
1 De�nitions and Censoring

1.1 Survival Analysis

We begin by considering simple analyses but we will lead up to and take a
look at regression on explanatory factors., as in linear regression part A. The
important di¤erence between survival analysis and other statistical analyses
which you have so far encountered is the presence of censoring. This actually
renders the survival function of more importance in writing down the models.
We begin with a reminder of some de�nitions.
T denotes the positive random variable representing time to event of interest.
Cumulative Distribution function is F (t) = Pr(T � t) with probability den-

sity function f(t) = F
0
(t):

Survival function is

S(t) = P (T > t) = 1� F (t)

Note: we use S(t) = F (t) throughout.
Hazard function

h(t) = lim
�t!0

�
Pr(t � T < t+ �tjT � t)

�t

�
{If T is discrete and positive integer-valued then h(t) = Pr(T = tjT � t) =

Pr(T = t)=S(t� 1):g
Cumulative hazard function

H(t) =

tZ
0

h(s)ds

We have the following relations between these functions:
(i)

h(t) = lim
�t!0

�
S(t)� S(t+ �t)

�tS(t)

�
= �S

0(t)

S(t)

= � d
dt
(logS)

(ii)
S(t) = exp(�H(t)); since S(0) = 1

(iii)
f(t) = h(t)S(t)
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1.2 Censoring and truncation

Right censoring occurs when a subject leaves the study before an event occurs,
or the study ends before the event has occurred. For example, we consider
patients in a clinical trial to study the e¤ect of treatments on stroke occurrence.
The study ends after 5 years. Those patients who have had no strokes by the
end of the year are censored. If the patient leaves the study at time te; then the
event occurs in (te;1) :
Left censoring is when the event of interest has already occurred before

enrolment. This is very rarely encountered.
Truncation is deliberate and due to study design.
Right truncation occurs when the entire study population has already

experienced the event of interest (for example: a historical survey of patients
on a cancer registry).
Left truncation occurs when the subjects have been at risk before entering

the study (for example: life insurance policy holders where the study starts on
a �xed date, event of interest is age at death).
Generally we deal with right censoring & sometimes left truncation.
Two types of independent right censoring:
Type I : completely random dropout (eg emigration) and/or �xed time of

end of study no event having occurred.
Type II: study ends when a �xed number of events amongst the subjects

has occurred.

1.3 Likelihood and Censoring

If the censoring mechanism is independent of the event process, then we have
an easy way of dealing with it.
Suppose that T is the time to event and that C is the time to the censoring

event.
Assume that all subjects may have an event or be censored, say for subject i

one of a pair of observations
�eti; eci� may be observed: Then since we observe the

minimum time we would have the following expression for the likelihood (using
independence)

L =
Y
eti<eci

f(eti)SC(eti) Yeci<eti S(eci)fC(eci)
Now de�ne the following random variable:

� =

�
1 if T < C
0 if T > C

For each subject we observe ti = min
�eti; eci� and �i; observations from a

continuous random variable and a binary random variable. In terms of these L
becomes

L =
Y
i

h(ti)
�iS(ti)

Y
i

hC(ti)
1��iSC(ti)
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where we have used density = hazard � survival function.
NB If the censoring mechanism is independent (sometimes called non-informative)

then we can ignore the second product on the right as it gives us no information
about the event time. In the remainder of the course we will assume that the
censoring mechanism is independent.

1.4 Data

Demographic v. trial data
The time to event can literally be the age, eg in a life insurance policy. In a

clinical trial it will more typically be time from admission to the trial.
Slides show �ve patients A, B, C, D, E from a Sydney hospital pilot study,

concerning treatment of bladder cancer.
Each patient has their own zero time, the time at which the patient entered

the study (accrual time). For each patient we record time to event of interest
or censoring time, whichever is the smaller, and the status, � = 1 if the event
occurs and � = 0 if the patient is censored.
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2 Non-parametric estimators

Reminder: (informs the argument below)
If there are observations x1; : : : ; xn from a random sample then we de�ne

the empirical distribution function

bF (x) = 1

n
# fxi : xi � xg

This is appropriate if no censoring occurs. However if censoring occurs this
has to be taken into account.
We measure the pair (X; �) where X = min(T;C) and � is as before

� =

�
1 if T < C
0 if T > C

Suppose that the observations are (xi; �i) for i = 1; 2 : : : ; n:

L =
Y
i

f(xi)
�iS(xi)

1��i

=
Y
i

f(xi)
�i (1� F (xi))1��i

What follows is a heuristic argument allowing us to �nd an estimator for S
, the survival function, which in the likelihood sense is the best that we can do.
Suppose that there are failure times (0 <) < t1 < : : : < ti < : : : : Let

si1; si2; � � � ; sici be the censoring times within the interval [ti; ti+1) and suppose
that there are di failures at time ti (allowing for tied failure times). Then the
likelihood function becomes

L =
Y
fail

f(ti)
di
Y
i

 
ciY
k=1

(1� F (sik))
!

=
Y
fail

(F (ti)� F (ti�))di
Y
i

 
ciY
k=1

(1� F (sik))
!

where we write f(ti) = F (ti)� F (ti�); the di¤erence in the cdf at time ti and
the cdf immediately before it.
Since F (ti) is an increasing function, and assuming that it takes �xed values

at the failure time points, we make F (ti�) and F (sik) as small as possible in
order to maximise the likelihood. That means we take F (ti�) = F (ti�1) and
F (sik) = F (ti).
This maximises L by considering the cdf F (t) to be a step function and

therefore to come from a discrete distrbution, with failure times as the actual
failure times which occur. Then

L =
Y
fail

(F (ti)� F (ti�1))di
Y
i

(1� F (ti))ci
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So we have showed that amongst all cdf�s with �xed values F (ti) at the
failure times ti; then the discrete cdf has the maximum likelihood, amongst
those with di failures at ti and ci censorings in the interval [ti; ti+1):
Let us consider the discrete case and let

Pr (fail at tijsurvived to ti�) = hi

Then

S (ti) = 1� F (ti) =
iY
1

(1� hj);

f(ti) = hi

i�1Y
1

(1� hj)

Finally we have
L =

Y
ti

hdii (1� hi)ni�di

where ni is the number at risk at time ti. This is usually referred to as the
number in the risk set.
Note

ni+1 + ci + di = ni
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2.1 Kaplan-Meier estimator

This estimator for S(t) uses the mle estimators for hi. Taking logs

l =
X
i

di log hi +
X
i

(ni � di) log(1� hi)

Di¤erentiate with respect to hi

@l

@hi
=

di
hi
� ni � di
1� hi

= 0

=) bhi = di
ni

So the Kaplan-Meier estimator is

bS(t) = Y
ti�t

�
1� di

ni

�
where

ni = #fin risk set at tig;
di = #fevents at tig:

Note that ci = #fcensored in [ti; ti+1)g: If there are no censored observations
before the �rst failure time then n0 = n1 = #fin studyg: Generally we assume
t0 = 0:

2.2 Nelson-Aalen estimator and new estimator of S

The Nelson-Aalen estimator for the cumulative hazard function is

bH(t) =X
ti�t

di
ni

0@=X
ti�t

bhi
1A

This is natural for a discrete estimator, as we have simply summed the estimates
of the hazards at each time, instead of integrating, to get the cummulative
hazard. This correspondingly gives an estimator of S of the form

eS(t) = exp
�
� bH(t)�

= exp

0@�X
ti�t

di
ni

1A
It is not di¢ cult to show by comparing the functions 1� x; exp(�x) on the

interval 0 � x � 1, that eS(t) � bS(t):
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Invented data set
Suppose that we have 10 observations in the data set with failure times as

follows:
2; 5; 5; 6+; 7; 12; 14+; 14+; 14+; 14+

Here + indicates a censored observation. Then we can calculate both estimators
for S(t) at all time points. It is considered unsafe to extrapolate much beyond
the last time point, 14, even with a large data set.
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2.3 Con�dence Intervals

We need to �nd con�dence intervals (pointwise) for the estimators of S(t) at
each time point. We di¤erentiate the log-likelihood and use likelihood theory,

l =
X
i

di log hi +
X
i

(ni � di) log(1� hi);

di¤erentiated twice to �nd the Hessian matrix
n

@2l
@hi@hj

o
.

Note that since l is a sum of functions of each individual hazard the Hessian
must be diagonal.

The estimators
nch1;ch2; : : : ;chno are asymptotically unbiased and are asymp-

totically jointly normally distributed with approximate variance I�1, where the
information matrix is given by

I = E

�
�
�

@2l

@hi@hj

��
:

Since the Hessian is diagonal, the covariances are all asymptotically zero, and
coupled with asymptotic normality, this ensures that all pairs bhi; bhj are asymp-
totically independent.

� @
2l

@h2i
=
di
h2i
+

ni � di
(1� hi)2

We use the observed information J and so replace hi in the above by its estimatorbhi = di
ni
: Hence we have

var bhi � di (ni � di)
n3i

:

2.3.1 Establishing Greenwood�s formula

Reminder: � method
If the random variation of Y around � is small (for example if � is the mean

of Y and varY has order 1
n ), we use:

g(Y ) � g(�) + (Y � �)g0(�) + 1
2
(Y � �)2 g00(�) + : : :

Taking expectations

E(g(Y )) = g(�) +O

�
1

n

�
var(g(Y)) = g0(�)2varY + o

�
1

n

�
Derivation of Greenwood�s formula for var(bS(t))

log bS(t) =X
ti�t

log
�
1� bhi�
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But

var bhi � di (ni � di)
n3i

and bhi P�! hi

so that, given g(hi) = log (1� hi) ;

g0(hi) =
�1

(1� hi)

we have

var log
�
1� bhi� � 1

(1� hi)2
var bhi

� 1

(1� di
ni
)2
di (ni � di)

n3i

=
di

ni (ni � di)

Since bhi; bhj are asymptotically independent we can put all this together to
get

var log
�bS(t)� =X

ti�t

di
ni (ni � di)

Let Y = log bS and note that we need var �eY � � �eY �2 varY , again using
the delta-method.
Finally we have Greenwood�s formula

var
�bS(t)� � bS(t)2X

ti�t

di
ni (ni � di)

:
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Applying this to the same sort of argument to the Nelson-Aalen estimator
and its extension to the survival function we also see

var bH(t) �X
ti�t

di (ni � di)
n3i

and

vareS(t) = var
�
exp(� bH(t)�

�
�
e�H

�2X
ti�t

di (ni � di)
n3i

�
�eS(t)�2X

ti�t

di (ni � di)
n3i

Clearly these estimates are only reasonable if each ni is su¢ ciently large, since
they rely heavily on asymptotic calculations.

2.4 Actuarial estimator

The actuarial estimator is a further estimator for S(t):It is given as

S�(t) =
Y
ti�t

�
1� di

ni � 1
2ci

�
The intervals between consecutive failure times are usually of constant length,
and it is generally used by actuaries and demographers following a cohort from
birth to death. Age will normally be the time variable and hence the unit of
time is 1 year.
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3 Models: accelerated life model, proportional
hazards model

We generally will have heterogeneous data where parameter estimates will be
dependent on covariates measured for participants in a study. For example
age or sex may have an e¤ect on time to event. A simple example would be
where participants fall into two groups such as treatment v. control, smoker v.
non-smoker.
There are two popular general classes of model as in the heading above - AL

and PH.

3.1 Accelerated Life models

Suppose there are (several) groups, labelled by index i: The accelerated life
model has a survival curve for each group de�ned by

Si(t) = S0(�it)

where S0(t) is some baseline survival curve and �i is a constant speci�c to group
i.
If we plot Si against log t, i = 1; 2; : : : ; k, then we expect to see a horizontal

shift as
Si(t) = S0(e

log �i+log t) :

3.1.1 Medians and Quantiles

Note too that each group has a di¤erent median lifetime, since, if S0(m) = 0:5;

Si(
m

�i
) = S0(�i

m

�i
) = 0:5;

giving a median for group i of m�i . Similarly if the 100�% quantile of the baseline

survival function is t�, then the 100�% quantile of group i is t�
�i
.

3.2 Proportional Hazards models

In this model we assume that the hazards in the various groups are proportional
so that

hi(t) = �ih0(t)

where h0(t) is the baseline hazard. Hence we see that

Si(t) = S0(t)
�i

Taking logs twice we get

log (� logSi(t)) = log �i + log (� logS0(t))

So if we plot the RHS of the above equation against either t or log t we expect
to see a vertical shift between groups.
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3.2.1 Plots

Taking both models together it is clear that we should plot

log
�
� log bSi(t)� against log t

as then we can check for AL and PH in one plot. Generally bSi will be calculated
as the Kaplan-Meier estimator for group i, and the survival function estimator
for each group will be plotted on the same graph.
(i) If the accelerated life model is plausible we expect to see a horizontal

shift between groups.
(ii) If the proportional hazards model is plausible we expect to see a vertical

shift between groups.

3.3 AL parametric models

There are several well-known parametric models which have the accelerated life
property. These models also allow us to take account of continuous covariates
such as blood pressure.

Name S(t) h(t)

Weibull exp(� (�t)�) ���t��1

log-logistic 1
1+(�t)�

���t��1

1+(�t)�

log-normal 1-�
�
log t+log �

�

�
� � �

exponential exp(��t) �
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Density function

Name f(t) = hS

Weibull ���t��1e�(�t)
�

log-logistic ���t��1

(1+(�t)�)2

log-normal 1

t
p
2��2

exp
�
� 1
2�2 (log t+ log �)

2
�

exponential �e�t

Remarks:
(i) Exponential is a submodel of Weibull with � = 1
(ii) log-normal is derived from a normal distribution with mean � log � and

variance �2. In this distribution � = 1
� has the same role as in the Weibull and

log-logistic.
(iii) The shape parameter is �: The scale parameter is �:
Shape in the hazard function h(t) is important.

Weibull � � �
�
h monotonic increasing �>1
h monotonic decreasing �<1

log-normal � � � h �! 0 as t �! 0;1; one mode only
log-logistic � � � see problem sheet 5.
Comments:
a) to get a "bathtub" shape we might use a mixture of Weibull�s. This

gives high initial probability of an event, a period of low hazard rate and then
increasing hazard rate for larger values of t.
b) to get an inverted "bathtub" shape we may have a mixture of log-logistics,

or possibly a single log-normal or single log-logistic.
To check for appropriate parametric model (given AL checked)
There are some distributional ways of testing for say Weibull v. log-logistic

etc., but they involve generalised F-distributions and are not in general use.
We can do a simple test for Weibull v. exponential as this simply means

testing a null hypothesis � = 1, and the exponential is a sub-model of the
Weibull model. Hence we can use the likelihood ratio statistic which involves

2 log bLweib � 2 log bLexp � �2(1); asymptotically.
3.3.1 Plots for parametric models

However most studies use plots which give a rough guide from shape. We should
use a straightline �t as this is the �t which the human eye spots easily.

1) Exponential - S = e��t; plot logS v. log t

2)Weibull - S = e�(�t)
�

; plot log (� logS) v. log t
3) log-logistic - S = 1

1+(�t)� ; plot � � � see problem sheet 5
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4) log-normal - S = 1��
�
log t+log �

�

�
, plot ��1 (1� S) v. log t or

equivalently ��1 (S) v. log t

In each of the above we would estimate S with the Kaplan-Meier estimatorbS(t), and use this to construct the plots.
3.3.2 Regression in parametric AL models

In general studies each observation will have measured explanatory factors such
as age, smoking status, blood pressure and so on. We need to incorporate these
into a model using some sort of generalised regression. It is usual to do so by
making � a function of the explanatory variables.
For each observation (say individual in a clinical trial) we set the scale pa-

rameter � = �(�:x), where �:x is a linear predictor composed of a vector x of
known explanatory variables (covariates) and an unknown vector � of parame-
ters which will be estimated. The most common link function is

log � = �:x , equivalently � = e�:x .

The idea is to mirror ordinary linear regression and �nd a baseline distribution
which does not depend on �; similar to looking at the error term in least squares
regression.
To give a derivation we will restrict to the Weibull distribution, but similar

arguments work for all AL parametric models. We have

S(t) = e�(�t)
�

= Pr(T > t)

= Pr(log T > log t)

= Pr(� (log T + log �) > � (log t+ log �))

Now let Y = � (log T + log �) and y = � (log t+ log �) :

Pr(Y > y) = SY (y)

= S(t)

= e�(�t)
�

= exp(�ey)

Hence we have

log T = � log �+ 1

�
Y; where SY (y) = exp(�ey)

The distribution of Y is independent of the parameters � and �: And in the
case of the Weibull distribution its distribution is called the extreme value
distribution and is as above.
In general we will write log T = � log � + 1

�Y for all AL parametric mod-
els, and Y has a distribution in each case which is independent of the model
parameters.
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Name S(t) Y

Weibull exp(� (�t)�) log T = � log �+ 1
�Y

log-logistic 1
1+(�t)� log T = � log �+ 1

�Y

log-normal 1-�
�
log t+log �

�

�
log T = � log �+ �Y

as before � = 1
� ; for the log-normal.

Name SY (y) distribution

Weibull exp(�ey) extreme value

log-logistic 1
1+ey logistic distribution

log-normal 1� �(y) N(0,1)

3.3.3 With real data (assuming right censoring only)

Censoring is assumed to be independent mechanism and is sometimes referred
to as non-informative.
The shape parameter � is assumed to be the same for each observation

in the study.
There are often very many covariates measured for each subject in a study.
A row of data will have perhaps:-
response - event time ti , status �i (=1 if failure, =0 if censored)
covariates - age, sex, systolic blood pressure, treatment, and so a mixture of

categorical variables and continuous variables amongst the covariates.
Suppose that Weibull is a good �t. Then

S(t) = e�(�t)
�

and � = e�:x

�:x = b0 + b1xage + b2xsex + b3xsbp + b4xtrt

where b0 is the intercept and all regression coe¢ cients bi are to be estimated, as
well as estimating �:Note this model assumes that � is the same for each subject.
We have not shown, but could have, interaction terms such as xage � xtrt. This
interaction would allow a di¤erent e¤ect of age according to treatment group.
Suppose subject j has covariate vector xj and so scale parameter

�j = e
�:xj :

This gives a likelihood

L(�; �) =
Y
j

�
���j t

��1
j

��j
e�(�jtj)

�

=
Y
j

�
�e��:xj t��1j

��j
e�(e

�:xj tj)
�

:
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We can now look for mle�s for � and all components of the vector �; giving esti-

mators b�, b� together with their standard errors ( =
p
varb�;qvarb�j ) calculated

from the observed information matrix (see problem sheet 5).
As already noted we can test for � = 1 using

2 log bLweib � 2 log bLexp � �2(1), asymptotically.
Packages allow for Weibull, log-logistic and log-normal models, sometimes oth-
ers.
In recent years, a semi-parametric model has been developed in which the

baseline survival function S0 is modelled non-parametrically, and each subject
has time t scaled to �jt. This model is beyond the scope of this course.
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