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Increasing sets and product measures

Let B = (B;,i € I) be a collection of random variables taking values 0 and 1, where I
is some arbitrary index set. Write P, for the measure under which the (B;) are i.i.d. with
P.(B;=1)=u.

We consider increasing events A depending on the collection B (and write A(B) when we

need to make the dependence explicit).

Theorem 1 Let A be any increasing event. Suppose k €N, ¢ >0 and 0 <z~ <zt <1 are
such that

et >1—(1—g )tk (1)
and
P, (A) € (ke'/?,1 — ke'/?). (2)
Then
P+ (A) — P-(A) > €. (3)

[N.B.: by considering simple symmetries one gets the same result under the conditions
that (@)% > 2~ and Py (4) € (kel/2,1 - kel/2)]

Proof: Extend the space so that as well as B it now contains k+ 1 further independent copies
of the collection of Bernoulli random variables, which we call B, B®) . B®*+1) Under
P,, all the Bernoulli random variables share the same success probability x.

Write 11 =1 — (1 —2)* and 2, =1 — (1 — z2)*.

If we take the componentwise max B v B® ... v B®  this gives a collection of inde-
pendent Bernoulli random variables which, under P,, have success probability .

Similarly taking the max B v B®) ... v B¥+D Jeads to a collection of independent
Bernoulli random variables with success probability zj41.

We write

A = ABW vB@ ...y B®),
Appr = ABW vB@ ...y BEHD)Y,

Thus from the previous two paragraphs,

P,

xk+1(A(B)) = Pp(Akt1)-
Since Ay C Agy1, we have Py, (A(B)) — Py, (A(B)) = Pp(Ags1 \ Ag).
We define Y, = P,(A;/BM,BA) ... BM),
Thus Yy = P.(A4x) a.s. and Yy, = I(Ag) a.s.
We will show that if P,(Ags1 \ Ak) is small, then all the differences Y, — Y,._; are likely
to be small. This will then imply that P,(Aj) must be close to 0 or 1.

We make the following claim:

if Py(Y, — Yooy > y) > z, then Pp(Aps1 \ Ax) > y2. (4)



We postpone the proof of (4). First we show how it implies the main result.

Given ¢, we will use y = z = ¢'/2 in (4).

Suppose that P,(Agt+1 \ Ax) < yz = e. Then by (4), for each r we have P, (Y, — Y,._1 >
€1/2) < /2,

In that case P, (Y;, — Yy > ke'/?) < ke'/2,

That is, P,(I(Ag) — Py(Ag) > ke'/?) < ke'/2.

This means that either P,(Ax) > 1 — ke'/? or P,(Ag) < ke'/2.

We have deduced that if P,(Ax) € (ke'/2,1 — kel/?), then Py(Apyq1 \ Ag) > e

Translating, we obtain that if P, (A) € (ke'/2,1 — kel/?), then Py, (A) — Py, (A) > e
To complete the proof, we choose x in such a way that

T =1-(1-2)" =z
and
T >1—(1—a)" =24,

This is possible because of the assumption (1).
Then P,- (A) = P, (A) and P+ (A) > P, (A) and the desired result follows.

It remains to prove the claim (4), which we write as a separate lemma:

Lemma 1 If P.(Y, —Y,_1 > y) > z, then Py(Ak11 \ Ag) > yz.

Proof of lemma:
Y, is a function of BW ... B,
We will consider an altered version of Y, where B(") is replaced by B+1).

Namely, define
A}; = A(B(l)) sy B(r_1)7 B(T+1)a ey B(k+1))7
where B" is omitted, and define

Y™ = P, (A7|BY, ..., Br—1) B+,

Now, conditional on Y,._1, the quantities Y, and }7} have the same distribution. In partic-
ular, Y, — Y, and ffr — Y, _1 have the same distribution.
We expand:

Y, —Y, 1= P.(A ,B@ . B Bk+1)) z(AkIB(l),B@),.,_,B(Tfl))
= P,(A
Pw(AkHIB(” B®, .. BU-D BE:tD) _ p (4, BO B® . Br-D Bk
= Po(Apa \ 4BV, B®, . B B+,

1;,/B
irBW,B®, .. B BE) _ p (4, BO, B, .. B Bk

where we have used variously that A, and BM ... B =1 are independent of B(**1) | that
A} C Agyq, and that Ay C Ay,
As a result we have that if P,(Y, —Y,_; > y) > z then Px(fﬁ —Y,_1 > y) > z so that
also
Po(Pp(Apsr \ Ax BY, B@  BUr—D By >y > »

which implies that P, (Ag+1 \ Ax) > yz as desired. O



