or 

coalescence event back in time, i.e. whether this event is a 

mutation or coalescence event, and which lineage(s) are 

involved. E.g. Hj shown above is a mutation on lineage 5.

),,,( fHHHH 21

Hj

Hj+1

H1



Coalescent histories
Suppose there are k lineages remaining before the jth event. 

Hj is either a coalescence between two lineages m and n,

Ck(m,n) or a mutation on some lineage m, Mk (m):

Different events are independent, conditional on the number of 

edges k remaining, due to the Markov property of Poisson 

processes.

For the example:
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Times conditional on history
Having sampled the sample history, suppose there are k

lineages remaining immediately before the jth event, Hj.. 

Events happen as a Poisson process, so times between 

events are independent and exponential:

For the example we can write the TMRCA as a sum of 4 

independent exponentials. Then for example:

The oldest mutation has 

expected age
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Times given data
Alternatively - and equivalently - obtain the joint distribution 

directly:

This expression integrates to give the likelihood

Normalise to obtain the joint conditional density

The conditional density can be used to give the expected 

TMRCA:

Problem sheet 4 has another example
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Complex datasets

• For a general dataset, we have seen 
there is no unique coalescent tree.

• We can still sum over histories

• Given data D, define H(D) to be the 
(finite) set of possible histories 
producing the data

• The likelihood is just:

• To obtain expected ages of mutations, 
average over histories given data 
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Review

In the Y-chromosome data.

• The model is the constant-size coalescent we derived

• The calibration into years uses M=5,000, estimated as we 

have seen (and 20 years per generation)

• The structure of the gene tree is drawn using Gusfield’s

algorithm

• The ages of the mutations are obtained conditional on the 

data, as we have seen, by “summing” over possible histories

• The supplement describes how this summing was done 

efficiently, using importance sampling (IS).

Hammer et al.
(PNAS, 2000)
http://www.pnas.org/content/97/12/676
9/F1.expansion.html



Supplement: Importance 
sampling (IS)

• There is typically an extremely large space of 
histories to sum...e.g.  n!(n-1)!/2n trees of n seqs.

• Direct summation often computationally infeasible

• Most histories have a negligible contribution to the 
likelihood

• Can we add up the “important” terms?

• We use a simple rearrangement to do this
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Importance sampling

• We simulate M different histories by sampling each 
independently using the proposal Q

• Calculate the M corresponding importance weights 
and average

• Each importance weight is an i.i.d random variable.

• The previous page shows the mean of the importance 
weight distribution, sampling under Q, is the 
likelihood we seek.

• The WLLN then implies the likelihood approximation 
above is exact as M→∞ for any valid proposal

• How to pick a “good” proposal distribution, i.e. Q?

– We must be able to write down Q

– Picking a “good” proposal just means trying to make 
importance weights have low variance

– In the coalescent setting, that means picking “likely 
histories” given the data
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Supplement: IS

The best (known) scheme for infinite sites is due to 
Stephens and Donnelly (JRSS B, 2000). 

They construct a proposal distribution Q on histories as 
follows.

1. Sample historical events successively back in time.

2. Before event j, identify the subset of n0 lineages to whom 
the next event could occur

3. Choose one of these lineages uniformly at random: 
P(lineage i)=1/ n0 and perform the (unique) corresponding 
mutation or coalescence event

4. Return to step 2 until common ancestor reached 

[Note: no q! The mutation rate comes in to the 
importance weights only through P.]
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Example

For the first event in history

lineage b could mutate, or lineages 

c and d might coalesce.

Lineage a cannot be involved

Thus n0=3 and

We choose a first event. 

Next event chosen same way, until 

common ancestor reached
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All lineages can have an event, n0=4: 

Continuing, for example:
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Consider a dataset corresponding to the below gene tree, and 

sampling using Stephens’ and Donnelly’s Q.



Importance sampling 
example

History 2: M3(3),C3(1,2),

C2(1,2)

Sequence\Site 1

a 0

b 0

c 1

History 1: C3(1,2),M2(3),C2(1,2)

History 3: M3(3),C3(2,3),C2(1,2)

History 4: M3(3),C3(1,3),C2(1,2) 

Initially:  Sequence 1 or 2 can coalesce, sequence 3 can 

mutate so n0=3. Any one of the 3 sequences can be chosen 

for the first event, with probability 1/3.
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Importance sampling 
example

Sequence\Site 1

a 0

b 0

c 1
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History Likelihood terms Prob. Importance 
weight

History 1 2/3

History 2 1/9

History 3 1/9

History 4 1/9

Likelihood - -
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N.B. For any q value, mean importance weight is true likelihood. 

If  q=2, importance weights all identical – scheme is optimal



Glossary of terms used
• Allele: a mutation or combination of mutations forming a distinct type in the 

population, within the region spanned by a haplotype

• Coalescence event: An event back in time where two or more sequences share a 
single ancestor

• Effective population size: the size of the Wright-Fisher population (which may 
change through time) that most accurately models evolutionary history in a real-
world population

• Frequency spectrum of mutations: the distribution of the number of mutant copies 
in a sample of size n over mutations segregating in a sample. We can define the 
observed frequency spectrum seen in an actual sample, the hypothetical expected 
frequency spectrum, and the population frequency spectrum  (as n→∞).

• Gene tree. A graphical object representing the history of a sample of sequences, 
with nodes representing mutations back in time. The type of the ancestor to the 
sequences corresponds to the top of the tree.

• Haplotype (also loosely referred to as sequence, or sometimes gene): the DNA 
sequence of a region of DNA, sometimes interpreted to include only variable 
positions, and sometimes viewed as a binary sequence of 0’s and 1’s

• Incidence matrix. A matrix of 0’s and 1’s representing variation in a sample when 
there are only two types present at each segregating site. Rows represent 
sequences, and columns correspond to sites. If known, the ancestral type is often 
represented by 0 at each site.

• Infinitely-many-sites model. The idea that mutation is rare (true in many species) so 
that mutations always hit different positions in the genome. This means if a 
segregating site is observed, it is always the result of a single historical mutation, 
never two independent, identical mutations at the same position.

• Infinitely-many-alleles model. The related idea that mutations always create new 
alleles in the population. Thus if two haplotypes are identical, there are no 
mutations on the history between them before their MRCA. NB – the infinitely-
many-sites model implies the infinitely-many-alleles model, so is a special case 
(under infinite-sites, each mutation is new in the population so trivially defines a 
new allele).

• Most recent common ancestor (MRCA): the first ancestor in the history of a sample 
of n sequences who all n sequences are descended from.



Glossary of terms used
• Root sequence: A sequence whose type is identical to that of the MRCA. In the 

binary infinite-sites model representation of variation, this corresponds to a 
sequence whose type is all zeros and can be used to define which type is 
represented as 0, which as 1, at each mutation.

• Segregating site: a mutation seen in some, but not all, members of a sample of size n

• Time to the most recent common ancestor (TMRCA): the time back at which the 
MRCA lived

• Unrooted tree. A graphical object representing the relationships among a sample of 
sequences, with nodes representing  sequences and mutations along edges. The 
type of the ancestor to the sequences does not need to be known.

• Watterson’s estimator: A moment-based estimator of the population scaled 
mutation rate, based on the number of observed segregating sites in a sample of 
size n.


