
3.4 Proportional Hazards with a semi-parametric model

called Cox regression

Again each subject j has a vector of covariates xj and scale parameter ρj =
ρj (β.xj) . The basic assumption is that any two subjects have hazard functions

whose ratio is a constant proportion which depends on the covariates. Hence

we may write

hj(t) = ρjh0(t)

where h0 is the baseline hazard function, β is a vector of regression coefficients

to be estimated, and ρj again depends on the linear predictor β.xj .

A general link could be used but in Cox regression ρj = eβ.xj . This model

is termed semi-parametric because the functional form of the baseline hazard is

not given, but is determined from the data, similarly to the idea for estimating

the survival function by the Kaplan-Meier estimator.

3.4.1 Cox Regression

Suppose the event times are given by 0 < t1 < t2 < · · · < tm. At this stage we
assume no tied event times (list does not include censored times).

Let [i] denote the subject with event at ti.
Definition:Risk Set

The risk set Ri is the set of those subjects available for the event at time ti.
Reminder : if we know that there are d subjects with hazard functions

h1, · · · , hd then, knowing there is an event at time t0, the probability that

subject j has the event is

Pr(subject j|t0) =
hj(t0)

h1(t0) + · · ·+ hd(t0)
.

Under the proportional hazards assumption we have

Pr([i] |ti) =
ρ[i]h0(ti)∑

j∈Ri

ρjh0(ti)
=

ρ[i]∑

j∈Ri

ρj

and the probability that [i] has the event given it occurs at time ti no longer

depends on ti.

Under the Cox regression model we have

Pr([i] |ti) =
eβ.x[i]

∑

j∈Ri

e
β.xj

.

This probability only depends on the order in which subjects have the events.

The idea of the model is to specify a partial likelihood which depends only on

the order in which events occur, not the times at which they occur. This means

that the functional form of h0, the baseline hazard function, is not required.
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Definition: Partial Likelihood

LP (β) =
∏

ti

e
β.x[i]

∑

j∈Ri

e
β.xj

where Ri is the risk set at ti, and subject [i] is the subject with the event at ti.

We can think of the partial likelihood as the joint density function for sub-

jects’ ranks in terms of event order, if there were no censoring and no tied event

times.

Consequently if we use the partial likelihood for estimation of parameters we

are losing information, because we are suppressing the actual times of events

even though they are known, hence the name "partial likelihood".

Interestingly the partial likelihood acts in an exactly similar manner to the

likelihood. Compute β̂P such that

LP

(
β̂P

)
= sup

β

∏

ti

e
β.x[i]

∑

j∈Ri

e
β.xj

Then ̂β
P

maximises the partial likelihood and has all the usual properties.
Properties

(i) ̂β
P

P
−→ β as m −→ ∞ ( and hence the number in the study tends to

infinity also),

(ii) var̂β
P
≈ I−1

P
, where IP is calculated from LP in exactly the same way

as for the usual information and likelihood,
(iii) asymptotic normality of ̂β

P
also holds.

There are journal papers showing that the % information lost by ignoring
actual event times is smaller than one might expect. All of the above rests on
the assumption that the Cox regression model fits the data of course.

3.4.2 Relative Risk

There is a big difference between deductions from AL parametric analysis and
PH semi-parametric analysis. In PH the intercept is non-identifiable and so
we are estimating relative risk between subjects, not absolute risk, when we
estimate the model parameters.

Definition: relative risk

The relative risk at time t between two subjects with covariates x1, x2 and
hazard functions h2, h1 is defined to be

h2(t)

h1(t)
.

For the Cox regression model this becomes time independent and is given by

eβ.(x2−x1) .
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The intercept is non-identifiable because

h(t;x) = eβ.xh0(t) = eα+β.x
(
e−αh0(t)

)

for any α. This means that any such intercept α included with the regression

expression β.x simply cancels out in the partial likelihood. Hence an intercept

is never included in the linear regressor in this model.

However we do need to estimate the cumulative baseline hazard function

and also the baseline survival function.

Definition :Breslow’s estimator for the baseline cumulative hazard

function

Breslow’s estimator is given by

Ĥ0(t) =
∑
ti≤t

̂h0(ti) =
∑

ti≤t

1∑

j∈Ri

eβ.xj

This is precisely what we would expect from a discrete distribution with

̂h0(ti) =
1∑

j∈Ri

e
β.xj

where ̂h0(t) = 0 if t is not an event time.

Corollary: survival function estimator

̂S0(t) = e−
̂H0(t)

is the estimator for the baseline survival function.

In some sense the discrete estimates for ̂h0(ti) can be thought of as the
maximum likelihood estimators from the full likelihood, provided we assume
that the hazard distribution is discrete (which of course it generally is not).

3.4.3 Plot for PH assumption with continuous covariate

Suppose we have a continuous covariate and we wish to check the proportional

hazards assumption for that covariate. We do not have natural groups of sub-

jects with the same value of that covariate.

Provided there is sufficient data we would group the subjects in quintiles of

the covariate. Then we have 5 groups and can find the Kaplan-Meier estimator

for each group. As before we plot

log(− log(̂Sk(t))) v. log t

for each k = 1, · · · ,5 on the same graph. There should be a roughly constant

vertical separation of groups. It generally is not a wonderful method, but is

better than nothing.
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