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Abstract

We consider “time-of-use” pricing as a technique for matching supply and demand of temporal re-
sources with the goal of maximizing social welfare. Relevant examples include energy, computing re-
sources on a cloud computing platform, and charging stations for electric vehicles, among many others.
A client/job in this setting has a window of time during which he needs service, and a particular value
for obtaining it. We assume a stochastic model for demand, where each job materializes with some
probability via an independent Bernoulli trial. Given a per-time-unit pricing of resources, any realized
job will first try to get served by the cheapest available resource in its window and, failing that, will try
to find service at the next cheapest available resource, and so on. Thus, the natural stochastic fluctuations
in demand have the potential to lead to cascading overload events. Our main result shows that setting
prices so as to optimally handle the expected demand works well: with high probability, when the actual
demand is instantiated, the system is stable and the expected value of the jobs served is very close to that
of the optimal offline algorithm.
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1 Introduction

For many commodities of a temporal nature, demand and supply fluctuate stochastically over time. Demand
for electricity changes over the course of a day as well as across different days of the week—home owners
use more electricity during evenings and weekends, offices use more during normal working hours, and en-
ergy usage at factories can follow an altogether different cycle depending on workloads. On the other hand,
supply from sources of renewable energy depends on weather conditions and can also vary significantly over
time. Likewise, demand for computing resources on a cloud computing platform varies over time depending
on users’ workloads. Supply also varies stochastically, depending on scheduled and unscheduled downtime
for servers and other kinds of outages. In this paper, we explore the effectiveness of “time-of-use” pricing
as a method for efficiently and effectively matching supply and demand in such settings.

Online matching of temporal resources: Suppose that there are Bt units of resource available at time t
and each potential client, a.k.a. “job”, j has a window of time during which it would like to obtain “service”,
say, a unit allocation of the resource. Job j obtains a value of vj from getting serviced at any time in its
window. (See figure below.) We consider the following model of job arrival that is a hybrid of stochastic
and adversarial models: job j is realized with probability qj via an independent Bernoulli trial. Jobs arrive
online in the system in an adversarial order that can depend on the set of realized jobs.

How should the supplier allocate the available resources to jobs so as to maximize the total expected
value1 of the jobs that are served? Perhaps the most natural approach is to use the stochastic information
about demand to price the available resources on a per-time-unit basis. Such time-of-use pricing is an ef-
fective way for the supplier of a temporal commodity to balance supply and demand. During lean supply
periods, advertising a high price suppresses demand, whereas during times of excess supply, advertising a
low price encourages higher demand. Moreover, allowing each client to be a “price-taker”, that is, making
sure that each client is allocated the cheapest available resource that meets his requirements,2 trivially guar-
antees that clients will be truthful about all of their parameters: there is no advantage to misreporting one’s
value or service window.

For a single time period in isolation, determining the right price to set is a newsvendor problem [21]. The
optimal solution is to set the price so that the system is slightly overprovisioned with the expected supply
matching the expected demand plus a small reserve. Even for this setting, if jobs arrive in adversarial order,
Ω(ε−2 ln(ε−1)) units of resource are needed to guarantee that the expected value of the jobs served is at least
1− ε times the expected value of the jobs scheduled by the optimal offline algorithm.

For the general case, as a thought experiment, suppose that we only needed to satisfy supply constraints
in expectation in every time period. This entails solving an “expected LP”, which yields a set of prices, one
for each period, and automatically matches potential jobs with a cheapest slot in their window. But how well
does such a system work under the natural stochastic fluctuations that will necessarily occur? The concern

1 Also called the efficiency or social welfare of the system.
2 A resource at time t priced at pt meets job j’s requirement if pt ≤ vj and time slot t is within job j’s window.
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is that, because of variability in the realized demand relative to the expected demand, a client may show
up and find that the cheapest slot in his window has already been allocated. This will cause him to try to
take the next cheapest slot and so on. Such “overload” events, that is, events where demand exceeds supply
causing excess demand to be forwarded, are positively correlated across time slots and can exhibit cascading
behavior.

Our main theorem is that such time-of-use pricing works well with high probability: Suppose that
Bt resources are available at each time t, where Bt = Ω(ε−2 ln(ε−1)). (We call this the “large market
assumption.”) Given the model of job arrivals described above, there is a set of prices (pt) such that if (a)
realized jobs arrive online in an adversarial order, and (b) upon arrival, each job grabs his favorite available
resource given the prices, the expected value of the jobs served is at least 1− ε times the expected value of
the jobs scheduled by the optimal offline algorithm.

Thus, despite the complex interaction between demand for time slots due to the forwarding of unmet de-
mand and the adversarial arrival order of realized jobs, we can guarantee near-optimal expected performance
without increasing capacity over what would be needed in a single time-unit setting.

Key ideas in the proof. The prices we set induce a forwarding graph: the nodes are time slots and an
edge from time slot t to time slot t′ means that pt ≤ pt′ and some job might try to grab a resource at time t′

immediately after failing to find an available resource at time t.
What properties of the forwarding graph determine whether or not overload cascades are likely? Perhaps

unsurprisingly, the maximum in-degree of a node in the forwarding graph is key. Suppose, for example, that
one time slot t has very high in-degree, meaning that it may receive forwarded jobs from many other time
slots. Even if each of the latter time slots has a low probability of forwarding a job, the total expected
number of jobs forwarded to t may be high, and may therefore lead to a high probability of overload at t. If
all of the highest value jobs happen to have t as the only slot in their window, this could wreak havoc on our
social welfare bounds.

What is perhaps somewhat surprising though is that maximum in-degree is the only relevant graph
parameter. In particular, the size of the graph does not play a role. Showing that our theorem holds is easy if
the forwarding graph is a line or even a bounded-degree tree; the analysis boils down to proving inductively
that the number of jobs forwarded from one time slot to the next satisfies an exponential tail bound. However,
once the graph has cycles, inductive arguments no longer apply. A key part of our proof consists of showing
that, among bounded degree graphs, a bounded degree tree will maximize the probability of overload at any
time slot. This requires the use of a “decorrelation lemma” that allows us to upper bound the probability of
bad dependent events by the probability of bad independent events.

Unfortunately, though, the story doesn’t end here, because the forwarding graph induced by our pricing
does not in general yield a bounded degree forwarding graph.3 Nonetheless, we show that the paths created
by the forwarding of jobs across time slots possess a simple canonical form that allows us to modify them
and obtain a new forwarding graph of in-degree at most 3, without reducing the load at any resource.

Beyond unit-length jobs. We extend the above result to the setting where each job j requires the use of
the resource for some number of consecutive time units within its window. This is a significantly more
complicated problem and, correspondingly, requires a stronger the large market assumption.4

3Figure 3 shows a concrete example where the in-degree of a time slot can be unbounded.
4We obtain bounds that match the unit-length case, except for an additional polynomial dependency of the supply requirement

on the maximum length of a job.
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Mechanism design for temporal resources. As an application of our main theorem, we develop a new
online mechanism for selling cloud services when jobs are strategic, that achieves a number of desirable
properties in addition to being near-optimal for social welfare. The problem of designing truthful mecha-
nisms for scheduling jobs with deadlines has been studied with many variations in the worst case setting:
the parameters the job can lie about (arrival, departure, value, etc.), deterministic vs. randomized, whether
payments are determined immediately (prompt) or not (tardy), unit length vs. arbitrary (bounded) length
jobs, and assuming certain slackness in the deadlines [3, 4, 7, 12, 15]. In the worst case setting, the under-
lying algorithmic problem (that is, without incentive constraints) already exhibits polylogarithmic hardness
[5].5 Lavi and Nisan [19] showed that no deterministic truthful mechanism (w.r.t. all the parameters) can
approximate social welfare better than a factor T in the worst case, where T is the time horizon, even for
unit length jobs on a single machine. Subsequent papers cope with this impossibility by weakening different
assumptions. In contrast, we consider the Bayesian setting, where jobs are drawn from a known distribution.
We give a simple order oblivious posted pricing mechanism (OPM), where the seller announces prices, and
jobs purchase resources in a greedy first-come-first-served fashion. Our mechanism is truthful for jobs’
values, requirements, and deadlines; is prompt in that jobs’ allocations and payments are determined right
at the time of their arrival; and in the stochastic setting, under the large market assumption described above,
achieves near-optimal efficiency (a 1 − o(1) approximation). Determining the pricing requires the seller to
know the demand distribution. When the demand distributions are cyclic, say with a period of a week or
a month or a year, the optimal prices are also cyclic with the same periodicity. The seller can then use a
polynomial size linear program to solve for the appropriate prices. If the demand distribution stays constant
over time, then a constant price per unit of resource per unit of time suffices to provide near-optimal system
efficiency.

OPMs have previously been shown to achieve constant-factor approximations to revenue and social
welfare in many different settings. See, e.g., [6, 12], and references therein. Feldman et al. [12] show, in
particular, that for settings with many items and many clients with fractionally subadditive values, there
always exists an item pricing such that if clients purchase their favorite bundles of items sequentially in
arbitrary order, the expected social welfare achieved is at least half of the optimum. For our setting with
temporal resources, this implies that when all jobs have unit length, there exists a time-of-use pricing that
obtains a half approximation to the optimal social welfare. In contrast, we obtain a (1 − ε) approximation
via the same kind of selling mechanism under a large market assumption. Furthermore, while Feldman et
al.’s approach can only guarantee an O(`max) approximation when jobs have lengths in {1, · · · , `max}, we
are able to use item pricing6 to again obtain a (1 − ε) approximation under a large market assumption. To
our knowledge, this is the first near-optimal result (1 − o(1)) achieved via OPMs that has no dependence
on the length of time the system is running (or, in the setting considered by [12], the number of items being
sold).

Other applications. While the main motivation for our work is to analyze pricing schemes for temporal
resources, our analysis applies to other resource allocation settings where clients have varied preferences
over different resources and greedily grab the first available resource on their preference list at their time
of arrival. Consider, for example, a network of charging stations for electric vehicles. A client wishing to
charge his EV strategically chooses which station to obtain service at, depending on the price, travel time,

5The algorithmic problem of stochastic online matching and its generalizations, under large budgets/capacities, are similar in
spirit to the stochastic process we consider [1, 2, 8, 9, 11, 13, 18]. The temporal aspects of the two problems are very different,
however, due to which standard models in that literature such as the random order model are not a good fit here.

6Indeed, Feldman et al. show that in the small market setting, bundle pricing is necessary to achieve an o(lmax) approximation.
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etc.; if that station is already at capacity, the client goes to his next favorite station, and so on. Depending
on the geography of the area and traffic patterns, if the forwarding graph over charging stations formed by
such a movement of clients has constant in-degree at every node, then our results apply, and near optimal
efficiency can be achieved. While pricing had previously been studied in the context of EV charging (see,
e.g., [24]), these works focus on optimizing the average case behavior of the system, rather than studying its
stochastic behavior.

Connections to queueing theory. Special cases of our models are closely related to standard models in
queuing theory, where the demand and supply are stationary (i.e., not changing with time). In particular,
for unit length jobs, suppose that Bt = B for all t, the advertised prices are all equal, and every client tries
to obtain service at the first slot in its window, failing which it moves its demand to the next time slot, and
then the next, and so on. This case corresponds to the standard M/D/B queueing model, with Markovian
arrivals, deterministic processing time, and B servers, under the first-come first-served (FCFS) queuing
discipline.7 Our result matches the optimal bound for this model in the so-called Halfin-Whitt regime [16]:
if the expected demand in every time period is B − Ω(

√
B log(1/δ)), then the overload probability is at

most δ. In other words, every arriving job obtains service at the first time slot in its window with probability
1− δ.

In the more general model with different job lengths, the special case of stationary demand and supply
corresponds to the more general M/GIB/B queueing model, where jobs have arbitrary but bounded process-
ing times. Even though optimal bounds in the Halfin-Whitt regime for FCFS have been known for M/M/B
and M/D/B queues [10], GI/M/B queues [16], GI/D/B queues [17], and GI/H∗2 /B queues [23], proving such
bounds for M/GIB/B queues with FCFS queuing is a major open problem in queuing theory. We consider a
variant of FCFS: we admit only a certain limited number of jobs of any particular length at every time slot.
Our result in this setting matches the optimal bound in the Halfin-Whitt regime for this variant, albeit with a
polynomial dependency on the maximum length. Our techniques might give a way to prove the same bound
for FCFS, which would resolve the open problem regarding M/GIB/B queues mentioned above.

Organization of the paper. Our analysis is divided into four main parts. In Appendix D we describe
properties of a time-of-use pricing that balances supply and demand in every time period in expectation;
these are summarized in Lemma 2.1 in Section 2. In Section 3 we analyze the stochastic resource allocation
process for a general forwarding graph over resources, and show that the overload probability is related to
the in-degree of the forwarding graph. In Section 4 we analyze the temporal resource setting for unit-length
jobs, and give a reduction from this setting to a low-degree-forwarding-graph setting. In Section 5 we extend
this analysis to jobs of arbitrary length. A detailed discussion of related work appears in Appendix A.

2 Preliminaries and Main Results

Temporal resource allocation problem. We consider a setting where a seller has multiple copies of a
reusable resource available to allocate over time. Clients, a.k.a. jobs, reserve a unit of the resource for
some length of time, after which that unit again becomes available to be allocated to other jobs. A job j is
described by a tuple consisting of a starting time, a deadline, a length, and a value, denoted by (sj , dj , lj , vj),

7The notation for different queuing models is as follows: an A/B/C queue is one where the inter job arrival times are drawn
from distributions in family A, the job lengths distributions belong to family B, and there are C identical machines. D is the class
of deterministic distributions, M is the class of exponential distributions, GI is the class of general, independent distributions, GIB
is the same class with a bounded support, and an H∗2 distribution is a mixture of an exponential and a point mass.

4



with the first three elements in Z+ and the last in R+. The interpretation is that the job can be processed
in the time interval [sj , dj ], and requires lj consecutive units of time to complete. The value accrued by
processing this job is vj . Let Wj = [sj , dj− lj + 1] denote the “job’s window” or the interval of time during
which the job can be started so as to finish before its deadline. For each t ∈ Z+, at most Bt ∈ Z+ jobs can
be processed in parallel.

We consider the following stochastic model of job arrival: there is a set of potential jobs J ; associated
with each job j ∈ J is a probability qj . A potential job j is realized with probability qj via an independent
Bernoulli trial. The order of arrivals of the realized jobs in the system is determined by an adversary who
knows the set of realized jobs. 8

A scheduling mechanism, at the time of each job’s arrival, determines whether or not to accept a job.
In the former case it allocates lj consecutive units of time in the time interval [sj , dj ], and charges the job
a payment pj . Job j derives a utility of vj − pj if it is accepted, and 0 otherwise.9 The objective of the
algorithm is to maximize the total value of the jobs processed, a.k.a. the social welfare. The mechanism
is required to be truthful in dominant strategies, which means that a job j can not get a higher utility by
misreporting any of its parameters.10 The algorithm knows the set of potential jobs J (each defined by its
associated 4-tuple as above), their arrival probabilities, and the capacities Bt ahead of time, but the realized
job arrivals are learned as they happen. The scheduling decision and payment are determined at the time of
the jobs’ arrival and are irrevocable.

Time of Use pricing. We consider a particularly simple kind of mechanism that announces a “time of
use pricing” (pt)t∈Z+ up front, where pt is the price per unit of resource at time t. The mechanism then
requires a job of length lj starting at time t to pay a total price of pt(lj) =

∑t+lj−1
t′=t pt′ . For every job

j, let FAVj = arg mint∈Wj :pt(lj)≤vj{pt(lj)} denote the job’s least expensive options within its window,
a.k.a. its “favorite” starting slots. A mechanism that assigns every arriving job to one of its favorite slots is
trivially truthful. It follows from strong LP duality by a standard argument that with an appropriate choice
of prices, such a mechanism obtains nearly the optimal social welfare, if it is only required to satisfy the
supply constraints in expectation. See Appendix D for the LP and a proof. Let OPT denote the expected
maximum social welfare achievable by any feasible (capacity respecting) assignment under this stochastic
arrival model.

Lemma 2.1. (Fractional assignment lemma) Fix any set of potential jobs J , their arrival probabilities,
and the capacities Bt for all t ∈ Z+. Then for any ε > 0, ∃ nonnegative prices (pt)t∈Z+ and a fractional
assignment Xj,t ∈ [0, 1] from jobs j ∈ J to their favorite slots t ∈ FAVj , such that,

1. Every job that can afford to pay the price at its favorite slot is fully scheduled: for every j with
pt(lj) < vj for t ∈ FAVj , we have

∑
t∈FAVj

Xj,t = 1.

2. The expected allocation at time t is at most (1− ε)Bt: ∀t,
∑

j∈J,t′∈[t−lj+1,t] qjXj,t′ ≤ (1− ε)Bt.

3. The expected social welfare is at least (1−ε) times the optimum:
∑

j∈J,t∈FAVj
vjqjXj,t ≥ (1−ε)OPT.

Further, if the distribution is periodic,11 the prices are also periodic with the same period, and can be
computed efficiently.

8 For example, a job j that shows up well before sj may make a reservation for resources in its window in advance.
9We assume that the utility of job j is −pj if it does not get at least lj units of time within the interval [sj , dj ].

10We assume that the setting disallows Sybil attacks. That is, a job of length l cannot pretend to be multiple different “subjobs”
of total length l trying to obtain service in consecutive time blocks.

11See formal definition in Appendix D.
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The asynchronous allocation process. Of course, the actual allocation of slots to jobs happens in an
online fashion and the capacity constraints are hard constraints that must be met regardless of which jobs
are actually realized.The mechanism we analyze is a greedy first-come first-served12 type mechanism: The
slot prices (pt)t∈Z+ induce a preference ordering over slots for each job j; this is a list of slots t in j’s
window Wj with pt(lj) < vj , in non-decreasing order of price. Let Πj denote the preference ordering13

of job j over time slots in its window. When job j arrives, it considers time slots in the order of Πj , and
gets served at the first one that has resources available (or doesn’t get served if no slot in Πj has leftover
capacity). We emphasize that which jobs are realized is determined by the stochastic model described above,
but when jobs arrive is determined adversarially, and can depend on which other jobs are realized. 14 For
this reason, we call this an “asynchronous allocation process”.

Our main theorem shows that with an appropriate choice of ε > 0, the asynchronous allocation process
corresponding to the price vector given by Lemma 2.1 obtains near-optimal social welfare.

Let lmax := maxj∈J lj andB := mintBt. The case when lmax = 1 is called the unit length jobs setting.

Theorem 2.2. (Stability of service theorem) ∃ a universal constant c such that ∀ ε ∈ [0, 1/2], for prices
determined by Lemma 2.1 for this ε, in the asynchronous allocation process for the temporal resource
allocation problem, every arriving job that can afford the price at its favorite slot gets accepted at such a
slot with probability ≥ 1− ε, and the social welfare achieved is ≥ (1− 2ε) times OPT, if for the unit length
jobs case and the general case respectively,

B ≥ c log(1/ε)

ε2
, and, B ≥ cl

6
max log(1/ε)

ε3
.

As a step towards proving this theorem, we will study a slightly more abstract setting without prices
in the next section: Suppose that the time slots are nodes in a “forwarding graph” G, and that there is an
edge from time slot t′ to time slot t if there is some job j such that t follows t′ in j’s preference ordering
Πj . Jobs arrive at the various nodes in the graph15 and move through this graph until they are successfully
served. However, we relax the requirement that each job j must follow Πj ; rather, we allow each job to take
an adversarially selected path in the forwarding graph G in its quest for service. We then present conditions
on the arrival process, in terms of the maximum indegree of the graph, under which failures are unlikely to
cascade.

3 Stability of service for a network of servers

We will analyze the temporal process described above by reducing it to the following network of servers
setting:

• There is a set of n servers, which we identify with [n]. Server i can service a total of Bi jobs and then
expires.

12Sometimes for jobs of length > 1 our mechanism artificially limits the capacity of a slot, that is, does not allocate a block of
time slots even when available; however, it does so in a truthful manner. This detail is discussed in Section 5.

13When prices of time slots are not unique, this preference ordering is not unique. We need to impose a particular tie breaking
rule among the job’s favorite slots, but can break ties among other slots arbitrarily. Part of this tie-breaking is required already to
satisfy the conclusion of Lemma 2.1, part of it is required to ensure the overall stability of this system. We detail the tie-breaking
rule in Section 4. Note that the mechanism remains truthful regardless of the tie-breaking rule.

14This is a reversal of the random order model popular in online matching, where the set of arrivals is adversarial but the order is
random.

15 The prices from Lemma 2.1 will guarantee that the number of external arrivals to each node is slightly less than the capacity
of that node.
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• There is a directed forwarding graph G whose vertex set is the n servers [n]. Let dmax denote the
maximum indegree in G. We will refer to the vertices of G as either servers or nodes.

• The number of jobs entering the network at each node is determined by a stochastic process16 : Denote
byAi the number of jobs that enter the network at node i ∈ [n]. The random variablesAi are mutually
independent.

• Each arriving job j is forwarded through the network G until the job reaches an available server.
Server i is available if it has not yet served Bi jobs. Thus, if job j enters the network at i, and server
i is available, i serves j and j leaves the network. If i has already served Bi jobs prior to j’s arrival,
then job j gets “forwarded” to some neighbor of i in G and tries to get service there, and so on.
Job j leaves the network as soon as it is serviced, or it has tried all reachable servers, or it gives up,
whichever happens first.

• All aspects of this process other than the external arrival process are assumed to be adversarial: the
paths jobs take as they seek an available server, the timing of external arrivals, and the timing of
forwarding events.

Our main theorem for this setting gives conditions under which the probability that any particular job
gets served by the first server it tries is close to 1. The crucial point here is that this is independent of n.

Theorem 3.1. Consider the network of servers setting as above. Fix an ε in [0, 1/2]. Suppose that for each
node i ∈ [n] the moment generating function of Ai − Bi satisfies E

[
eε(Ai−Bi)

]
≤ ε2/edmax. Then for any

job j, Pr[j is not served at the first node on its path] ≤ ε. In other words, failures don’t cascade and each
job is served with high probability at the node at which it enters.

We introduce some more notation before we proceed. For a particular instantiation of the process (as
determined by the stochastic job arrivals and the adversarial timing of arrivals and forwards), let Pj denote
an arriving job j’s realized path in G, the set of servers that j tries to get service from. This path begins of
course at the node at which j enters the network. Let P = (Pj) denote the collection of all realized paths.
Let `i(P) denote the number of jobs that attempt to get service at node i (external job arrivals to i as well as
forwards), a.k.a. its “load”. We say that node i is “overloaded” if `i(P) ≥ Bi.

If a node i forwards a job, then node i must have already served Bi other jobs. Thus, the collection of
realized pathsP satisfies the following min-work condition: for every node i, the number of jobs forwarded
is no more than the number of realized paths Pj containing i minus the capacity Bi.

We now proceed to sketch a proof of Theorem 3.1. A detailed proof can be found in Appendix B.
Consider the load on a single node and suppose that it has constant in-degree. If each of the forwards

from its predecessors were independent, and these forwards were few and far between, as captured by a
bound on the expectation of the moment generating function, then it can be argued that forwards from this
node would also inductively satisfy a similar bound on its moment generating function. The forwards are
not independent, so this simple approach does not work. Moreover, G is not necessarily acyclic, so there is
not even an obvious order for induction. However, these conditions are satisfied when G is a tree, and our
first lemma formalizes the above approach in this case.

Lemma 3.2. Fix an ε in [0, 1/2]. Suppose that the network G is a finite directed tree, that is, it contains no
directed cycles and every node has out-degree 1, and that the moment generating function of Ai − Bi for
each node i satisfies E

[
eε(Ai−Bi)

]
≤ ε2/edmax. Then, for any i, Pr[`i(P) ≥ Bi] ≤ ε.

16 E.g., Potential job j arrives with probability qj .
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Figure 1: This figure illustrates the first step of the argument for the network of servers. The graph G is
shown on the upper left. In this example, all nodes except for node 2 have a capacity of 1; node 2 has a
capacity of 2. The upper right shows an example of what might happen with three jobs arriving at node 2
and three arriving at node 4. The blue job arriving at node 4 gets forwarded to node 3 where it gets served.
The green job arriving at node 2 gets forwarded to node 3 and then to node 1 where it finally gets service,
and so on. Notice that the load at node 1 for this set of job arrivals and paths is 1. The middle panel of the
figure shows the four trees in T (1). The bottom panel shows how the packets might be routed and served, if
all forwarding was done along edges of the associated tree (immediately above). In this example, the worst
case load at node 1 is when all jobs are routed along edges of the tree T2. This results in a load of 3 at node
1.
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of overflow at the root of this tree. Lemma 3.5 shows that instead we can bound the probability of overflow at the root
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Figure 3: This figure illustrates that the temporal process can have high in-degree. Suppose that there are jobs with
window [t, t + 1], [t, t + 2], [t, t + 3] and so on. Then all of these jobs would first try slot t + 1. The final slot all of
these jobs would try is slot t, so there would be an edge in the forwarding graph from each of t+ 1, . . . , t+ 5 to t.



Our proof of the Theorem 3.1 will reduce the analysis in a general network to that in an appropriately
defined tree network. The argument has two parts that we outline next. Throughout the proof, we will focus
on a particular server u in G.

Part 1: Reducing to a tree for fixed arrivals

In the first part, we fix the set of realized paths P (as determined by the stochastic job arrivals and the
adversarial timing of arrivals and forwards). This fixes the entries a = (ai)

n
i=1, where ai is the number of

jobs arriving at node i from outside the network. We then show that if the node u is overloaded for this fixed
outcome, then there exists a subtree of the network G that is rooted at u, such that if jobs are forwarded
exclusively along edges of this tree until service is received (or there is no where else to go), then node u is
still overloaded.

More formally, let T be a directed tree rooted at the node u. For a vector of external arrivals a = (ai)
and node i, let `Ti (a) denote the load on node i (external arrivals plus forwards) when jobs are forwarded
along the edges of the tree T until service is received.

Let T (u) denote the set of all directed subtrees of G rooted at node u. The following lemma captures
the first part of our analysis.

Lemma 3.3. If a fixed set of arrivals (resulting in a particular a) and induced paths P overload a node u
in the network G, then ∃ a tree T ∈ T (u) such that u is overloaded with the same set of arrivals a when
requests are routed along T . Formally,

`u(P) ≥ Bu implies that maxT∈T (u) `
T
u (a) ≥ Bu.

The first step in the proof consists of removing cycles in P while preserving the set of overloaded
vertices. In the second step we reroute the paths so that they form a tree. The proof of this lemma is deferred
to the appendix. An example is presented in Figure 1.

Part 2: Reducing to a tree of trees

Lemma 3.3 does not reduce the analysis of the network of servers setting to the analysis of a single tree, be-
cause the particular tree that gives the worst-case load on u depends on the realized arrivals a = (ai)

n
i=1. The

lemma does show, however, that to complete the proof of Theorem 3.1 it suffices for us to bound the prob-
ability Pr

[
maxT∈T (u) `

T
u (A) ≥ Bu

]
for each node u, where A := (Ai)

n
i=1. (Recall that random variable

Ai denotes the number of external arrivals at node i, and that the different Ai’s are mutually independent.)
In order to analyze this quantity, we will construct a new tree network17 Tu over an expanded set of

nodes that contains every tree T ∈ T (u) as a subtree. The tree Tu is defined as follows: There is a node vP
in Tu for each simple directed path P in G terminating at u, and there is an edge in Tu from vP to vP ′ , if
P = iP ′ for some node i in G. By construction, each tree T in T (u) has a unique isomorphic copy in Tu.
See Figure 2. 18

We then consider the network of servers process on Tu, under the assumption that for every node vP
such that P = iP ′, the number of external arrivals at vP isAi, and also that as long as a job is not serviced it
is forwarded along the next edge in the tree. Then for any tree T ∈ T (u), the load on the node corresponding

17 We call this the tree of trees.
18 This construction blows up the number of nodes exponentially, but this does not affect us since our bound (Lemma 3.2) is

independent of the number of nodes in the tree.
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to i in the isomorphic copy of T in Tu is no smaller than the load on i in T under the same set of arrivals.
In particular,

Pr
[
`Tuu (A) ≥ Bu

]
≥ Pr

[
maxT∈T (u) `

T
u (A) ≥ Bu

]
. (3.1)

Unfortunately, we cannot analyze `Tuu (A) as in the proof of Lemma 3.2, since the external arrivals at
different nodes are correlated. In particular, for each node i in G, there are ni nodes in Tu at which the
entries Ai are the same, where ni is the number of different directed simple paths from i to u in G. The key
step in the rest of the proof is to show that replacing these by independent draws from the same distribution
can only (stochastically) increase the load at u. To this end, we require the following “decorrelation” lemma:

Lemma 3.4. (Decorrelation lemma for the max function) Let g` : < → <, ` = 1, . . . , k be any non-
decreasing functions, X be any real valued random variable, and let Y1, . . . , Yk be independent and identi-
cally distributed random variables from the same distribution as X . Then,

max`{g`(Y`)}
st
≥ max`{g`(X)},

where
st
≥ denotes stochastic dominance.

Applied to our setting, the decorrelation lemma gives us the following result.

Lemma 3.5. For each i and directed simple path P from i to u, let Ai,P be an independent draw from the

distribution ofAi, let Pi(T ) be the unique path from i to u in tree T , and let
st
≥ denote stochastic dominance.

Then
maxT∈T (u) `

T
u

(
(Ai,Pi(T ))i∈T

) st
≥ maxT∈T (u) `

T
u (A).

Theorem 3.1 now follows by observing that (3.1) holds also w.r.t. the arrivals (Ai,P )i∈[n],P∈Tu . Then
`Tuu

(
(Ai,P )i∈[n],P∈Tu

)
can be analyzed using Lemma 3.2 since we now have the required independence.

Lemmas 3.3 and 3.5 complete the sequence of inequalities.

4 Stability of service for unit-length jobs

We now return to the temporal resource allocation problem and prove the stability of service theorem,
Theorem 2.2, for the special case where each job has unit length, that is, lj = 1 for all j. The non-unit
length case is discussed in Section 5.

We fix ε as stated in the theorem, as well as the set of prices given by the fractional assignment lemma
(Lemma 2.1). Then, for the asynchronous assignment process induced by these prices, we construct an
instance of the network of servers setting discussed in Section 3 that satisfies the assumptions made in
Theorem 3.1. Applying that theorem would then imply Theorem 2.2.

The obvious way to reduce from the temporal setting to the network of servers setting was described
at the end of Section 2: construct a forwarding graph G over the set of all time slots t ∈ Z+ so that it
contains all edges (t, t′) that are in some job’s preference order Πj over time slots.19 Unfortunately, the
graph so defined can have unbounded in-degree. See Figure 3. Observe though that in this example, the
path of every job that is forwarded to node t goes through the node t + 1. As such, each of these jobs is
effectively forwarded from t+ 1 to t. Taking inspiration from this example, we will proceed as follows. For
every instantiation of job arrivals and preference orderings, we will define a canonical “shortcutting” of the

19 In other words, t′ is the next slot after t that some job j prefers, given that job’s window and the slot prices.
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jobs’ paths, such that the overload status of every time slot is maintained. We will then show that the union
of the shortcut paths over all possible instantiations defines a bounded degree graph. We can then apply
Theorem 3.1.

We give a brief overview of this argument below. Details can be found in Appendix C.

The network of servers. We begin by defining a directed graph D on the set of all time slots Z+ as
follows. For every time slot t ∈ Z+, define `(t) = max{s < t : ps ≤ pt} and r(t) = min{s > t : ps < pt}
to be the left and right “parents” of t. Let EF := {(`(t), t) ∪ (r(t), t) ∀t ∈ Z+}; we call this the set of
forward edges. Let EB := {(b(t), t) ∀t ∈ Z+} where b(t) = min{s > t : ps = pt}; we call this the set of
backward edges. The directed graph D on vertex set Z+ is then defined as D := (Z+, EF ∪ EB). Observe
that every node t ∈ Z+ in this graph has in-degree at most 3. Figure 4 illustrates the forward edges in this
construction.

Let D̃ denote the graph formed by just the forward edges: D̃ = (Z+, EF ). For any t ∈ Z+, let C(t)
denote the ancestors of t in D̃, that is, C(t) = {s such that there is a path in D̃ from s to t}.

The reduction. We now consider the network of servers setting over the graph D, and describe a specific
realization of jobs and paths for every realization of jobs and paths in the temporal setting. The set of
arriving jobs and their entry nodes are the same in the two settings. We need to redefine the realized paths
of the jobs to follow the edges in D.

Recall that in the temporal setting, each arriving job had a preference ordering Πj over time slots in
its window. We complete the description of Πj by specifying how ties are broken: Πj begins at the node
yj ∈ FAVj to which it is assigned in the fractional assignment20 returned by Lemma 2.1. It then visits other
nodes in FAVj , if any, in a particular order: first, it visits all nodes t ∈ FAVj with t < yj in decreasing
order of time, then it visits all nodes t ∈ FAVj with t > yj in increasing order of time. Having visited all
of the least price slots in its window, the job then visits all slots of the next smallest price in its window in
increasing order of time, and so on. See Figure 5 for an illustration.

Let Pj be the realized path of job j, namely, the prefix of Πj from yj to the node (call it zj) where the
job receives service or exits the process. We use P 1

j to denote the prefix of this path which visits nodes
t ∈ FAVj with t < yj in decreasing order of time; this always contains the node yj . The remaining suffix of
Pj , if non-empty, is denoted P 2

j . Observe that every edge in P 1
j is a backward edge. However, edges in P 2

j

don’t necessarily belong to D.
Let P̃ 2

j = P 2
j ∩ C(zj), in other words, we remove from P 2

j all of the nodes that are not ancestors of zj
in the graph formed by the forward edges, D̃. The resulting path is a short-cut of the original path of the
job. We now define P̃j , a path from yj to zj , as follows. If zj ∈ P 1

j , then P̃j := P 1
j ; otherwise, we define

an appropriate prefix of P 1
j called P̃ 1

j , and set P̃j = P̃ 1
j ∪ P̃ 2

j . Observe that P̃j is a short-cutting of Pj .
Furthermore, every node that we short-cut in this process forwarded the job j, and is therefore overloaded.
We can now prove the following two lemmas. See Figure 6 for an illustration of the short-cutting procedure.

Lemma 4.1. Paths P̃j as defined above lie in the graph D.

Lemma 4.2. The collection of paths P̃ = (P̃j), as defined above, satisfies the min-work condition. Further,
a node t ∈ Z+ is overloaded under the realized paths P̃ if and only if it is overloaded under the realized
paths P . That is, `t(P) ≥ Bt if and only if `t(P̃) ≥ Bt.

20Note that this node may be a random variable, but is always among the favorite nodes of the job. The job is indifferent over all
the nodes over which we tie-break.
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Figure 4: This figure shows the set of all forward edges in the directed, acyclic graph D on a set of time slots. Each
time slot is represented by a green square, with its height indicating its price. Red edges go from `(t) to t, and blue
edges go from r(t) to t for each t.
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Figure 5: This figure shows the canonical path of a job over the time slots. The top line shows the prices of each of
the time slots. The job enters at slot yj . The decomposition of the path into P 1

j and P 2
j is also illustrated.
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Figure 6: The figure on the left displays ancestors of t in D̃ numbered in reverse topological order. The figure on the
right displays the shortcutting of the path from Figure 5. The yellow path is P 1

j , and the red and blue path is P̃ 2
j . In

this case, P̃j = {yj} ∪ P̃ 2
j .



We are now ready to prove the stability of service theorem for unit-length jobs. Observe that the instance
of the network of items setting described above satisfies all of the properties required by Theorem 3.1. In
particular, for every time slot t, the number of arrivals At is given by

∑
j qjX̂j,t, where {Xj,t} is the

fractional assignment given by Lemma 2.1 and X̂j,t is a Bernoulli random variable with expectation Xj,t.
Therefore, it can be verified that E

[
eε(At−Bt)

]
≤ ε2/3e for all t, and every job gets serviced with probability

at least (1− ε) times its total fractional assignment.

5 Stability of service for arbitrary length jobs

We now turn to the temporal resource allocation problem for jobs of arbitrary lengths, and prove Theo-
rem 2.2. As in Section 4, we fix any ε > 0, and a set of prices for the time slots as given by Lemma 2.1 for
this ε. Recall that pt(l) denotes the total price for l consecutive units of resource starting at time t. A job
j of length lj can choose to buy lj or more consecutive units of resource depending on availability at these
prices; we call these consecutive units “time blocks” and denote them by the pair (t, l) where t is the starting
time of the block and l its length. The prices induce for each job j a preference ordering Πj over time blocks
(t, l) with t ∈ Wj and l ≥ lj , and ties broken appropriately. As in the unit-length case, jobs search for the
first available time block in their preference ordering in adversarial order. Lemma 2.1 guarantees that for
every time slot t, the expected number of arriving jobs whose first block in their preference ordering starts
at t is at most (1− ε)Bt.

Correlation introduced by non-unit length jobs. As in Section 4 we can think of the movement of jobs
as inducing paths in a graph over (starting) time slots. The challenge with non-unit length jobs is that when
considering a block (t, l), they need to check the availability of the resource at each of l different slots; in
other words, the forwarding decision for such jobs at slot t depends on loads at other neighboring slots,
introducing extra correlations in the forwarding process. Alternately, we can think of the movement of
jobs as inducing paths in a graph over time blocks. The challenge now is that we don’t have a well defined
notion of capacity; rather each time block shares capacity with other overlapping time blocks in a non-trivial
manner.

Solution: capacity partitioning. We adopt the second approach. In order to overcome the challenge
described above, we decouple capacity constraints at time blocks by artificially limiting the number of jobs
assigned to any block. In particular, we assign a capacity of B̃t,l to time block (t, l). Once B̃t,l jobs have
been assigned to block (t, l), even if there are available resources at all slots in the interval [t, t+ l− 1], we
admit no more jobs at this block. In order to respect the original capacity constraint at a time slot t ∈ Z+,
the capacities B̃t,l must satisfy for all t the property that

∑
l∈[lmax]

∑
t′∈[t−l+1,t] B̃t′,l ≤ Bt.

Two issues remain: (1) How should the capacities be set to satisfy the above per-slot capacity constraints
while obtaining good social welfare? (2) What process/graph does this induce over time blocks?

Setting the capacities. We set capacities based on the fractional assignment returned by Lemma 2.1. Let
{Xj,t} denote this fractional assignment. Then, we set B̃t,l to be equal to

∑
j:lj=l

qjXj,t plus a reserve
capacity of ε′Bt where ε′ = ε/l2max. It is immediate that the per-slot capacity constraints are satisfied: for
all t ∈ Z+, we have,∑

l∈[lmax]

∑
t′∈[t−l+1,t]

B̃t′,l ≤
∑
j

∑
t′∈[t−lj+1,t]

qjXj,t + ε′Btl
2
max ≤ (1− ε)Bt + εBt = Bt.
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Furthermore, the fraction assignment of Lemma 2.1 gives a (1 − ε)-approximation to social welfare while
respecting the block-wise capacity constraints in expectation.

Network over time blocks. We will think of the graph over time blocks as partitioned into lmax layers,
with layer Γl = {(t, l)}t∈Z+ corresponding to all blocks of length l. Within each layer, the induced subgraph
is a graph over (starting) time slots. Each job’s preference ordering, restricted to layer Γl, is identical to the
preference ordering induced in the unit-length case when slot prices are given by pt(l). Accordingly, we
define a network Dl over Γl in a manner analogous to the definition of network D in Section 4 with respect
to prices {pt(l)}: Dl = (Γl, EF,l ∪ EB,l). Finally, let EL = {((t, l), (t, l + 1))}t∈Z+,l∈[lmax−1] denote
“inter-layer” edges that go from each block (t, l) to block (t, l+ 1). Let D = (∪lΓl,∪l(EF,l ∪EB,l)∪EL).

Observe that the network D has maximum in-degree 4. We now argue that the realized path Pj of each
job j can be “short-cut” into a path in the graph D. Suppose that the realized path of a job j of length lj
starts at block (yj , lj) and terminates at block (zj , l) for l ≥ lj . Observe that if l > lj , prior to considering
block (zj , l), the job must have considered every block (zj , l

′) with l′ ∈ [lj , l− 1]; all of these blocks (zj , l
′)

are in Pj . Now, define the path P̃j in two parts as follows. The first part is a short-cut of the prefix of Pj
from (yj , lj) to (zj , lj) defined over the layer Γlj as in Section 4. The second part is a sequence of inter-layer
edges connecting (zj , l

′) to (zj , l
′ + 1) for l′ ∈ [lj , l − 1].

It is easy to see that P̃j is a short-cut of Pj and lies in the graph D. Corollary B.2 then implies that the
collection of realized paths P ′ = (P̃j) satisfies the min-work condition and Theorem 3.1 can be applied. It
remains to argue that for every block (t, l), the moment generating function of At,l− B̃t,l is bounded, where
At,l is the random number of fresh arrivals at the block. Recall that B̃t,l =

∑
j:lj=l

qjXj,t + ε′Bt where

ε′ = ε/l2max. On the other hand, At,l =
∑

j:lj=l
qjX̂j,t, where X̂t,l is a Bernoulli variable with expectation

Xj,t. So, we have

E
[
eε
′(At,l−B̃t,l)

]
≤ e−

1
2
ε′2B̃t,l ≤ e−

1
2
ε′3Bt ≤ εc/2

which for an appropriate constant c is at most ε2/4e. Here the second inequality used the fact that B̃t,l ≥
ε′Bt, and the third used the lower bound on Bt from the statement of Theorem 2.2. Therefore, Theorem 3.1
applies and each job is accepted with probability at least 1 − ε′. We achieve an approximation factor of
(1− ε′)(1− ε) ≥ 1− 2ε for social welfare.

This concludes the proof of Theorem 2.2.

Truthfulness and job payments. Truthfulness of the above mechanism is straightforward to argue: each
job is allocated the cheapest block available that meets its requirements at the time of its arrival. Observe
that a job of length lj that is allocated block (t, l) for some l > lj must pay the price pt(l) (and not the
cheaper price pt(lj)) in the above mechanism. It is, however, possible to modify our argument so that the
theorem holds also when a job of length lj can buy a slot (t, l) with l > lj at a price of pt(lj). This change to
the mechanism changes each job’s preference ordering and realized path, but realized paths can once again
be short-cut to form paths in D, and we obtain the same conclusion as before. Finally, the new mechanism
continues to be truthful with respect to jobs’ lengths: a job paying pt(lj) for some block (t, l) with l > lj is
terminated after l steps, so it hurts to report a length smaller than the true length.
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A Related Work

Mechanism design for online allocation. In online settings, a mechanism is called prompt if the payments
are computed as soon as the job is scheduled, and is tardy if payments are computed at some later point in
time (usually after the deadline of a job). The truthful online scheduling problem has been extensively
studied in the worst case competitive analysis framework. Lavi and Nisan [19] introduced the problem of
truthful online scheduling for unit length jobs on a single machine, with the social welfare objective, and
showed that no deterministic mechanism that is truthful w.r.t. all the parameters can get an approximation
ratio < T , where T is the time horizon. They proposed a weaker notion of truthfulness that they call
set-Nash, and gave constant competitive mechanisms satisfying set-Nash. Hajiaghayi et al. [15] gave a
tardy 2 approximation for unit length jobs. Their mechanism is truthful with the assumption of no early
arrivals and late departures. They also extended this to an O(log lmax) approximation for jobs of different
lengths, where lmax is the ratio of the maximum to minimum length of a job. Cole et al. [7] gave a prompt
2 approximation for unit length jobs, that is truthful only w.r.t. the value. They extended it to a prompt
O(log lmax) approximation for different length jobs, that is truthful w.r.t the value and the deadline. Azar
and Khaitsin [3] designed a prompt mechanism for unit length jobs with arbitrary width, on a single machine,
that is a 6-approximation. The mechanism is truthful only w.r.t. the value. In a more recent work, Azar et
al. [4] assumed that there is a lower bound s on the slack of each job, which is the ratio of the length of
the [arrival, deadline] window to the job’s length. They obtained a 2 +O(1/( 3

√
s− 1)) +O(1/( 3

√
s− 1)3)

approximation for arbitrary length jobs, via a mechanism that is truthful w.r.t all the parameters, under the
assumption of no early arrival, no late departure, and no under-reporting of length. The mechanism is tardy,
but can be modified to make decisions earlier with further assumptions on the slack. In the absence of slack,
even algorithmically (i.e., with no truthfulness constraints), the online problem with arbitrary length jobs has
a lower bound on the competitive ratio that is polylogarithmic in l or µ, where µ is the ratio of the largest to
smallest possible values [5].

Other results: Although stated in terms of combinatorial auctions, the results of Feldman et al. [12]
are relevant. They show how posted prices can achieve a truthful 2-approximation in combinatorial auctions
with XOS biddders, in the Bayesian setting. This implies a 2-approximation for unit length jobs that is truth-
ful w.r.t. all the parameters. The algorithmic problems of stochastic online matching and generalizations, un-
der large budgets/capacities, are similar in spirit to the stochastic process we consider [1, 2, 8, 9, 11, 13, 18].
The temporal aspects of the two problems are very different, due to which standard models in that literature
such as the random order model are not a good fit here.

Connections to queueing theory. Our models are closely related to standard models in queuing theory,
when the demand and supply are stationary (i.e., not changing with time). In particular, for unit length
jobs, suppose that Bt = B for all t, the advertised prices are all equal, and every client tries to obtain
service at the first slot in its window, failing which it moves its demand to the next time slot, and then the
next, and so on. This case corresponds to the standard M/D/B queueing model, with Markovian arrivals,
deterministic processing time, and B servers, under the first-come first-served (FCFS) queuing discipline.21

We consider the regime where the rate of arrival of total work is B − O(
√
B). While we would like to

analyze the probability of completion of any given job within its deadline, an easier quantity to compute,
that is also an upper bound on this, is the probability that all B machines are busy, which is called the delay

21The notation for different queuing models is as follows: an A/B/C queue is one where the inter job arrival times are drawn
from distributions in family A, the job lengths distributions belong to family B, and there are C identical machines. D is the class
of deterministic distributions, M is the class of exponential distributions, GI is the class of general, independent distributions, GIB
is the same class with a bounded support, and an H∗2 distribution is a mixture of an exponential and a point mass.
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probability. This question was studied already by the seminal paper of Erlang [10], which initiated the study
of queues. In particular Erlang’s C model refers to an M/M/B queue and a closed form expression for the
delay probability is derived. The importance of this regime was recognized by Halfin and Whitt [16], and is
now called the Halfin-Whitt regime or the Quality and Efficiency Driven (QED) regime. This is because in
this regime one can hope for high efficiency, which refers to a utilization ratio close to 1, and high quality,
which refers to a delay probability close to 0. Halfin and Whitt [16] gave a formula for the delay probability
of GI/M/B queues in this regime, and this was extended to H∗2 distributions (a mixture of exponential and a
point mass) by [23]. Jelenković et al. [17] did the same for GI/D/B queues.

Good bounds on the delay probability for more general job length distributions are not known. In
particular, it is open whether the delay probability is bounded above by δ for all job length distributions
when the rate of work is at most B − c

√
B log(1/δ) for some universal constant c. In fact it is not even

known if such a bound holds for all distributions supported on [0, L], when the rate of work is at most
B − poly(L)

√
B log(1/δ). Whitt [22] gives heuristic approximations for the delay probability and other

related quantities for GI/GI/B queues, and Psounis et al. [20] do the same for heavy tailed distributions,
using an expression derived from a “bimodal” distribution. These are not proven theorems, but are rather
shown to be good approximations via numerical analysis, or using simulations on traces of real workloads.
The state of the art in this area is by Goldberg [14], who gives bounds on the delay probability as a limit
of limits: the limit as c → ∞, and as a function of c, the limit as B → ∞, of the delay probability of
GI/GI/queues with arrival rate of B − c

√
B. The convergence is not uniform, as the rate depends on both

the arrival and job length distributions.

B Proofs for Section 3

B.1 The tree setting: proof of Lemma 3.2

We begin by proving that the stability of service theorem holds for the network of servers setting when the
network is a tree.

Lemma 3.2. Fix an ε in [0, 1/2]. Suppose that the network G is a finite directed tree, that is, it contains no
directed cycles and every node has out-degree 1, and that the moment generating function of Ai − Bi for
each node i satisfies E

[
eε(Ai−Bi)

]
≤ ε2/edmax. Then, for any i, Pr[`i(P) ≥ Bi] ≤ ε.

Proof. Recall that when the network is a tree, every node v, after processing the first Bv jobs that arrive
at this node, forwards all of the remaining jobs to its parent. We call a node a leaf if it has no incoming
edges. Order the nodes in the tree in topological order starting from the leaves. Let Fv be the number of
jobs forwarded by node v to its parent, and let

F ′v := max(Av +
d∑
i=0

Fui − (Bv − 1), 0).

Clearly `v(P) ≥ Bv if and only if F ′v > 0. We will prove by induction over the topological ordering that

E
[
eεF

′
v

]
≤ ρ, where ρ = 1 +

ε2

d
.

The base case is a leaf (and follows from the argument below).
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Figure 7: The induction step

For the induction step, consider a node v where up to d predecessors are u1, . . . , ud. (See Figure 7). By
the induction hypothesis and the fact that F ′ui ≥ Fui , we have

E
[
eεFui

]
≤ ρ

Note that Fui and Fuj are independent for each distinct i and j since the trees rooted at them are disjoint,
and they are also independent of Av. Thus, we have

E
[
eεF

′
v

]
≤ E

[
eεmax(Av+

∑d
i=0 Fui−Bv+1,0)

]
≤ 1 + eεE

[
eε(Av+

∑d
i=0 Fui−Bv)

]
≤ 1 + eεE

[
eε(Av−Bv)

]
ρd

≤ 1 +
eεε2

ed
ρd ≤ ρ,

for ρ defined as above. Here the last inequality follows by observing:

1 +
eεε2

ed

(
1 +

ε2

d

)d
≤ 1 +

eεε2

ed
e
d ln
(
1+ ε2

d

)
≤ 1 +

eεε2

ed
eε

2 ≤ 1 +
ε2

d
,

as long as ε+ ε2 ≤ 1. Letting
ηv := P

(
F ′v > 0

)
,

and recalling that F ′v is integral, we have,

1− ηv + ηve
ε ≤ E

[
eεF

′
v

]
≤ ρ.

Solving for ηv, we obtain

ηv(e
ε − 1) ≤ ρ− 1 =

ε2

d
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so

ηv ≤
ε2

d(eε − 1)
≤ ε2

dε
≤ ε

d
≤ ε.

Therefore,
P(`v(P) ≥ Bv) = P

(
F ′v > 0

)
≤ ε.

B.2 Reducing to a tree: proof of Lemma 3.3

We will now prove that for every instantiation of arrivals and forwards in the network of servers setting onG
and every node u, we can find a subtree T of G rooted at u, such that the load at u becomes worse when the
process is run over the tree T . Before we restate the main result of this section, let us recall some notation.
Let ai denote the realized number of jobs arriving at node i in G, and a = (ai); let P denote the realized
paths of jobs. Let T (u) denote the set of all directed subtrees of G rooted at node u, and for T ∈ T (u), let
`Ti (a) denote the load on node i given the realized arrivals a, when jobs that have not yet been served are
routed along the tree T . (See Figure 1.)

Lemma 3.3. If a fixed set of arrivals (resulting in a particular a) and realized paths P overload a node u
in the network G, then ∃ a tree T ∈ T (u) such that u is overloaded with the same set of arrivals when jobs
are routed along T . Formally,

`u(P) ≥ Bu implies that maxT∈T (u) `
T
u (a) ≥ Bu.

The proof of Lemma 3.3 proceeds in several steps.

Step 1: Remove cycles

Throughout the argument we will progressively modify the realized paths of jobs, while maintaining the
invariant that every node i must process at least Bi jobs before forwarding any jobs. To this end, we say that
a set of paths P ′ = (P ′j) is valid for arrivals a if there is an ordering of arrival and forwarding events for
the realized jobs consistent with the arrivals a, such that the realized path of each job j is exactly P ′j , and P ′j
is a path in G.

For a directed multi-graph G′, let inG′(i) and outG′(i) denote the in- and out-degrees, respectively, of
node i in the multi-graph. We first show that a set of paths P ′ is valid for a if and only if the multi-graph
given by the union of the paths, call it G′, satisfies the following min-work condition:

∀i, outG′(i) ≤ max(0, inG′(i) + ai −Bi). (B.1)

Claim 1. A multi-graph G′ can be decomposed into set of paths that is valid for arrivals a if and only if it
satisfies the min-work condition (B.1).

Proof. The “only-if” direction of the statement follows trivially from the definition of valid paths. For the
“if” direction, define

depi := ai + inG′(i)− outG′(i), (B.2)

which is the number of departures at node i. (These departures can occur either because a job is processed
at i or because its path terminates.) Clearly

∑
i ai =

∑
i depi. Construct an s− t flow network, where there

is an edge of capacity ai from s to node i, an edge of capacity depi from node i to t, and an edge from i to
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j of capacity equal to the number of edges in G′ from i to j. Clearly, there is an integer flow in which each
edge is filled to capacity, and therefore, this flow can be decomposed into paths.

Moreover, the paths are trivially consistent with the property that each node processes min(depi, Bi)
jobs, since by (B.1), any i with positive outdegree satisfies

0 < outG′(i) ≤ inG′(i) + ai −Bi,

or in other words,
depi = ai + inG′(i)− outG′(i) ≥ Bi.

Corollary B.1. Let a = (ai) be a set of arrivals and P a set of paths that are valid for a. Let G′ be
the multigraph obtained by taking the union of paths in P . Successively remove directed cycles from G′

to obtain a new acyclic multigraph G′′. Then G′′ can be decomposed into a set of paths P ′ valid for the
arrivals a, with the property that a node i is overloaded under P if and only if it is overloaded under P ′.
That is, for all i,

`i(P) ≥ Bi −→ `i(P ′) ≥ Bi (B.3)

and
`i(P) < Bi −→ `i(P ′) < Bi.

Proof. Prior to the removal of cycles, the paths P satisfied the property (B.1). Since removing a cycle
preserves the min-work property (B.1) and the resulting graph is acyclic, by Claim 1, its edges decompose
into a valid set of realized paths. This is the set of paths P ′. See Figure 8.

1

2
3

4

1

2
3

4

(a) (b) (c) (d)

Figure 8: Figure (a) shows a set of arrivals and paths taken. Figure (b) is the induced multigraph G′. Figure
(c) shows the multigraph G′′ obtained after removing cycles from G′ (arrivals are not shown). Figure (d)
shows a decomposition of G′′ into set of valid paths, as per Claim 1. (This decomposition is not unique.)
All overloaded nodes are still overloaded.

Clearly the in-degree of each node is weakly decreasing. Furthermore, nodes with out-degree = 0 do
not belong to any cycles, and so their loads don’t change. So we only need to show that (B.3) holds for
nodes with out-degree > 0 after removing cycles. This follows from the fact that the out-degree of a node
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in G′ is an upper bound on the number of cycles removed that it is part of. By (B.1), outG′(i) ≥ k implies
that inG′(i) + ai ≥ Bi + k.

Therefore, if k cycles through queue i are removed during the process of removing cycles, the final load
at i (in-degree plus arrivals) is at least Bi, so (B.3) holds.

Via a similar argument, we also obtain the following corollary that will be used in the proof of Lemma
4.2. It allows us to “short-cut” paths without affecting overload events.

Corollary B.2. Let a = (ai) be a set of arrivals and P a set of realized paths valid for a. Consider a path
P ∈ P of length at least 2, and let (u1, u2) and (u2, u3) be two consecutive edges in this path. Let P ′ be
obtained by removing (short-cutting) the vertex u2 from P . That is, P ′ = P \{(u1, u2), (u2, u3)}∪{(u1, u3}.
Then, the new set of paths P ′ = P \ {P} ∪ {P ′} is valid for a. Furthermore, for all nodes i, `i(P) ≥ Bi iff
`i(P ′) ≥ Bi.

Step 2: Modify paths to obtain tree

For the rest of this subsection, we will assume that we are given the arrivals a, a set of valid paths P that
form a directed acyclic graph, and a specific node u. Let G′ denote the multi-graph formed by taking the
union of the paths in P . We complete the proof of Lemma 3.3 by modifying the paths so that they are
directed along a tree rooted at u, without decreasing the load on u. The modified paths will remain valid.

To this end, we will repeatedly use the following two operations:

Operation 1: Remove an edge (i, j) if j has out-degree 0, and j 6= u.

Operation 2: Suppose that P1 and P2 are two edge-disjoint paths that start at i and end at j, and there is a
path from j to u. Delete path P2 and replace it by a duplicate copy of P1.

v1

v3

v5

v6

v7

v4

v2

v1

v3

v5

v6

v7

v4 = v

v2

v1

v3

v5

v6

v7

v4

v2

Figure 9: This figure shows an example of the application of inductive step when i = 7. Initially (left figure)
all paths from v1, . . . , v6 form a tree directed towards v1, and we are about to process v7 which has edges to
v4 and v5. Operation 2 is applied to the paths P1 = (v7, v4, v3) and P2 = (v7, v5, v3) resulting in the graph
shown on the right. Subsequently, an application of operation 1 removes the edge (v6, v5).

If we begin with a set of paths valid for a, then by Claim 1, operations 1 and 2 preserve the existence of
a set of realized paths that are valid for the arrivals a. Indeed, operation 1 reduces the out-degree of a node.
Operation 2 has the following properties:

20



1

2
3

4

1

2
3

4

1

2
3

4

(a) (b) (c)

Figure 10: This figure shows the transformations applied to convert the paths into valid paths along a tree
(in this case tree T3 from Figure 1). Going from the left graph to the middle is the result of removing cycles.
The right figure shows the paths obtained once we apply Step 2, which modifies paths to obtain a tree. In
this example, the red path was rerouted to go through 3 rather than 2. The load at node 1 is preserved in the
transformation from the middle routing to the routing on the right.

• It reduces both the in-degree and out-degree of some nodes by 1 (every node on P2 except for i and
j), which preserves (B.1).

• It increases both the in-degree and out-degree of some nodes by 1 (nodes on P1 except for i and j),
but only nodes that already had out-degree 1, which also preserves (B.1).

• It maintains the out-degree of i and in-degree of j.

We apply these two operations to get our tree as follows: Recall thatG′ is acyclic, and consider the nodes
in G′ in topological order (from sinks to sources), say v1, . . . , vn. Let Si := {v1, . . . , vi}. We inductively
apply the above operations so that the subgraph on Si consists of a collection of paths terminating at u, for
which the corresponding graph (not multigraph) is a tree directed towards and rooted at u. (This tree could
be empty.)

The base case is i = 0 (or the empty set). To extend from Si−1 to Si, we do the following: If all of
the out-edges from vi are to nodes with out-degree 0, then remove all of these edges (applying operation 1).
Otherwise, suppose that vi has an edge to some vertex v ∈ Si−1 from which there is a path P to u. Pick such
a v, and the associated path P . Repeat the following two steps until Si satisfies the inductive hypothesis:

1. As long as there is an edge (v′, v′′) with v′′ ∈ Si \ u, and outG(v′′) = 0, apply operation 1 to remove
this edge.

2. If there is an edge (vi, v
′) where v′ 6= v and there is a path P ′ from v′ to u, find the first node j at

which the paths P and P ′ intersect. Let Pv,j be the prefix of P terminating at j, and let Pv′,j be the
prefix of P ′ terminating at j. Apply operation 2 to the paths P1 := (vi, Pv,j),and P2 := (vi, Pv′,j).
See Figure 9. (Note that if there is no path P ′ from v′ to u, then by the inductive hypothesis, v′ has
out-degree 0, which means the edge (vi, v

′) will be removed.)
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This argument completes the proof of Lemma 3.3.

B.3 The decorrelation lemma

We will now prove the decorrelation lemma that is needed in our analysis. We use the notation
st
≥ to denote

stochastic dominance.

Lemma 3.4. (Decorrelation lemma for the max function) Let g` : < → <, ` = 1, . . . , k be any non-
decreasing functions, X be any real valued random variable, and let Y1, . . . , Yk be independent and identi-
cally distributed random variables from the same distribution as X . Then,

max`{g`(Y`)}
st
≥ max`{g`(X)}.

Proof. Since the Y`’s are independent, for any a,

Pr[max
`
{g`(Y`)} ≤ a] =

∏
`

Pr[g`(Y`) ≤ a], (B.4)

whereas, recalling that g` is non-decreasing for each `, and setting x∗(a) = min` g
−1
` (a),22

Pr[max
`
{g`(X)} ≤ a] = Pr[X ≤ x∗(a)] = min

`
Pr[g`(X) ≤ a]. (B.5)

Clearly, the RHS of (B.5) is larger for all a than the RHS of (B.4). Therefore, the lemma follows.

We can further generalize the decorrelation lemma as follows.

Lemma B.3. Let hk : <n → <, k = 1, . . . , N be functions that are non-decreasing in each variable. Let
A1, . . . , An be independent (but not identically distributed random variables) and, for each 1 ≤ i ≤ n, let
Pi : [N ]→ [ni], for nonnegative integers ni. Then,

max
1≤k≤N

{hk({Ai,Pi(k)}
n
i=1)}

st
≥ max

1≤k≤N
{hk({Ai}ni=1)}. (B.6)

where each Ai,Pi(k) is an independent draw from the distribution of Ai.

Proof. We prove by induction on j that

max
1≤k≤N

[
hk

(
{Ai,Pi(k)}

j
i=1, {Ai}

n
i=j+1

)] st
≥ max

1≤k≤N
{hk

(
{Ai,Pi(k)}

j−1
i=1 , {Ai}

n
i=j

)
}.

The base case of j = 0 is immediate. For the induction step, condition on all variables other than Aj (which
are independent of Aj), and define

h′k(X) := hk

(
{Ai,Pi(k)}

j−1
i=1 , X, {Ai}

n
i=j+1

)
|{Ai,Pi(k)}

j−1
i=1 and {Ai}ni=j+1.

Thus, it suffices to show that

max
1≤k≤N

[
h′k

(
Aj,Pj(k)

)] st
≥ max

1≤k≤N
{h′k (Aj)}. (B.7)
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Letting
f`(Aj) := max

1≤k≤N s.t. Pj(k)=`
h′k(Aj),

showing (B.7) is the same as showing that

max
1≤`≤nj

f`(Aj,`)
st
≥ max

1≤`≤nj
f`(Aj),

which follows directly from Lemma 3.4.

B.4 Reducing to a tree of trees: proof of Lemma 3.5

Lemma 3.5. For each i and directed simple path P from i to u, let Ai,P be an independent draw from the

distribution of Ai, Pi(T ) be the unique path from i to u in tree T , and
st
≥ denote stochastic dominance. Then

maxT∈T (u) `
T
u

(
(Ai,Pi(T ))i∈T

) st
≥ maxT∈T (u) `

T
u (A).

Proof. Apply Lemma B.3 with N equal to the number of distinct trees T rooted at u, n equal to the number
of queues in the queueing network, hk(A) := `Tku (A), i.e., the load on u when the each job follows the
routes given by tree Tk until it is processed, and ni equal to the number of distinct simple paths from i to
u.

C Proofs for Section 4

C.1 Properties of the graph D

We begin by proving properties of the directed graph D. Recall that D contains three types of edges. For
every time slot t ∈ Z+, the “left forward” edges connect t’s left parent `(t) to t; the “right forward” edges
connect t’s right parent r(t) to it. The “backward” edges are defined as EB := {(b(t), t) ∀t ∈ T} where
b(t) = min{s > t : ps = pt}. Recall that every node t ∈ Z+ in this graph has in-degree at most 3. (See
Figure 4.)

Recall thatC(t) denotes the ancestors of time slot t in D̃ i.e. C(t) = {s such that there is a path in D̃ from s to t}.

Lemma C.1. (a) For any t, either there is an edge in D̃ from `(t) to r(t) or vice versa. That is, either
`(t) = `(r(t)) or r(t) = r(`(t)).

(b) For any t, the set C(t) is totally ordered: if t1, t2 ∈ C(t), then either t1 ∈ C(t2) or t2 ∈ C(t1).

Proof. (a) See proof in caption of Figure 11.

(b) Proof by induction on k = |C(t)|. For all t with |C(t)| = 1, the statement is immediate. For k > 1,
suppose wlog that `(t) = `(r(t)). Then all ancestors of t (other than t itself) are ancestors of r(t),
and therefore, the total order on C(t) must terminate with r(t) followed by t. Applying the induction
hypothesis to C(r(t)) completes the argument. See Figure 6 for an example of the total ordering.
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Figure 11: For a particular time slot t, `(t) is the largest time less than t where the price is at most pt, and
r(t) is the smallest time greater than t at which the price is strictly less than pt. Notice that if p`(t) ≤ pr(t),
then by definition `(t) = `(r(t)). The right hand side shows the case where p`(t) > pr(t). When this
happens, then by definition r(t) = r(`(t)).

C.2 Properties of the paths P̃j: proof of Lemmas 4.1 and 4.2

Recall that we define job j’s new path P̃j as follows. Let yj and zj denote the first and last nodes on the
job’s realized path Pj . Recall that P 1

j denotes the prefix of Pj which visits nodes t ∈ FAVj with t < yj ,
starting at yj , and P 2

j denotes the remaining suffix of the path. We begin with a simple property of the suffix
P 2
j .

Lemma C.2. Let t be a node in the path P 2
j for some job j. Then, either `(t) or r(t) belongs to the job’s

window Wj , and appears before t on the realized path Pj .

Proof. If neither `(t) or r(t) are in job j’s window, Wj = [sj , dj ], then all prices in the window are at least
pt, and all prices in [sj , t− 1] are strictly larger than pt. See Figure 12. Since the path Pj starts at a cheapest
slot in the window, it must start at a slot of price pt, at a time t or later. That is, t ∈ FAVj with yj ≥ t. If
the path doesn’t start at t itself, then by the definition of P 1

j , t belongs to P 1
j . Finally, if one of `(t) or r(t)

lies in Wj , then it is easy to see that job j must visit this slot before it visits t: either the price at this slot is
smaller than that of t, or, in the case of `(t), the prices are the same, but the job visits slots to the left of t
with prices pt before t.

We now complete our description of the reduction from the temporal setting to the network setting by
specifying the paths P̃j for each realized job j. Recall that we define P̃ 2

j = P 2
j ∩ C(zj) to be a “short-

cutting” of the suffix P 2
j . Let s1 be the first node on the path P̃ 2

j . By Lemma C.2, one of the parents of s1
lies in Pj . Call this parent s0. Since s0 appears before s1 in Pj , it must be the case that s0 ∈ P 1

j . Let P̃ 1
j be

the prefix of P 1
j from yj to s0. Define P̃j = P̃ 1

j ∪ P̃ 2
j if P 2

j is non-empty, and P̃j = P 1
j otherwise.

We will now prove that the new paths P̃j lie in the graph D. (See Figure 6.)

Lemma 4.1. Paths P̃j as defined above lie in the graph D.
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Figure 12: This figure illustrates the proof of Lemma C.2.

all prices

all prices

job j
window

Figure 13: This figure illustrates the contradiction in the proof of Lemma 4.1. Time t′ is less than time `(sk)
and pt′ > p`(sk). This contradicts the fact that t′ = `(t′′).
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Proof. Consider a job j. The path P̃j consists of three components: (1) a prefix of the path P 1
j , (2) the edge

(s0, s1), where s1 is the first node on P̃ 2
j and s0 is its ancestor on P 1

j , and, (3) the path P̃ 2
j = P 2

j ∩ C(zj).
Observe that the edges in path P 1

j are all backward edges. Therefore, they lie in the graph D. The edge
(s0, s1) lies in D̃ by construction, and by recalling that Lemma C.2 implies that one of the parents of s1 lies
in P 1

j . We will now focus on the path P̃ 2
j = P 2

j ∩C(zj). Let P̃ 2
j = {s1, s2, · · · , sk}, for some k ≥ 1 where

sk = zj . We claim that for all i ∈ {1, · · · , k − 1}, (si, si+1) is an edge in D̃.
We prove the claim by induction on the length k of P̃ 2

j : Consider the last node sk in P̃ 2
j . Suppose,

without loss of generality, that `(sk) = `(r(sk)). We will prove that either sk−1 = `(sk) or sk−1 = r(sk).
Once this is proved, we simply use the fact that there is an edge (sk−1, sk) in D̃, and complete the argument
by applying the inductive hypothesis to (s1, . . . , sk−1).

Suppose then that sk−1 is not r(sk) or `(sk). Since all ancestors of sk except sk itself are ancestors of
r(sk), and Pj doesn’t go through r(sk), it must be that r(sk) is outside the job’s window Wj . Thus, we
have:

• sk−1 is an earlier time than `(sk): this follows from the fact that all prices in [`(sk) + 1, r(sk) − 1]
are too high to come before sk in P 2

j ; see Figure 13.

• `(sk) is visited by j prior to sk−1: by Lemma C.2, since r(sk) 6∈ Pj , and sk ∈ P 2
j , it must be that

`(sk) ∈ Pj and is visited by Pj before sk, and therefore also before sk−1.

• The price at `(sk) is strictly smaller than that at sk−1: if the prices at the two slots were equal, noting
that sk−1 < `(sk) would imply sk−1 ∈ P 1

j , but we know that sk−1 ∈ P 2
j .

• There is a pathQ in D̃ from `(sk) to sk−1 to r(sk) to sk: this follows from the total order on ancestors
of sk, because all of these nodes (including sk−1 by virtue of it being in P̃ 2

j ) are ancestors of sk.

• The path Q contains an edge (t′, t′′) where t′ < `(sk) and t′′ ≥ r(sk).

But the final observation yields a contradiction: since the edge (t′, t′′) goes left to right, it would have to be
that t′ = `(t′′). But that can’t be, since `(t) also has price less than pt′′ and is further to the right. See Figure
13. This completes the proof.

Lemma 4.2. The collection of paths P̃ = (P̃j), as defined above, satisfies the min-work condition. Further,
a node t ∈ Z+ is overloaded under the realized paths P̃ if and only if it is overloaded under the realized
paths P . That is, `t(P) ≥ Bt if and only if `t(P̃) ≥ Bt.

Proof. This lemma follows immediately by repeatedly applying Corollary B.2.

C.3 Proof of the stability of service theorem for unit-length jobs

We are now ready to prove Theorem 2.2 for the special case of unit-length jobs. Lemmas 4.1 and 4.2 imply
that the (random) collection of paths P̃ forms a valid instance of the network of servers setting with graph
D. It remains to argue that the moment generating function of At−Bt for every node t is small. Let {Xj,t}
be the fractional assignment given by Lemma 2.1 for ε picked in the statement of the theorem. Recall that
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∑
j qjXj,t ≤ (1 − ε)Bt and At =

∑
j qjX̂j,t, where X̂j,t is a Bernoulli random variable with expectation

Xj,t. Then we have:

E
[
eε(At−Bt)

]
≤ e−

1
2
ε2Bt

≤ εc/2 < ε2/3e

for an appropriate choice of c. We can therefore apply Theorem 3.1 and the unit-length case of Theorem 2.2
follows.

D The expected case LP: Proof of Lemma 2.1

Lemma 2.1. (Fractional assignment lemma) Fix any set of potential jobs J , their arrival probabilities,
and the capacities Bt for all t ∈ Z+. Then for any ε ≥ 0, ∃ nonnegative prices (pt)t∈Z+ and a fractional
assignment Xj,t ∈ [0, 1] from jobs j ∈ J to their favorite slots t ∈ FAVj , such that,

1. Every job that can afford to pay the price at its favorite slot is fully scheduled: for every j with
pt(lj) < vj for t ∈ FAVj , we have

∑
t∈FAVj

Xj,t = 1.

2. The expected allocation at time t is at most (1− ε)Bt: ∀t,
∑

j∈J,t′∈[t−lj+1,t] qjXj,t′ ≤ (1− ε)Bt.

3. The expected social welfare is at least (1−ε) times the optimum:
∑

j∈J,t∈FAVj
vjqjXj,t ≥ (1−ε)OPT.

Further, if the distribution is periodic, the prices are also periodic with the same period, and can be com-
puted efficiently.

Proof. We begin by writing a linear program for the fractional assignment problem. The variables in the
program correspond to the fractional assignment of jobs j to slots t, xjt, with the interpretation that if job j
arrives, it is assigned with probability xjt to the interval of time [t, t+ lj − 1]. Fractional assignments must
satisfy two constraints: (1) every job is assigned with total probability at most 1; (2) the expected number
of jobs assigned to a slot t is at most Bt. Together these constraints ensure that the optimal solution to the
LP satisfies the last two requirements of the lemma. The prices we select are based on writing a dual for the
program.

The linear program and its dual are given below. In the description below, we assume that the time
horizon for the allocation process is given by [H] for some largeH . In the case (discussed below) where jobs
are drawn from a periodic distribution, we allow H to go to infinity. Recall that Wj denotes the window of
starting times for a job; taking the time horizon into account, it is defined asWj = [sj ,min(dj , H)− lj +1].

Primal LP Dual LP

Maximize
∑
j,t∈Wj

vjqjxjt s.t.

∑
j

∑
t′∈[t−lj+1,t]∩Wj

qjxjt′ ≤ Bt(1− ε) ∀t ∈ [H]

∑
t∈Wj

xjt ≤ 1 ∀j ∈ J

xjt ≥ 0 ∀j ∈ J, t ∈ [H]

Minimize
∑
t

λtBt(1− ε) +
∑
j

µj s.t.

qj
∑

t′∈[t,t+lj−1]

λt′ + µj ≥ vjqj ∀j ∈ J, t ∈Wj

µj ≥ 0 ∀j ∈ J
λt ≥ 0 ∀t ∈ [H]
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Complementary Slackness conditions (CS). Let (x∗, λ∗, µ∗) denote the optimal solutions to the Primal
and Dual programs. Define pt := λ∗t , and observe that pt(l) =

∑
t′∈[t,t+l−1] λ

∗
t′ . The following complemen-

tary slackness conditions hold:23

1. For all j ∈ J, t ∈Wj , either x∗jt = 0 or pt(lj) + µ∗j/qj = vj .

2. For all j ∈ J , either µ∗j = 0 or
∑

t∈Wj
x∗jt = 1.

The first CS condition, along with the fact that pt′(lj) + µ∗j/qj ≥ vj for all t′ ∈ Wj and j ∈ J , implies
that if a job is assigned (partially) to a starting slot t, i.e., x∗jt > 0, then pt(lj) ≤ pt′(lj) for all t′ ∈ Wj . In
other words, jobs can only be assigned to one or more of their favorite slots.

Furthermore, if for a job j ∈ J , there exists a time t ∈Wj with pt(lj) < vj , then we must have µ∗j > 0.
Thus, the second CS condition implies that

∑
t∈Wj

x∗jt = 1 and the job is fully scheduled.
This completes the proof of the lemma.

Periodicity. We now prove that for periodic instances, we can efficiently find periodic prices satisfying
the conditions of the lemma.

We begin by defining periodic instances. A periodic instance with period k ∈ Z+ is given by a core set
J0 of potential jobs and their probabilities. Let the set Ji be obtained by shifting all the jobs in J0 by ki time
units:

∀i ∈ Z+, Ji := {(sj + ki, dj + ki, lj , vj) : j ∈ J0} .

The full set of potential jobs is defined to be

J =
∞⋃
i=0

Ji.

The associated probability for each job is the same as that for the corresponding job in the core set J0.
Furthermore, supply is also periodic with period k: for all t = t′ (mod k), Bt = Bt′ . A special case is that
of i.i.d. distributions, which are simply periodic distributions with period 1.

We will show next that for periodic instances, the above LP can be simplified into a compact form.
The compact LP assigns jobs in J0 to time slots in [k], with jobs and their windows “wrapping around”
the interval k. In particular, if dj − lj + 1 ≤ k, we define the window of a job, as before, to be W̃j =
[sj , dj − lj + 1]. Otherwise, if dj − lj + 1 > k and the length of the window, |Wj | = dj − lj − sj + 2, is
smaller than k, we define W̃j = [sj , k] ∪ [1, sj + |Wj | − k]. Finally, if |Wj | ≥ k, we define W̃j = [k].

Likewise, for a job j scheduled fractionally at a time t ∈ [k], if t+ lj − 1 > k, the job “wraps around”
the interval [k] (potentially multiple times), and places load on slots t′ ∈ [0, t+ lj − 1− k]. Specifically, a
job with lj ≥ k places a load of b ljk c (times its fractional allocation) on every slot in [k], and an extra unit
of load on t′ ∈ [k] such that (t′ − t) mod k is less than or equal to (lj − 1) mod k. For example, if a job of
length 5 in a setting with period k = 3 starts at time slot 1, it places a load of 2 units on each of slots 1 and
2, and a load of 1 unit on slot 3; if instead it starts at time slot 3, then it places a load of 2 units on each of
slots 3 and 1, and a load of 1 unit on slot 2.

Accordingly, we obtain the following LP. To understand the capacity constraint in this LP, consider the
example of a setting with period 3, and a job j of length 5 with window [1, 3]. Then, the load placed by this

23The condition corresponding to λ∗t is not relevant to the proof of the lemma.
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job on slot 1 is 2qjxj1 + qjxj2 + 2qjxj3.

Maximize
H

k

∑
j∈J0,t∈W̃j

vjqjxjt s.t.

∑
j∈J0

∑
t′∈[k]∩W̃j

qj

⌊
lj
k

⌋
xjt′ +

∑
j∈J0

∑
t′∈W̃j :

(t−t′) mod k<lj mod k

qjxjt′ ≤ Bt(1− ε) ∀t ∈ [k]

∑
t∈W̃j

xjt ≤ 1 ∀j ∈ J0

xjt ≥ 0 ∀j ∈ J0, t ∈ [k]

LetOPTP andOPTA be the optimal values of the periodic and aperiodic LPs given above, respectively.
We now show that as H goes to infinity, OPTP ≥ OPTA, and therefore using OPTP as a benchmark can
only make our approximation factor worse than what it should actually be. Observe also that the dual of
the periodic LP has a price variable for every slot t ∈ [k] — the interpretation is that prices repeat with
periodicity k and pt′ = pt for all t′ = t (mod k).

Claim 2. OPTP ≥ OPTA.

Proof. For simplicity we will assume that H is a multiple of k. For a job j ∈ J0 and j′ ∈ Ji for some
i ∈ Z+, we say that j is congruent to j′, written j ∼= j′, if j′ is obtained by shifting the arrival time and
deadline of j by a multiple of k. For t ∈ [k], let St = {t′ ∈ [H] : t′ = t (mod k)}. Observe that
|St| = H/k.

Let x∗jt be the optimal solution to the aperiodic LP for the set of all jobs J . Consider the following

solution ∀t ∈ [k] and j ∈ J0: x†jt = k
H

∑
j′∼=j

∑
t′∈St x

∗
j′t′ .

The value obtained by the solution x† in the periodic LP is exactly equal to the value obtained by x∗ in
the aperiodic LP. We will now prove that x† is feasible for the periodic LP, which implies the lemma.

Since x∗ is feasible for the aperiodic LP, we have for all j ∈ J0:∑
t∈W̃j

x†jt =
∑
t∈W̃j

k

H

∑
j′∼=j

∑
t′∈St

x∗j′t′ =
k

H

∑
j′∼=j

∑
t∈W̃j

∑
t′∈St

x∗j′t′ =
k

H

∑
j′∼=j

∑
t′∈Wj′

x∗j′t′ ≤
k

H

∑
j′∼=j

1 = 1.

Likewise, we have for all t ∈ [k]:∑
t′∈St

∑
j

∑
t′′∈[t′−lj+1,t′]∩Wj

qjx
∗
jt′′ ≤

H

k
Bt(1− ε)

Rearranging the sum, we get,∑
j∈J0

qj
k

H

∑
j′:j′∼=j

∑
t′∈St

∑
t′′∈[t′−lj+1,t′]∩Wj

x∗j′t′′ ≤ Bt(1− ε)

Consider the inner sum
∑

t′∈St
∑

t′′∈[t′−lj+1,t′]∩Wj
x∗j′t′′ . If lj < k, this sum is exactly equal to the

sum over t′ ∈ W̃j with (t − t′) mod k < lj mod k of
∑

t′′∈St′
x∗j′t′′ . If lj > k, then each t′′ belongs
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to the interval [t′ − lj + 1, t′] for
⌊
lj
k

⌋
additional different t′ ∈ St, and so, we get an additional term of∑

t′∈[k]
∑

t′′∈St′

⌊
lj
k

⌋
x∗j′t′′ . Putting these expressions together, we get,

∑
j∈J0

qj
k

H

∑
j′:j′∼=j

 ∑
t′∈W̃j :

(t−t′) mod k<lj mod k

∑
t′′∈St′

x∗j′t′′ +
∑
t′∈[k]

∑
t′′∈St′

⌊
lj
k

⌋
x∗j′t′′

 ≤ Bt(1− ε),
or, ∑

j∈J0

∑
t′∈[k]∩W̃j

qj

⌊
lj
k

⌋
x†jt′ +

∑
j∈J0

∑
t′∈[t−(lj mod k)+1,t]∩W̃j

qjx
†
jt′ ≤ Bt(1− ε)

Thus, the x†jt’s form a feasible solution to the periodic LP and the lemma holds.
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