
Lecture Notes

Rune Lyngsø

17th November 2005

1 RNA Secondary Structure Predction

Ribonucleic acid, or RNA, is as the name suggests a molecule very similar to
���

-
deoxyribonucleic acid, or DNA. The two differences are the extra hydroxyl group
on the ring-formed ribose sugar on the backbone, and the substitution of thymine
with uracil as one of the four possible side chain bases. According to the central
dogma, DNA � RNA � protein, RNA is restricted to a role as an intermediate
messenger between the hereditary genetic medium of DNA and the biochemically
active molecules of proteins. However, numerous known examples exist of RNAs
with structural and catalytic importance, cf. e.g. [1, Section 10.1]. Recent discov-
eries even seem to indicate that RNA may play a pivotal role in gene regulation [3].
It is therefore of interest to be able to infer the structure, or structural features, for
an RNA sequence. An understanding of the types of constraints determining RNA
structure can also assist in better modeling of RNA sequence evolution.

Figure 1: The tertiary structure of yeast phenylalanine tRNA

1

A prominent feature of RNA structures are the strong interactions formed by
base pairings of complementary bases. This base pairing is similar to the Watson-
Crick base pairing observed in the DNA double helix, and can clearly be seen in
Fig. reffig:trna as steps in a ladder. However, where DNA base pairing is usually
formed between two complementary strands, RNA base pairing is usually formed
between bases in the same strand causing the RNA molecule to fold back against
itself. Moreover, non-Watson-Crick base pairs are observed in RNA, with the
Uracil–Guanine wobble base pair being almost as common as the Watson-Crick
base pairs, cf. Fig. 2.

(a) Guanine–Cytosine (b) Adenine–Uracil (c) Uracil–Guanine

Figure 2: Base pairs commonly observed in RNA structures

The set of base pairings in the tertiary (i.e. three dimensional) structure of an
RNA molecule is called the secondary structure of the RNA. An example sec-
ondary structure is illustrated in Fig. 3. Knowing the secondary structure of an
RNA molecule reveals a lot of information about the overall structural conforma-
tion of the molecule. Moreover, it also reveals information about constraints on
the evolution of the RNA sequence: mutation of one of the bases in a pair of base
pairing positions will have to be compensated by a mutation in the other position
for the base pairing to remain intact. If we already know the tertiary structure, in-
ferring the secondary structure is easy. In the absence of a known tertiary structure,
we can still obtain a very good estimate of the consensus secondary structure by
the signal left by compensatory mutations if we have a well curated alignment of
a large number of homologous RNA sequences, as described in [1, pp. 265–67].
Both these methods are time and graduate student demanding, and are not even
always an available option (e.g. if the RNA molecule cannot be crystallised for
tertiary structure determination or if no or only a few homologues are known. In
this section we will focus on how to predict the secondary structure of an RNA
sequence. Alternative introductions can be found e.g. in [1, Chapter 10.2] and [2].

2

g
c

g
g

a
u

u
u a g

c

u

c

a

g
u u

g

g

g
ag

a

g

c

g

c c a g a
c u

g

a

aga

ucugg

a
ggu

c

cugug

u
u

c

g

a
u c

c a c a g

a
a

u
u

c
g

ca
c

c
a

Figure 3: Secondary structure of yeast phenylalanine tRNA

1.1 Maximum Base Pairing

The reason that base pairs are such a prominent feature of RNA structures is that
they form energetically quite favourable interactions known as hydrogen bonds.
So the more base pairs a structure contains, the more hydrogen bonds are formed.
A first attempt to predict the structure of an RNA sequence could thus be to find
a structure having a maximum number of base pairs. This is also known as the
Nussinov algorithm [4].

Given an RNA sequence � of length � , we do not know what the optimum
structure looks like. But as illustrated in Fig. 4 we know that the leftmost base
will be in one of two configurations: it will either be unpaired, or it will be paired
to some other base. So the optimum structure for � will either be the optimum
structure for � � ����� ��� with s[1] left unpaired, or it will have � �	� � base paired with
� ��
 � for some

��� ����������� ��� 1combined with the optimum structure for � � �����
���� �
and the optimum structure for � ��
���� ��� ��� . In other words, if we let N(i, j) denote

1Due to physical constraints, two bases separated by less than three other bases cannot get into
a configuration where they can form a base pair. Henceforth we will include this constraint in the
recursions and algorithms we develop. In the current situation, the constraint implies that we need
only consider �����! #"%$&$'$'")(�* .

3

��� �
(a) First base unpaired (b) First base forms base pair with

some other base

Figure 4: Possible configurations of the leftmost base in a secondary structure. In
the graphical notation we will use, a zigzagged line indicates a base pair, a dashed
line simply encloses a region without making any statements about the presence
or absence of a base pairing, and a grey shaded region indicates a region with
unknown secondary structure.

the number of base pairs in an optimum structure for � � � ��� � � , then

��� � �	��
�
����� ����
�

if
��� � ���

�����
��� ��
��� ��� � �	��

��������! "�$#%'& (*),+-%.&)

� � � ��� � � � �
 � �
 � ���
�� � �	��
 � otherwise

(1)
where the notation � �	� �0/ � ��
 � indicates that � �	� � and � ��
 � can form a legal base
pair (i.e. one of the three types of base pairs in Fig. 2). It should hardly come
as a surprise that we can transform this recursion into a dynamic programming
algorithm for finding the number of base pairs of an optimum structure for a given
RNA sequence � . One example is Algorihtm 1 where we compute the maximum
number of base pairs for substrings of � in order of increasing length.

Determining the complexity of Algorithm 1 is relatively straightforward. We
have three nested loops, each of which is executed 1 � �
 times. So the total number
of operations performed by the algorithm is 132 �5476 . The same complexity can also
be observed from Eq. (1) – we have 182 �5976 recursive elements that each is the
maximum over 1 � �
 values.

So far this only allows us to compute the score of an optimum structure, but
not to actually predict a secondary structure for � by finding an optimum structure.
As you have seen several times in this course already (e.g. the Sankoff algorithm
and pairwise alignment), once we have described how to determine the score of an

4

Algorithm 1 Maximum number of base pairs
for � � ���

to
�

do
for

� � �
to � � � do� � � � � � �
 � �

for � ��� to � � �
do

for
� � �

to � � � do� � � � � � �
 � ��� � � � � ��� �

for

 � � � �
to
��� � do

if ��� and � can form a base pair then��� � � � � �
 � � ��� � � � � � � � �
!� � � ��� � � � �
 ���
 � � �
 � � � � � �
 �
optimum configuration it is easy to find an optimum configuration by backtracking
the score. All we need to do is repeatedly ask how an optimum score was obtained
at a particular point. This principle is formalised in Algorithm 2. An example of
the dynamic programming table and backtrack route computed by Algorithms 1
and 2 is illustrated in Fig. 5.

Algorithm 2 backtrack
� � �	��

: Backtrack maximum number of b.p. for � � � ��� � �
if
� � � �	��
 � �

then
No base pairs in optimum structure for � � � ��� � �

else
if
� � � �	��
� � � � � � �	��

then
backtrack

� � � � �	��

else

for

 � � � �

to
�

do
if � � � � and � ��
 � can form a base pair and

��� � �	��
 � ��� � � � � � �
 � �
 �� �
 � � �	��

then

Report base pair
����

backtrack
� � � � �
 � �

backtrack
�
 � � �	��

Structure prediction based on just maximising the number of base pairs is too
simplistic to yield acceptable results. Just one important consideration left out
with this simple score function is base pair stacking. A closer inspection of RNA
secondary structures will reveal that base pairs almost always occur stacked onto
other base pairs. In fact, stacked base pairs is almost exclusively the only structural
element providing a stabilising effect to the structure in the free energy approach
that we will discuss in the next section. We will now briefly present an algorithm
for finding the structure with the maximum number of base pair stacks, i.e. pairs

5

second base #

firstbase
#

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

� A (C 9 U 4 U � A � G �
A (
C 9
U 4
U �
A �
G � �

Figure 5: The dynamic programming table and backtrack tree computed for the
sequence ACUUAG. The structure computed is C 9 � G � .
of neighbouring base pairs

� � �
and

� � � �
 � � � � �

. This algorithm will have a

structure almost identical to the free energy based prediction we will discuss in the
next section, but without all the clutter of detailed weighting of structural elements.

When counting base pair stackings, we cannot quite use the simple recursion
of Eq. (1) illustrated in Fig. 4. When postulating a base pair between � �	� � and � ��
 � ,
its score depends on whether we also have a base pair between � � � � and � ��
 � � � .
Hence, in our recursion we need to keep track of whether a base pair is present
between the two flanking bases of the substrings. So if we let

� � � �	��

denote the

optimum number of base pair stackings for � � � ��� � � under the constraint that � � � �
and � � � � forms a base pair, and � � � �	��

denote the optimum number of base pair
stackings for � � � ��� � � for unconstrained structures, we obtain the recursion

� � � �	��
 �
��� ��
���

if � � � � and � � � � cannot form a base pair

����� � � � � � � �	� � �

� � � � � � � �	� � �
 otherwise

(2)

� � � �	��
 �
���� ���
�

if
��� � � �

����� �� � � � � � � �	��

��������! "�$# � � � � �

 � � �
 � � �	��
 � otherwise

(3)

Based on this recursion, algorithms similar to Algorithms 1 and 2 can be de-
vised for finding a structure with a maximum number of base pairs. The complexity

6

analysis is also similar, this time involving the computation of two sets of 1 2 � 976
recursive elements, each taking time 1 � �
 to compute. In conclusion, we can find
a structure with the maximum number of base pair stackings using about twice the
amount of time that was required to find a structure with the maximum number of
base pairs, i.e. in time 1 2 � 4 6 .
1.2 Energy Based Prediction

Prediction based on maximising number of base pair stacks doesn’t is still much
too simplistic to consistently provide secondary structures remotely close to the
true secondary structures of RNA sequences. In [5] a model of estimating the free
energy of an RNA structure based on a decomposition into loops was introduced.
This decompositions is illustrated in Fig. 6. Thermodynamics state that the most
stable structure of a molecule, or more generally configuration of a system, is the
one with minimum free energy. Hence, a predictor of secondary structure will be
the structure with minimum free energy.

�� � Hairpin loop

�� �Hairpin loop

�� � Bulge

�� �Multibranched loop

� ���
Internal loop� ���

External base

�� 	
Stacked pair

Figure 6: An example decomposition of an RNA secondary structure into its con-
stituent loops. Each loop is represented by a grey polygon, and a representative of
each type of loop is indicated.

The model used in [5] postulates that the free energy of an RNA secondary
structure
 is simply the sum of independent free energies of each of its constituent

7

loops, i.e. that � �������	� �

 �

loop ��

� �������	� � loop

 �

(4)

This allows a general recursion scheme for computing the minimum free energy
of any structure for an RNA sequence � . As for finding the maximum number of
base pair stackings, the central recursive element is the optimum value (i.e. in this
context the minimum free energy) that we can obtain for a substring � � � ��� � � when
we require � � � � and � � � � to form a base pair. The base pair

� � �
closes some loop

containing zero or more other base pairs
� ��� � � � � (� � �! �� �� � . If the structure on � � � ��� � �

is an optimum structure, then each of the substructures on � � ��� ��� � � � for
� � � �

have to be optimum structures. If we let ��� � � �	��
 denote the minimum free energy
taken over all structures on the substring � � � ��� � � , then ��� must obey the recursion

��� � � �	��
 � ����� �� �
��� ��� ��!�� �#"$"$" � �&%'��! %���!

� � �������	� � � � ��(� (� � (��������� � � �
 �
 �*) (��� � �+� �	� �
, �

(5)
where

� �������	� � � � �-(� (� � (������� � � � �
 is the free energy of the loop defined by the
base pairs

� � � � � (� � (������� � � � . This general recursion does not allow an efficient
solution, as we for each substring need to consider

�/.10 #	2
possible loops it can close.

The main culprit is multibranched loops, as there are only 1 2 � 9 6 possible internal
loops, 1 � �
 possible bulges, 1 possible stacked pair, and 1 possible hairpin loop.
As we shall presently see, the function assigning energies to multibranched loops
has been chosen in such a way that they can be handled efficiently.

Over the years, parameters of the general loop decomposition model have
steadily been refined by calorimetric measurements and other experiments, and
by optimisation based on known RNA secondary structure. Briefly summarising,
the energy functions and their dependencies are354�6 � � � ��

is the energy of a hairpin loop closed by the base pair
� � �

. It is a
sum of a function depending on the size of the loop, i.e.

� � �
, and stacking

interactions between the base pair
� � �

and the two neighbouring unpaired
bases � � � � � � and � � � � � � . The size dependence has been experimentally
tabulated for small loops, and a general theoretically derived and experimen-
tally fitted formula is used for larger loop sizes. The stacking effect has been
experimentally tabulated for all combinations of base pair type and types
of the two neighbouring unpaired bases. The energy of certain small loops
have been experimentally tabulated depending on the exact base sequence
occurring in the loop.3547 � � � � � � � � � � ���

is the energy of stacking base pair � � � � � � � � � onto the

8

base pair � � � � � � � � � � � � � . It depends on the types of the two base pairs and
has been experimentally tabulated for all such.354�� � � � � �
 � �
 is the energy of an internal loop or bulge defined by the base
pairs � � � � � � � � � and � ��
 � � � � � � (with

����
�� � � �
). It is a sum of functions

depending on the size of the loop, i.e.

 � � � � � � , the asymmetry of the loop,

i.e.

 � �

and
� � � , and stacking interactions between the base pair and its two

neighbouring unpaired bases for each of the two base pairs in the loop. Size
dependence has been experimentally tabulated for small loops and a theo-
retically derived and experimentally fitted function is used for larger loops.
The asymmetry function has a heuristic form with parameters optimised for
known structures – it mostly depends on the lopsidedness of the loop, i.e. the
difference between the two parameters. Stacking effects have been experi-
mentally tabulated for all combinations of base pair type and types of the
two neighbouring unpaired bases. The energy of certain small loops have
been experimentally tabulated depending on the exact bases occurring in the
loop.354�� � � � �-(� (� � (��������� � � �
 is the energy of a multibranched loop defined
by the base pairs

� � �
,
� (� � (, . . . ,

� � � . It is a sum of stacking interactions
between the base pairs and their neighbouring unpaired bases and between
base pairs separated by at most one unpaired base, and an affine function of
the number of unpaired bases and base pairs in the loop, i.e. a term �

�	�
��

 �*) ��� � � �� (� � � � �

where we for convenience have defined
� � � �

and� (� �
. The stacking interactions have been experimentally tabulated for

combinations of base pair types and types of neighbouring unpaired bases
and base pairs. The parameters � ,

�
, and � for the loop size dependence have

been optimised for known structures.3 Base pairs with neighbouring external bases incur a further stacking contri-
bution similar to the ones seen for the base pairs in the different types of
loops. External base pairs not neighbouring a base pair have no contribution
to a structures free energy.

The simple affine function for multibranched loops allow these to be handled
much more efficiently than if we had to consider each possible multibranched loop
independently. The change in energy of adding an extra base pair or unpaired base
to a loop does not depend on the location, or even the number, of other base pairs
and unpaired bases in the loop, but only on the parameters

�
and � . This means that

we can recursively build the interior of a multibranched loop by adding an unpaired
base or a base pair to an existing interior. This is formalised in the recursive element

9

� ��� in the following set of recursions for determining the minimum free energy
of any structure for � . The main recursive element ��� captures the free energies of
structures where the two flanking bases form a base pair, and � � allows us to add
external bases and create multifurcating structures, i.e. structures consisting of two
or more independent substructures. For brevity of recursions we have left out the
stacking contributions for multibranched loops and external bases. These can be
added with a bit of care without significantly changing the time complexity of the
resulting algorithm.

� � � � � �
 � �� � � if i < 1��� � � � � � � � � � �
!� � � �(� !'� � � � � � � �	� � �
 � ��� � � � �
 � � otherwise
(6)

��� � � �	��
 �

����������� ����������

�
if � � � � and � � � � cannot form a base pair

��� �
�������� �������

4'6 � � �	��
4�7 � � � � � � � � � � � �
 � ��� � ��� � �	� � �

��� �

��� � � ��! �� � ! � ��� 9
� 4 � � � � � �
 � �
 � ��� �
 � �
 �

��� �
��� ��! � � � � � � � ��� � �
 � �
 � � � � �
 �	� � �
 � �

otherwise
(7)

� � � � � �	��
 �
��������� ��������

�
if
� ���

��� �
������ �����
��� ��� � � �	��

� � � ��� � � �	� � �

� � � ��� � ��� � �	��

��� �
��� ��! � � � � � � �
 � �
 � � � � �
 �	��
 � � otherwise

(8)

We can define a dynamic programming algorithm for solving these recursions
in a way similar to what we saw in the previous section. The minimum free energy
taken over all possible structures for � will be the final value of � � � � � �
 . Once
we have computed the minimum free energy, we can find a structure with this
free energy by backtracking how we obtained the value of � � � � � �
 , similar to the
backtracking of the maximum number of base pairs of Algorithm 2.

Is it more expensive to find a minimum free energy structure than a maximum
number of base pairs structure? Computing the � � elements requires computing1 � �
 elements each taking time 1 � �
 , i.e. 182)�5976 time. Computing the ��� ele-
ments requires computing 1 2 � 9 6 elements. The most time consuming part of this
computation will be minimising over all internal loops, as this requires minimising
over all

 � � between
�

and
�

which takes 182)� 9 6 time. This results in an overall
time complexity of 1 2)� � 6 . Usually this is reduced by observing that as all known

10

internal loops are relatively small it is safe to limit the size of loops considered
to a constant (usually 30). Even when allowing loops of arbitrary size, with the
current form of 4 � more involved techniques are known for handling internal loop
contributions to the ��� entries in time � 2 � 4 6 . Using either of these strategies, the
most time consuming part of computing a ��� entry becomes minimising over all
possible ways to split the interior of a multibranched loop into two parts each con-
taining at least one base pair. This has complexity 1 � �
 , resulting in an overall
complexity of 1 2)�5476 for computing the ��� entries. Finally, there are 1 � � � �

entries, where the most time consuming part of computing an entry is constructing
a structure by joining two substructures which has time complexity 1 � �
 . In total,
computing the minimum free energy can still be done in time 1 2 � 4 6 .

Apart from a more refined model allowing much better structure predictions,
and advantage of a well parameterised free energy model for RNA secondary struc-
tures is that we can borrow from the theory of thermodynamics. The Boltzmann
distribution states that the probability of observing a particular configuration

(e.g. secondary structure) from a set of possible configurations

�
is proportional to4 �������	��
� 0 � 2�� �� , where � is the absolute temperature and

is a constant. If we can

efficiently compute the partition function, i.e. the sum over all possible structures

 of 4 �������	��
� 0 � 2�� �� , then we can efficiently compute the probability of observing
any particular structure. Without going into too much detail, this essentially boils
down to replacing minimums in Eqs. (6)-(8) with sums (as we need to sum the
contribution from all possible choices rather than just choose the optimum) and
sums with multiplications (as the exponential of a sum equals the product of the
exponentials).

One small problem remains, though. Whereas ����� � � � � � � � , it is not gener-
ally the case that � � � � � . Therefore we need to be careful only to consider each
possible structure exactly once. Eqs. (6)-(8) fail to do this where we combine two
� � � entries, as there in general is more than one possible way to split a structure
into two substructures, and where we add unpaired bases in the recursion for � � �
elements, as we can choose first to add an unpaired base to the left and then an
unpaired base to the right or vice versa. Recursions can be developed remedying

11

this problem, e.g. replacing Eqs. (7)-(8) with

��� � � �	��
 �
���������� ���������

�
if � � � � and � � � � cannot form a base pair

��� �
�������� �������

4'6 � � �	��
4�7 � � � � � � � � � � � �
 � ��� � ��� � �	� � �

��� �

��� � � ��! �� � ! � ��� 9
� 4 � � � � � �
 � �
 � ��� �
 � �
 �

�
� � � � � � � � �	� � �

otherwise
(9)

� � � � � �	��
 �
������� ������

�
if
� ���

��� �
����� ����
� � � � � � � �	� � �

��� �
��� ��! � � � � � � � �
 � �
 � ��� ��� �
 �	��
 ���� �
��� ��! � � � � � � �
 � �
 � ��� ��� �
 �	��
 � otherwise

(10)

� � � � � � �	��
 �
���� ���
�

if
� ����� � ��� �

� �! ��! � �
 � �
 � � ��� �
 �	��
 �
� � � � � � � � �	� � �
 otherwise

(11)

In this revised equation system � � � � represents parts of interiors of multibranched
loops contributing exactly one base pair to the loop, while � � � represents possible
interiors of multibranched loops, i.e. substructures that would contribute at least
two base pairs to the multibranched loop.

For any sequence of reasonable length, there will be so many competing struc-
tures, many differing in energy from the optimum structure only by a small amount,
that the probability of observing any structure, even the optimum one, is vanish-
ingly small. So if all the information we could obtain from Boltzmann distributions
was the probability of a particular structure, it would be of little use. However,��� � � �	��
 (modified to computation of partition function instead of minimum free
energy) holds the partition function for the subsequence � � � ��� � � under the constraint
that � � � � and � � � � form a base pair. Being a bit careful with how the sequence ends
are treated, we can set up similar recursions for computing ��� � � � �
 , i.e. the parti-
tion function for � with the subsequence � � � ��� � � extricated and under the constraint
that � � � � and � � � � form a base pair. Multiplying ��� � � �	��
 and ��� � � � �
 and dividing by
the full partition function, i.e. ��� � � �	��
 ��� � � � �
�� � � � � � �
 , we get the probability of
observing a structure containing the base pair � � � � � � � � � . This allows us to compute
the probability of observing all possible base pairs, still in time 1 2 �54 6

12

2 Stochastic Context Free Grammars

Grammars denote systems that allow us to grow entities from successive appli-
cations of replacement rules, also known as productions. The type of grammar
depends on the form the productions are allowed to take. Context free grammars
can be specified as quadruples

� � ��� ��� � 7
 where3 � is a finite set of vaiables.3 �
is a finite set of terminal symbols, also called the alphabet of the grammar.3 �
is a set of productions on the form � � � where � � �

and � � � ��� �0
��
,

i.e. the lefthand side if the production is a variable and the righthand side is
a finite (possibly empty) string of variables and terminal symbols.3 7 � �

is a distinguished start variable.

Starting from the string 7 we are now allowed to keep applying productions as long
as there are variables in our string. I.e. if our current string is ���
	 we can replace
it with ����	 if � �� � � . The strings we can generate from a grammar are all the
finite string containing no variables that can be obtained in this way.

Example 1 (Palindromes) Consider the grammar � with just the single variable7 , alphabet � � � , start symbol 7 and productions7 � � 7 ��� � 7 � ��� � (12)

where � denotes a choice between different productions for 7 and 4�� � � ��� � the empty
string (i.e. in quadruple notation � � � � 7 � � � � � � � � � 7 � � 7 � � 7 �

� 7 � � 7 �
� � � 7
). This grammar generates all the even length palindromic strings, i.e. strings
that read the same when read forward and backward, of � ’s and

�
’s. E.g. the string

�
� �
� can be derived by the sequence of replacements 7�� � 7 � � �

� 7 � � � �
� �
� ,

where each of the productions incidentally are used exactly once.

Example 2 (RNA secondary structure) The productions of a grammar consists
of a single element on the lefthand side, and a string of elements on the right hand
side. This structure is very similar to recursions. This observation allow us an easy
way to derive a grammar generating RNA sequences by mimicking their secondary
structure from Eqs. (6)-(8). Each recursive element gives rise to a variable in
the grammar, and each choice in the recursions gives rise to a production. As
it turns out, we also need a variable that can generate strings of unpaired bases

13

of arbitrary length. With these considerations, we get a grammar with variables� � � � ��� ��� � , alphabet
�
A
�
C
�
G
�
U � , productions

� � � � � � � � � (13)�
�

� � � � � � � � � � � � � � � ��� � (14)
�
�
� � � � � � � � ��� (15)
�
�� � � � �

(16)

where � denotes an unpaired base and
� � �

denotes a pair of bases forming a base
pair. The start variable is � . This grammar doesn’t quite reflect the structure of
Eqs. (6)-(8), as hairpin loops are not guaranteed to contain at least three unpaired
bases and the production reflecting internal loops and bulges,

�
�

� � � � �
, can

also generate a stacked pair. These minor details can be rectified by a slightly more
detailed handling of stretches of unpaired bases in the respective types of loops.

Given any context free grammar, algorithms exists for systematically convert-
ing it to a context free grammar in Chomsky normal form (CNF) that generates
exactly the same strings as the original grammar. In a grammar on CNF, all pro-
ductions are of one of the following three types:3 7 � � , i.e. the start variable is replaced by the empty string.3 � � � where �

� �
, i.e. a variable is replaced by a terminal symbol.3 � � ��� where � � � � �	� � 7 � , i.e. a variable is replaced with two

variables, neither of them being the start variable.

 ��

�

� �

Figure 7: Illustration of the third possibility in Eq. (17). We can replace � with
�� where � generates a prefix of the sequence and � generates the remaining
suffix of the sequence.

Given a grammar � � � � ��� ��� � 7
 on CNF we can determine whether it can
generate a sequence � by an algorithm that in its structure is very similar to the RNA

14

secondary structure prediction algorithms we saw in the previous section. The
central element is determining whether substrings of � can be generated starting
from single variables of � . If � � � � � �	��
 denotes whether we can generate � � � ��� � �
starting from the variable � � �

, then � obeys the following recursion:

� � � � � �	��
 �
������ �����

true if � �� � � and
� � � � �

true if
� � �

and � � � � � � � �
true if

� � �
 � � � � � ��
� ��� � � � � � �
 � �
�� � � � �
 �	��

false otherwise
(17)

Essentially the recursion says that we can generate a subsequence from a variable
either if we can generate it directly using one of the productions of

�
, or if we

can replace it with two other variables where the first can generate a prefix of the
subsequence and the second can generate the remaining suffix of the subsequence.
This last possibility is illustrated in Fig. 7

A stochastic context free grammar is a context free grammar with a function����� �
	
� � that assigns a probability to each production. We will usually re-

quire that the probabilities are normalised for each variable, i.e. that � � � � �

����� ��� ��� � � � �
 � �

. Hence
���

can be seen as defining the probability dis-
tribution from which we sample whenever we replace a variable. Given a stochastic
context free grammar � on CNF, it is not too difficult to see how we can modify
Eq. (17) to compute the maximum probability of any single derivation of a se-
quence � , or the total probability of generating � by � : simply replace the Boolean
values with the appropriate

���
values, replace the

�
with multiplication and either

take the maximum or sum over all possible choices, depending on whether it is the
maximum or total probability that needs to be determined.

Transforming a general stochastic context free grammar to a stochastic context
free grammar on CNF that generates sequences with the same probabilities is not
altogether trivial. For one thing, the way to assign probabilities in the new grammar
depends on whether the grammar should give the same maximum probability of
deriving a sequence, or the same total probability of deriving a sequence. In the
latter case, assigning the right probabilities is in general hard.

Given a grammar and data with either known or unknown derivations in the
grammar, we can estimate train the grammar, i.e. find probabilities of the produc-
tions making the data more likely to have been generated by the grammar. This
is described in more detail in [1, Chapter 9.6]. Essentially this allows us to infer
e.g. parameters from a set of known RNA molecules yielding a grammar where
the most likely parse of an RNA sequence is a good predictor of its secondary
structure.

15

References

[1] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Anal-
ysis: Probalistic Models of Proteins and Nucleic Acids. Cambridge University
Press, 1998.

[2] S. R. Eddy. How do rna folding algorithms work? Nature Biotechnology,
22:1457–1458, 2004.

[3] J. S. Mattick. RNA regulation: a new genetics? Nature Reviews Genetics,
5:316–323, 2004.

[4] R. Nussinov, G. Pieczenik, J. R. Griggs, and D. J. Kleitman. Algorithms for
loop matchings. SIAM Journal on Applied Mathematics, 35(1):68–82, July
1978.

[5] M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences
using thermodynamics and auxiliary information. Nucleic Acids Research,
9:133–148, 1981.

16

