1. (a) In the following linear model the response variable Y depends on two explanatory variables x and z, and $\epsilon_1, \ldots, \epsilon_n$ are independent $N(0, \sigma^2)$ random variables:

$$Y_i = \beta_0 + \beta_1 x_i + \beta_2 z_i + \epsilon_i, \quad i = 1, \ldots, n.$$

Suppose $\sum_i x_i = \sum_i z_i = \sum_i x_i z_i = 0$ and let Y_* be a future observation that we intend to make, where the explanatory variables have values x_* and z_*. If E_* is the expectation of Y_*, write down the MLE of E_* and calculate its variance.

(b) In an experiment to determine the radioactivity of a particular isotope, radioactivity observations Y_1, Y_2, \ldots, Y_n, each normally distributed with variance σ^2, are taken at times t_1, t_2, \ldots, t_n. The actual radioactivity at time t_i is given by $\beta_0 + \beta_1 (e^{-t_i} - c)$, where $c = \frac{1}{n} \sum_{i=1}^n e^{-t_i}$.

(i) Explain how it is possible to formulate a linear model relating the observations to the actual radioactivity, stating any additional assumptions you make.

(ii) Consider the problem of estimating the expected radioactivity E_{t_i} at a new time t. Show that the variance of the maximum likelihood estimator \hat{E}_{t_i} of E_{t_i} is given by

$$\text{Var}(\hat{E}_{t_i}) = \sigma^2 \left[\frac{1}{n} + \frac{(e^{-t} - c)^2}{\sum_{i=1}^n (e^{-t_i} - c)^2} \right].$$

2. Consider the linear model $Y = X\beta + \epsilon$ where Y is a random n-vector, X is an $n \times p$ design matrix of rank p (where $p < n$), β is a p-vector of parameters, and ϵ is an n-vector of independent random variables with mean zero and variance σ^2. Derive the least squares estimator $\hat{\beta}$ for β and determine its variance matrix. Is $\hat{\beta}$ unbiased?

Let $\tilde{\beta} = DY$ be a second linear estimator of β, where D is a $p \times n$ matrix. Derive the expectation and variance matrix of $\tilde{\beta}$.

Now suppose $\tilde{\beta}$ is an unbiased estimator of β.

(a) Prove that $DX = I_p$, where I_p is the $p \times p$ identity matrix.

(b) Defining the matrix $D^* = D - (X^T X)^{-1} X^T$, show that the variance of $\tilde{\beta}$ is given by

$$\text{Var}(\tilde{\beta}) = \sigma^2 \left(D^* D^{*T} + (X^T X)^{-1} \right).$$

Deduce that for any $i = 1, 2, \ldots, p$, we have $\text{Var}(\tilde{\beta}_i) \geq \text{Var}(\hat{\beta}_i)$. Which estimator would you prefer to use to estimate β and why?

3. Consider the linear model $y = X\beta + \epsilon$, with y an $n \times 1$ vector, X an $n \times p$ matrix of rank p, β a $p \times 1$ vector and ϵ an $n \times 1$ multivariate normal random vector $\epsilon \sim N(0, \sigma^2 I_n)$.

Suppose we know the error variance σ^2.

Let $k \in \{1, \ldots, p-1\}$, and let $\tilde{X} = [X_1, \ldots, X_{p-k}]$ and $\beta^{(0)} = (\beta_1, \ldots, \beta_{p-k})$. What is the maximized log-likelihood $\ell(\hat{\beta}, \sigma^2; y)$? What is the Likelihood Ratio Test (LRT) statistic for the comparison of the model $H_0 : y = \tilde{X} \beta^{(0)} + \epsilon$ with $H_1 : y = X\beta + \epsilon$, and what is its distribution?

4. (TT09 BS1a exam Q1) The data set cigarettes contains measurements of the carbon-monoxide (variable name CO), tar and nicotine content and tobacco weight for $n = 25$ cigarettes. The data are plotted below.
In the normal linear model $CO \sim 1 + Nicotine + Tar + Weight$ the response is CO and all the other variables (including an intercept) are explanatory. The following partial R-output gives a standard-format ANOVA table for this model.

Response: CO

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicotine</td>
<td>1</td>
<td>462.26</td>
<td>462.26</td>
<td>-B-</td>
</tr>
<tr>
<td>Tar</td>
<td>1</td>
<td>33.00</td>
<td>33.00</td>
<td>15.7883</td>
</tr>
<tr>
<td>Weight</td>
<td>1</td>
<td>0.002357</td>
<td>0.002357</td>
<td>-C-</td>
</tr>
<tr>
<td>Residuals</td>
<td>-</td>
<td>43.89</td>
<td>2.09</td>
<td></td>
</tr>
</tbody>
</table>

Give the values of the missing entries -A-, -B-, -C- and -D-. What is the residual sum of squares for the model $CO \sim 1$ (i.e. the model with just an intercept)? The residual sum of squares for the model $CO \sim 1 + Tar$ (i.e. an intercept and Tar) is 44.87. Carry out model selection (i.e. given the information available, carry out appropriate F-tests and say which of the models considered you would select as your preferred model).

5. \textit{(Multicollinearity)} Let $y = X\beta + \epsilon$ with $\epsilon \sim N(0, \sigma^2 I_n)$ be a normal linear model with $n \times p$ design matrix X of rank p, let $\hat{\beta}$ be the MLE for the p parameters β, and let $H = X(X^TX)^{-1}X^T$.

Denote by $\tilde{X} = X_{1:(p-1)}$ the matrix of the first $p-1$ columns of X.

Consider also a second model $X_p = \tilde{X}\gamma + \epsilon$, where $\epsilon \sim N(0, \sigma^2 I_n)$ and γ is a $(p-1)$-dimensional parameter. In this model the ‘response’ is X_p, the last column of X, and the explanatory variables are the other $p-1$ columns of X. Let $H_{-p} = \tilde{X}(\tilde{X}^T\tilde{X})^{-1}\tilde{X}^T$.

Figure 1: Cigarette data for Q4 and Q5.
(a) Show that
\[
\text{var}(\hat{\beta}_p) = \frac{\sigma^2 X_p^T(I_n - H_p)X_p}{X_p^T(I_n - H_p)X_p}.
\]

\textit{Hint: if A is an invertible symmetric }p\times p\text{ matrix and we break it into blocks }A = \begin{pmatrix} B & u \\ u^T & A_{pp} \end{pmatrix},
\text{with }u \text{ the } (p - 1) \times 1 \text{ vector and }B \text{ the } (p - 1) \times (p - 1) \text{ matrix with }u_i = A_{ip} \text{ and }B_{ij} = A_{ij}\text{ for }i,j = 1, \ldots, p - 1, \text{ then }[A^{-1}]_{pp} = (A_{pp} - u^T B^{-1} u)^{-1}.
\]

(b) Show that \(X_p^T(I_n - H_p)X_p\) is the residual sum of squares for the regression of \(X_p\) on the remaining columns of \(X\).

(c) What are the implications for regression with near linearly-dependent groups of variables? Use the following R-output (cigarette CO data) to illustrate your point.

```r
> cig.lm1 <- lm(CO ~ 1 + Nicotine + Tar + Weight, data = cig)
> summary(cig.lm1)
```

```
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.2022     3.4618   0.925  0.36546
Nicotine   -2.6317     3.9006  -0.675  0.50723
Tar        0.9626      0.2422   3.974  0.00069 ***
Weight    -0.1305      3.8853  -0.034  0.97352
```

```r
> cig.lm2 <- lm(CO ~ 1 + Tar + Weight, data = cig)
> summary(cig.lm2)
```

```
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.1143     3.4162   0.912  0.372
Tar        0.8042      0.0590  13.622 3.36e-12 ***
Weight    -0.4229      3.8129  -0.111  0.913
```

```r
> cor(cig[,2:4]) # correlation matrix

<table>
<thead>
<tr>
<th></th>
<th>Tar</th>
<th>Nicotine</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tar</td>
<td>1.000</td>
<td>0.9960417</td>
<td>0.9290669</td>
</tr>
<tr>
<td>Nicotine</td>
<td>0.9960417</td>
<td>1.0000000</td>
<td>0.8925088</td>
</tr>
<tr>
<td>Weight</td>
<td>0.9290669</td>
<td>0.8925088</td>
<td>1.0000000</td>
</tr>
</tbody>
</table>
```

(d) \textit{(extra for experts)} Consider how \(\text{var}(\hat{\beta}_p)\) varies as the vector \(X_p\) is varied subject to \(|X_p| = 1\), and subject also to \(X_{-p}\) (the design matrix \(X\) with column \(p\) excluded) being held fixed. Find the smallest value that \(\text{var}(\hat{\beta}_p)\) can take over choices of the vector \(X_p\), subject to \(|X_p| = 1\) with \(X_{-p}\) fixed, and show that this minimum is achieved if and only if \(X_p\) is orthogonal to all the columns of \(X_{-p}\).

\textit{[Note that }X_{-p} = \tilde{X}\text{.]}