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Increasing sets and product measures

Let B = (Bi, i ∈ I) be a collection of random variables taking values 0 and 1, where I
is some arbitrary index set. Write Px for the measure under which the (Bi) are i.i.d. with
Px(Bi = 1) = x.

We consider increasing events A depending on the collection B (and write A(B) when we
need to make the dependence explicit).

Theorem 1 Let A be any increasing event. Suppose k ∈ N, ε > 0 and 0 < x− < x+ < 1 are
such that

x+ ≥ 1− (1− x−)1+1/k (1)

and
Px−(A) ∈ (kε1/2, 1− kε1/2). (2)

Then
Px+(A)− Px−(A) ≥ ε. (3)

[N.B.: by considering simple symmetries one gets the same result under the conditions
that (x+)1+1/k ≥ x− and Px+(A) ∈ (kε1/2, 1− kε1/2).]

Proof: Extend the space so that as well as B it now contains k+1 further independent copies
of the collection of Bernoulli random variables, which we call B(1),B(2), . . . ,B(k+1). Under
Px, all the Bernoulli random variables share the same success probability x.

Write xk+1 = 1− (1− x)k+1 and xk = 1− (1− x)k.
If we take the componentwise max B(1) ∨ B(2) · · · ∨ B(k), this gives a collection of inde-

pendent Bernoulli random variables which, under Px, have success probability xk.
Similarly taking the max B(1) ∨ B(2) · · · ∨ B(k+1) leads to a collection of independent

Bernoulli random variables with success probability xk+1.
We write

Ak = A(B(1) ∨B(2) · · · ∨B(k)),

Ak+1 = A(B(1) ∨B(2) · · · ∨B(k+1)).

Thus from the previous two paragraphs,

Pxk
(A(B)) = Px(Ak),

Pxk+1(A(B)) = Px(Ak+1).

Since Ak ⊆ Ak+1, we have Pxk+1(A(B))− Pxk
(A(B)) = Px(Ak+1 \Ak).

We define Yr = Px(Ak|B(1),B(2), . . .B(r)).
Thus Y0 = Px(Ak) a.s. and Yk = I(Ak) a.s.
We will show that if Px(Ak+1 \ Ak) is small, then all the differences Yr − Yr−1 are likely

to be small. This will then imply that Px(Ak) must be close to 0 or 1.
We make the following claim:

if Px(Yr − Yr−1 ≥ y) ≥ z, then Px(Ak+1 \Ak) ≥ yz. (4)
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We postpone the proof of (4). First we show how it implies the main result.
Given ε, we will use y = z = ε1/2 in (4).
Suppose that Px(Ak+1 \ Ak) < yz = ε. Then by (4), for each r we have Px(Yr − Yr−1 ≥

ε1/2) < ε1/2.
In that case Px(Yk − Y0 ≥ kε1/2) < kε1/2.
That is, Px(I(Ak)− Px(Ak) ≥ kε1/2) < kε1/2.
This means that either Px(Ak) ≥ 1− kε1/2 or Px(Ak) < kε1/2.
We have deduced that if Px(Ak) ∈ (kε1/2, 1− kε1/2), then Px(Ak+1 \Ak) ≥ ε.
Translating, we obtain that if Pxk

(A) ∈ (kε1/2, 1− kε1/2), then Pxk+1(A)− Pxk
(A) ≥ ε.

To complete the proof, we choose x in such a way that

x− = 1− (1− x)k = xk

and
x+ ≥ 1− (1− x)k+1 = xk+1.

This is possible because of the assumption (1).
Then Px−(A) = Pxk

(A) and Px+(A) ≥ Pxk+1(A) and the desired result follows.
It remains to prove the claim (4), which we write as a separate lemma:

Lemma 1 If Px(Yr − Yr−1 ≥ y) ≥ z, then Px(Ak+1 \Ak) ≥ yz.

Proof of lemma:
Yr is a function of B(1), . . . ,B(r).
We will consider an altered version of Yr where B(r) is replaced by B(k+1).
Namely, define

Ãr
k = A(B(1), . . . ,B(r−1),B(r+1), . . . ,B(k+1)),

where Br is omitted, and define

Ỹ r = Px(Ãr
k|B(1), . . . ,B(r−1),B(k+1)).

Now, conditional on Yr−1, the quantities Yr and Ỹr have the same distribution. In partic-
ular, Yr − Yr−1 and Ỹr − Yr−1 have the same distribution.

We expand:

Ỹr − Yr−1 = Px(Ãr
k|B(1),B(2), . . . ,B(r−1),B(k+1))− Px(Ak|B(1),B(2), . . . ,B(r−1))

= Px(Ãr
k|B(1),B(2), . . . ,B(r−1),B(k+1))− Px(Ak|B(1),B(2), . . . ,B(r−1),B(k+1))

≤ Px(Ak+1|B(1),B(2), . . . ,B(r−1),B(k+1))− Px(Ak|B(1),B(2), . . . ,B(r−1),B(k+1))

= Px(Ak+1 \Ak|B(1),B(2), . . . ,B(r−1),B(k+1)),

where we have used variously that Ak and B(1), . . . ,B(r−1) are independent of B(k+1), that
Ãr

k ⊆ Ak+1, and that Ak ⊆ Ak+1.
As a result we have that if Px(Yr − Yr−1 ≥ y) ≥ z then Px(Ỹr − Yr−1 ≥ y) ≥ z, so that

also
Px(Px(Ak+1 \Ak|B(1),B(2), . . . ,B(r−1),B(k+1)) ≥ y) ≥ z,

which implies that Px(Ak+1 \Ak) ≥ yz as desired. �
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