Recombination, Phylogenies and Parsimony

Overview:

The History of a set of Sequences The Ancestral Recombination Graph (ARG) & the minimal ARG Dynamical programming algorithm for finding the minimal ARG Branch and Bound algorithm for minimal ARGs

Domain of Application:

Sequence Variation Fine scale mapping of disease genes Pathogen Evolution

Mutations, Duplications/Coalescents & Recombinations

"The minimal number of recombinations for a set of sequences"

The 1983 Kreitman Data & the infinite site assumption

(M. Kreitman 1983 Nature from Hartl & Clark 1999)

5' flanking sequence Exon 1		n 1	Intron I			Larval leader Exon 2 Intron II				Exon 3 Intron III Exon 4			n 4	3' untranslated region		3' flanking sequence	
- F	+	TIKI	K		5	1		41 35	191	K			3 3-3			i.	8.83
Consensus	CCG	CAATATO	GGG	Ġ	G	Ċ	T	AC	Ċ	CC	C GGAATCT	CCACTA	G	A A	AGC	Ċ	Ť
1-S		· · · · A7	Γ··	•		•	•		Т	T·.	A CA · TAAC		•			G • •	3 . 2
2-5	· · C			•					Т	Τ·	A CA · TAAC		e g s			·	223
3-5								T S.		5			A		· · T	É • 14	Α
4-S					·		22. 8	GT	3. E.				A	·27 · 20	ТА ·		9.9.9
5-S		AG···A·	TC			A	G	GT	1. P					C ·	1		92.58
6-S	· · C						G	827 68				$\cdot T \cdot T \cdot C$	A	C ·	· · · · · · · · · · · · · · · · · · ·	Т	n 7 3 24
7-F	· · C						G		5. 6	5		GTCTCC	2 •	C ·	CA		03 8.3
8-F	TGC	AG···A·	TC	G			G	1. · · · ·	J. 66	8 % .		GTCTCC	2 •	CG		9	- A 192
9-F	TGC	AG···A	TC	G			G	65. TE	S. 3			GTCTCC		CG		2	
10-F	TGC	AG···A·	TC	G		.0	G	5. 4 521	. d.	12		GTCTCC	2 •	CG	· · · ·	9 664	S
11-F	TGC	AGGGGA		•	Т	÷	G	1:: -	2.83	· A	$\cdot \cdot \cdot G \cdot \cdot \cdot$	GTCTCC	2 •	C ·		· 7	8-2-8

Infinite Site Assumption (Otha & Kimura, 1971)

Each position is at most hit by one mutation

Recoded Kreitman data

- i. (0,1) ancestor state known.
- ii. Multiple copies represented by 1 sequences
- iii. Non-informative sites could be removed

 0
 0
 0
 0
 0
 1
 1
 0
 0
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Compatibility

i. 3 & 4 can be placed on same tree without extra cost.

ii. 3 & 6 cannot.

Definition: Two columns are incompatible, if they are more expensive jointly, than separately on the cheapest tree.

Compatibility can be determined without reference to a specific tree!!

(k positions can have at most (k+1) types without recombination)
ex. Data set:

If you equate R_M with expected number of recombinations, this could be used as an estimator. Unfortunately, R_M is a gross underestimate of the real number of recombinations.

Define R: $R_{j,k}$ is optimal solution to restricted interval., then: $R_{j,k} = \max\{R_{j,i} + B_{i,k} : i = j, j + 1, .., k - 1\}$

- 11 sequences of alcohol dehydrogenase gene in *Drosophila melanogaster*. Can be reduced to 9 sequences (3 of 11 are identical).
- 3200 bp long, 43 segregating sites.

Methods	# of rec events obtained
Hudson & Kaplan (1985)	5
Myers & Griffiths (2002)	6
Song & Hein (2002). Set theory based approach.	7
Song & Hein (2003). Current program using rooted trees.	7

We have checked that it is possible to construct an ancestral recombination graph using only **7** recombination events.

Recombination Parsimony

Hein, 1990,93 & Song & Hein, 2002+

 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
 1
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Metrics on Trees based on subtree transfers.

Pretending the **easy** problem (unrooted) is the **real** problem (age ordered), causes violation of the triangle inequality:

Tree Combinatorics and Neighborhoods

Observe that the size of the unit-neighbourhood of a tree does not grow nearly as fast as the number of trees

 $\delta(T) :=$ number of trees one SPR operation away from a given tree T.

Allen & Steel (2001)

Song (2003+)

The Good News: Quality of the estimated local tree

The Bad News: Actual, potentially detectable and detected recombinations

Branch and Bound Algorithm

- 1. The number of ancestral sequences in the ACs.
- 2. Number of ancestral sequences in the ACs for neighbor pairs
- AC compatible with the minimal ARG. 3.
- AC compatible with close-to-minimal ARG. 4.

Recombination, Phylogenies and Parsimony

Overview:

The History of a set of Sequences The Ancestral Recombination Graph (ARG) & the minimal ARG Dynamical programming algorithm for finding the minimal ARG Branch and Bound algorithm for minimal ARGs

Domain of Application:

Sequence Variation Fine scale mapping of disease genes Pathogen Evolution

References

•Allen, B. and Steel, M., Subtree transfer operations and their induced metrics on evolutionary trees, *Annals of Combinatorics* 5, 1-13 (2001) •Baroni, M., Grunewald, S., Moulton, V., and Semple, C. Bounding the number of hybridisation events for a consistent evolutionary history. Journal of Mathematical Biology 51 (2005), 171-182

•Bordewich, M. and Semple, C. On the computational complexity of the rooted subtree prune and regraft distance. Annals of Combintorics 8 (2004), 409-423

•Griffiths, R.C. (1981). Neutral two-locus multiple allele models with recombination. *Theor. Popul. Biol.* 19, 169-186.

•J.J.Hein: Reconstructing the history of sequences subject to Gene Conversion and Recombination. Mathematical Biosciences. (1990) 98.185-200.

•J.J.Hein: A Heuristic Method to Reconstruct the History of Sequences Subject to Recombination. J.Mol.Evol. 20.402-411. 1993
•Hein,J.J., T.Jiang, L.Wang & K.Zhang (1996): "On the complexity of comparing evolutionary trees" Discrete Applied Mathematics 71.153-169.

•Hein, J., Schierup, M. & Wiuf, C. (2004) Gene Genealogies, Variation and Evolution, Oxford University Press

•Hudson, 1993 Properties of a neutral allele model with intragenic recombination. Theor Popul Biol. 1983 23(2):183-2

•Kreitman, M. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster.Nature. 1983 304(5925):412-7.

•Lyngsø, R.B., Song, Y.S. & Hein, J. (2005) <u>Minimum Recombination Histories by Branch and Bound</u>. *Lecture Notes in Bioinformatics: Proceedings of* <u>WABI 2005</u> 3692: 239–250.

•Myers, S. R. and Griffiths, R. C. (2003). Bounds on the minimum number of recombination events in a sample history. *Genetics* 163, 375-394.

•Song, Y.S. (2003) On the combinatorics of rooted binary phylogenetic trees. Annals of Combinatorics, 7:365–379

•Song, Y.S., Lyngsø, R.B. & Hein, J. (2005) Counting Ancestral States in Population Genetics. Submitted.

•Song, Y.S. & Hein, J. (2005) Constructing Minimal Ancestral Recombination Graphs. J. Comp. Biol., 12:147–169

•Song, Y.S. & Hein, J. (2004) On the minimum number of recombination events in the evolutionary history of DNA sequences. J. Math. Biol., 48:160–186.

•Song, Y.S. & Hein, J. (2003) Parsimonious reconstruction of sequence evolution and haplotype blocks: finding the minimum number of recombination events, *Lecture Notes in Bioinformatics, Proceedings of WABI'03*, 2812:287–302.

•<u>Song YS, Wu Y, Gusfield D.</u> Efficient computation of close lower and upper bounds on the minimum number of recombinations in biological sequence evolution.Bioinformatics. 2005 Jun 1;21 Suppl 1:i413-i422.

•Wiuf, C. Inference on recombination and block structure using unphased data.Genetics. 2004 Jan;166(1):537-45.