Recombination, and haplotype structure

Simon Myers, Gil McVean
Department of Statistics, Oxford

The starting point

• We have a genome’s worth of data on genetic variation

• We wish to understand why the haplotype structure looks how it does
 – Differences between regions, populations

Where do haplotypes come from?

• In the absence of recombination, the most natural way to think about haplotypes is in terms of the genealogical tree representing the history of the chromosomes

• Tree affects mutation patterns
• Mutation patterns give information on tree

What determines the shape of the tree?
Ancestry of current population

The coalescent: a model of genealogies

Simulating histories with the coalescent
Simulating data with the coalescent

Haplotype structure in the absence of recombination

- In the absence of recombination, the shape of the tree and where mutations fall on it determine patterns of haplotype structure
- Two mutations on the same branch will be in complete association, mutations on different branches will have lower and often low association

\[r^2 = 1 \]
\[r^2 = 0.04 \]

Haplotypes when there is recombination

- When there is no recombination, haplotype structure reflects the age distribution of mutations and the shape of the underlying tree
- When there is some recombination, every nucleotide position has a tree, but the tree changes along the chromosome at a rate determined by the local recombination landscape
- By using SNP information to inform us about the trees, we can learn about how quickly the trees changes
 - This relates to the recombination rate

A bit of recombination ‘shuffles’ genetic variation
Lots of recombination does lots of shuffling

Recombination and haplotype diversity

- Without recombination, a new mutation can create at most one new haplotype
 - Any two mutations delineate at most 3 haplotypes in total (ancestral, plus two new types)
- With recombination, this mutation can spread onto every existing haplotype background, creating the potential for more haplotypes
- For a given number of SNPs a region with recombination will tend to have (in comparison to a region with no recombination)
 - More haplotypes
 - Less variance in the pairwise differences between haplotypes
 - Less skewed haplotype frequencies

The ancestral recombination graph

- The combined history of recombination, mutation and coalescence is described by the ancestral recombination graph

In humans, recombination is not uniformly distributed

- Most recombination occurs in recombination hotspots – short (1-2kb) regions every 50-100kb that occupy at most 3% of the genome but probably account for 90% or more of the recombination
- This means that haplotype structure in humans is an interesting hybrid between the no recombination and lots of recombination situations
Learning about recombination

- Just like there is a true genealogy underlying a sample of sequences without recombination, there is a true ARG underlying samples of sequences with recombination.

- We can consider nonparametric and parametric ways of learning about recombination.

- There are useful nonparametric ways of learning about recombination which we will consider first.
 - These really only apply to species, such as humans, where we can be fairly sure that most SNPs are the result of a single ancestral mutation event.

The signal of recombination?

Detecting recombination from DNA sequence data

- Look for all pairs of “incompatible” sites.

- Find minimum number of intervals in which recombination events must have occurred (Hudson and Kaplan 1985): R_m.

Improving the detection algorithm

- R_m greatly underestimates the amount of recombination in the history of a set of sequences.

- Myers and Griffiths (2003) developed an improved way of detecting recombination events.
 - Without recombination, every new mutation can create only a single new haplotype.
 - With recombination, mutations can be shuffled between haplotype background, generating haplotype diversity.
 - Each recombination makes at most one new haplotype.
 - If I see H haplotypes with S segregating sites, at least $H-S-1$ recombination events must have occurred.

- This offers potential to identify many more recombination events.
 - Carefully combine bounds from different collection of sites.
 - Dynamic programming algorithm makes computation extremely fast.
 - Better (sometimes slower) algorithms developed recently.
Problems with ‘counting’ recombination events

A tree-pair where we could see recombination events, but don’t

Tree-pairs where we cannot see recombination events

Modelling recombination

- Model-based approaches to learning about recombination allow us to ask more detailed questions than nonparametric approaches
 - What is the rate of recombination (as opposed to just the number of events)
 - Does gene A have a higher recombination rate than gene B?
 - Is the rate of recombination across a region constant?
 - Where are the recombination hotspots?

- We can use coalescent model approaches (approximations) to calculating the likelihood of arbitrary recombination maps given observed data

Fitting a variable recombination rate

- Use a reversible-jump MCMC approach (Green 1995)

Acceptance rates

\[
\alpha(\psi', \psi) = \min \left[1, \frac{\ell_c(\psi')}{\ell_c(\psi)} \times \frac{\pi(\psi')}{\pi(\psi)} \times \frac{q(\psi', \psi)}{q(\psi, \psi')} \times \left| \frac{\partial(\psi', u')}{\partial(\psi, u)} \right| \right]
\]

Composite likelihood ratio

Ratio of priors

Hastings ratio

Jacobian of partial derivatives relating changes in dimension to sampled random numbers

- Include a prior on the number of change points that encourages smoothing
Strong concordance between fine-scale rate estimates from sperm and genetic variation

Rates estimated from genetic variation

Rates estimated from sperm
Jeffreys et al (2001)

Inferring hotspots

- We perform a statistical test for hotspot presence
- Based on an approximation to the coalescent similar to that used for rate estimation
- All previously identified hotspots are 1-2kb in size
 - At a position in genome, consider where 2kb hotspot might be present
 - Fit a model with hotspot
 - Fit one without
 - Compare in terms of (approximate) likelihood ratio test
 - Evaluate significance via simulation
 - When p-value below threshold, declare a hotspot

Rates and hotspots across the human genome

From Myers et al. (2005)

Applications of recombination approaches to real data

- Rates and hotspots across the human genome (Myers et al. 2005)
 - Previously, no understanding of why hotspots localise where they do
 - Can 35,000 hotspots, accounting for >50% of human recombination, help?
- Comparison of recombination rates (Winckler et al. 2004, Ptak et al. 2005)
 - Between humans and chimpanzees
 - At individual recombination hotspots
- Understanding genomic rearrangements (Myers et al., submitted!)
 - Cause a number of “genomic disorders”
 - Relationship to recombination hotspots
32,996 Phase II HapMap hotspots

Estimated 50-70% of all human recombination
Hotspots on all chromosomes, including X

- \(\text{THE1B} \): Found in 1196 hotspots versus 606 coldspots \((p<10^{-20}) \)
- \(\text{AluY} \): Found in 3635 hotspots versus 3262 coldspots \((p=7 \times 10^{-5}) \)

~20,000 hotspots localised to within 5kb

THE1B: (LTR of retrotransposon)

Human hotspot motifs

- In humans, specific words produce recombination hotspot activity
 - Hotspot motif CCTCCCTNCCAC \((p<10^{-23}) \)
 - Raises probability of a hotspot across genetic backgrounds
 - Degenerate versions CCNCCNTNNCCNC and truncated CCTCCCT also raise probability, to lesser extent
 - Motif explains ~40% of human hotspots
 - Operates in both sexes
 - We don’t know, very clearly, which hotspots
 - On THE1 background, hotspot 70-80% of time!
 - Biology not clearly understood
 - We identified a second, different hotspot motif (the best 9bp motif), CCCCACC

Variation in individual hotspots

Sequence variation affects recombination at DNA2 (Jeffreys and Neumann, Nature Genetics 2002)
SNPs disrupting hotspots

- **DNA2:**

 Hot AAAAAAGACAGCCCTCCCTGTGGCTGC
 Cold AAAAAAGACAGCCCTCCCTGTGGCTGC

- **NID1:**
 - Hot CACC CCCACCCCCACCCCCAACATA
 - Cold CACC TCCCCACCCCCACCCCCAACATA

Disruption of CCCCACCCC, best 9bp motif

Role of motif in X-linked ichthyosis

- Many other diseases are caused by recombination-mediated deletions and duplications (NAHR)
 - Smith-Magenis syndrome (hotspot)
 - CMT1A (hotspot)
 - NF1 microdeletion syndrome (hotspot)
 - DiGeorge syndrome....

- Two recent studies suggest normal hotspots and hotspots of disease-causing deletion may coincide
 - de Raadt, Stephens et al. (Nature Genetics, 2006)
 - Two NF1 deletion hotspots both likely to coincide with crossover hotspots
 - Lindsay et al. (ASHG, 2006)
 - CMT1A deletion hotspot associated with crossover hotspot