- 1. Let g be a random function from $\{1, \ldots, n\}$ to itself, with all n^n possibilities equally likely. Let X be the number of values not in the image of g, i.e. the number of $y \in \{0, 1, \ldots, n\}$ such that g(x) = y has no solution.
 - (i) Show that $\mathbb{E}(X) \sim n/e$ as $n \to \infty$.
 - (ii) Use the result on concentration of Lipschitz functions to derive a concentration inequality for the deviation of X from its mean.
- 2. Let B be any normed vector space, and let $v_1, \ldots, v_n \in B$ with $|v_i| \leq 1$ for all i. Let $\epsilon_1, \ldots, \epsilon_n$ be independent, with $\epsilon_i = \pm 1$ with probability 1/2 each for each i. Let $X = |\epsilon_1 v_1 + \cdots + \epsilon_n v_n|$. Show that for some c > 0 (not depending on n or the choice of v_i),

$$\mathbb{P}(|X - \mathbb{E}X| > \lambda \sqrt{n}) \le 2e^{-c\lambda^2} \text{ for all } \lambda > 0.$$

- 3. A more general version of Azuma's inequality.
 - (i) Show that if Y is a random variable with $|Y| \leq c$ with probability 1 and $\mathbb{E} Y = 0$, and $\alpha > 0$, then $\mathbb{E} (e^{\alpha Y}) \leq e^{\alpha^2 c^2/2}$.
 - (ii) Prove that if X_0, X_1, \ldots, X_m is a martingale with the property that $|X_i X_{i-1}| \le c_i$ for $i = 1, 2, \ldots, m$, where c_1, \ldots, c_m are constants, then

$$\mathbb{P}[|X_0 - X_m| > t] \le 2 \exp\left(-\frac{t^2}{2\sum_{i=1}^m c_i^2}\right).$$

- 4. Which of the following graph theoretic functions are edge-Lipschitz and which are vertex-Lipschitz: (a) the number of components (b) the size of the largest component (c) the size of the largest independent set (d) the number of isolated vertices?
- 5. Let G=(V,E) be a graph with chromatic number $\chi(G)=1000$. Let $U\subset V$ be a random subset of V, with all $2^{|V|}$ possibilities equally likely. Let H be the induced subgraph of G on U.
 - (i) Show that the expectation of $\chi(H)$ is at least 500.
 - (ii) Show that $\mathbb{P}(\chi(H) \leq 400) \leq e^{-5}$. [Hint: try to write $\chi(H)$ as a Lipschitz function of a suitable sequence of independent random quantities.]
- 6. Consider $A = \{0, 1, ..., n\}^2$ as a subset of the square lattice \mathbb{Z}^2 . With each point $\mathbf{z} \in A$, we associate a random variable $Y(\mathbf{z})$. The collection $\{Y(\mathbf{z}), \mathbf{z} \in A\}$ is i.i.d. and each $Y(\mathbf{z})$ takes value 1 with probability p and 0 with probability 1 p.
 - Consider directed paths starting (0,0) at (n,n). Each step of the path consists of increasing one of the two coordinates by 1. Thus each such path has 2n+1 vertices, and there are $\binom{2n}{n}$ such paths. Let Π_n be the set of such paths.

For each path $\pi \in \Pi_n$, define $W(\pi)$, the weight of π , to be the sum of $Y(\mathbf{z})$ over all the vertices \mathbf{z} included in π .

Finally let $X_n = \max_{\pi \in \Pi_n} W(\pi)$ be the maximum weight of a directed path between (0,0) and (n,n).

Let p be fixed. Show that the expectation and the median of X_n are $\Theta(n)$.

- Use (i) Azuma's inequality and the corollary on the concentration of Lipschitz functions, and (ii) Talagrand's inequality, to derive concentration inequalities for X_n , and compare them.
- 7. Consider the bond percolation model on \mathbb{Z}^2 (as in the last lecture). The vertices of the graph are the points of \mathbb{Z}^2 . Each edge between nearest neighbour vertices is present with probability p and absent with probability 1-p, independently (so every vertex has between 0 and 4 neighbours).

By considering an exploration process and comparing to a branching process, or otherwise, find a $\hat{p} > 0$ such that if $p \leq \hat{p}$, the probability that the component containing the origin is finite is 1.

Course webpage: http://www.stats.ox.ac.uk/~martin/PC.html