
Cohabitation dissolution model

Kiernan (2001)1 provides data on rates of conversion of cohabitations into
marriage or separation, measured by years since the birth of the first child. The
following data relate to couples in the UK:

(a): % of cohabiting couples who marry within the stated time:

n 1 year 3 years 5 years

150 18 30 39

(b): from among those who do not marry within 5 years, % of cohabiting couples
remaining together at the stated time:

n after 3 years after 5 years

106 61 48

We will try to estimate rates of marriage and separation based on this data.
There are various peculiarities of the data which we need to be aware of:

(1) Note that the two tables are based on slightly different samples. The
total number included in table (b), 106, does not correspond to the total
number in table (a) who do not marry within 5 years (which would be
(1 − 0.39) × 150).

(2) There is no figure in table (b) corresponding to the 1-year point.

(3) The data in table (b) are relative frequencies (conditional on not marrying
before year 5).

(4) Note that table (a) shows “decrements” while table (b) shows “survivals”.

We’ll start with a simpler analysis, where we ignore the 1-year figure in table
(a). This corresponds to a multiple decrement model with two time-periods,
[0, 3] and [3, 5]. We will assume constant rates for marriage and for separation
on each of these intervals, denoted by µM1.5, µ

S
1.5, µ

M
4 , µS4 .

First it will be helpful to rewrite table (b) in terms of absolute decrements
rather than relative survivals:

1Kathleen Kiernan, The rise of cohabitation and childbearing outside marriage in Western
Europe (International Journal of Law, Policy and the Family vol. 15, pp. 1-21, 2001)
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(b’): % of cohabiting couples separating within stated time:

3 years 5 years

(1-0.39)×(1-0.61) (1-0.39)×(1-0.48)
=23.8% = 31.7%

Writing dMx and dSx for the numbers marrying and separating in a given
period, we can now create a life-table as follows (based on a notional radix of
1000 couples at time 0):

x `x dMx dSx qMx qSx
0-3 1000 300 238 0.3 0.238
3-5 462 90 79 0.195 0.171

Here qMx and qSx are calculated by dMx /`x and dSx/`x.
To calculate corresponding decrement rates µMx and µSx for the first period,

we can proceed as follows. The first equation relates the total proportion of
decrements to the sum of the decrement rates, while the second follows from
the fact that the ratio of decrements of each type should be the same as the
ratio of the decrement rates:

1 − e−3(µS1.5+µM1.5) = 3q
M
0 + 3q

S
0 = 0.3 + 0.238

µS1.5
µS1.5 + µM1.5

=
3q
S
0

3qM0 + 3qS0
=

0.238

0.3 + 0.238
.

From these two equations together we obtain µM1.5 = 0.144, µS1.5 = 0.114.
Using a similar calculation for the period [3, 5], we can extend the above

table as follows:

x `x dMx dSx qMx qSx µMx µSx
0-3 1000 300 238 0.3 0.238 0.144 0.114
3-5 462 90 79 0.195 0.171 0.121 0.106

Once we incorporate the year-1 marriage figure from table (a), we might
decide to model with different marriage rates on [0, 1] and [1, 3], denoted by
µM0.5 and µM2 , say, while keeping a single rate of separation µS1.5 on [0, 3].

Then we have the following relations:

18% = P (marry in [0,1])

=
[
1 − exp

(
−
(
µM0.5 + µS1.5

))] µM0.5
µM0.5 + µS1.5

;

12% = P (marry in [1,3])

= exp
(
−
(
µM0.5 + µS1.5

)) [
1 − exp

(
−2

(
µM0.5 + µS1.5

))] µM2
µM2 + µS1.5

;

46.2% = P (neither marry nor separate in [0,3])

= exp
(
−
(
3µS1.5 + µM0.5 + 2µM2

))
.
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We have three equations in three unknowns, and we can solve them numer-
ically to give µM0.5 = 0.211, µM2 = 0.103, µS1.5 = 0.118.

Note that the separation rate µS1.5 has increased compared to the one we
computed when we had a single rate for marriage on the whole interval [0, 3].
The model with different marriage rates corresponds sees a bias towards mar-
riages occurring earlier. As a result, the total “exposure to risk of separation” is
lower, so the same number of separations corresponds to a higher implied rate.

If we had wanted to do the calculation above by hand, we could have used
an iterative procedure. For example:

(1) calculate µM1.5, µ
S
1.5 as above;

(2) keeping µS1.5 fixed, generate µM0.5 and µM2 to give the right distribution of
marriages at times 1 and 3;

(3) readjust µS1.5 to give the right proportion of separated couples at time 3;

(4) readjust µM0.5, µ
M
2 again using the distribution of marriages at times 1 and

3; and so on.

We would expect this procedure to converge very fast.
We can calculate the implied proportions of separations at time 1, and sum-

marise the rates obtained in a fuller table:

x `x dMx dSx qMx qSx µMx µSx
0-1 1000 180 101 0.18 0.101 0.211 0.118
1-3 719 120 137 0.167 0.191 0.103 0.118
3-5 462 90 79 0.195 0.171 0.121 0.106

We could extrapolate to produce an estimate of the probability that a co-
habitation with children will end in separation. We need to decide what to do
with the lack of observations after 5 years. Most simply, we could assume that
the rates from then on remain constant at the same values observed in the final
interval [3, 5].

Under those rates, the proportion separating is µSx/(µ
M
x + µSx) = 0.467,

so the number of separations seen after time 5 would be `5 × 0.467 = 293 ×
0.467 = 137. The overall number of separations is then 101+137+79+137=454,
corresponding to a proportion of 0.454 of cohabitations eventually ending in
separation.

This extension to the model is far from realistic, however. In particular, we
have ignored the substantial number of cohabitions which are maintained in the
long term without either marriage or separation.
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