
Recursions for statistical multiple alignment
Jotun Hein*, Jens Ledet Jensen†‡, and Christian N. S. Pedersen§

*Department of Statistics, Oxford University, South Parks Road, Oxford OX1 3SY, United Kingdom; and †Department of Theoretical Statistics, Institute of
Mathematics, and §Department of Computer Science, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C, Denmark

Communicated by Joseph Felsenstein, University of Washington, Seattle, WA, September 29, 2003 (received for review April 28, 2003)

Algorithms are presented that allow the calculation of the probability
of a set of sequences related by a binary tree that have evolved
according to the Thorne–Kishino–Felsenstein model for a fixed set of
parameters. The algorithms are based on a Markov chain generating
sequences and their alignment at nodes in a tree. Depending on
whether the complete realization of this Markov chain is decomposed
into the first transition and the rest of the realization or the last
transition and the first part of the realization, two kinds of recursions
are obtained that are computationally similar but probabilistically
different. The running time of the algorithms is O(�i�1

d Li), where Li is
the length of the ith observed sequences and d is the number of
sequences. An alternative recursion is also formulated that uses only
a Markov chain involving the inner nodes of a tree.

backward recursion � emission probability � forward recursion � hidden
Markov chain � states

Proteins and DNA sequences evolve predominantly by substitu-
tions, insertions, and deletions of single letters or strings of these

elements, where a letter is either a nucleotide or an amino acid.
During the last two decades, the analysis of the substitution process
has improved considerably and has been based increasingly on
stochastic models. The process of insertions and deletions has not
received the same attention and is presently being analyzed by
optimization techniques, for instance maximizing a similarity score
as first used by Needleman and Wunsch (1).

Thorne, Kishino, and Felsenstein (2) proposed a well defined
time-reversible Markov model for insertions and deletions [denoted
more briefly as the Thorne, Kishiro, and Felsenstein (TKF) model]
that allowed a proper statistical analysis for two sequences. Such an
analysis can be used to provide maximum likelihood sequence
alignments for pairs of sequences or to estimate the evolutionary
distance between two sequences. Recently, an algorithm was pre-
sented by Steel and Hein (3) that allows statistical alignment of
sequences related by a star-shaped tree, a tree with one inner node.
Hein (4) formulated an algorithm that calculates the probability
of observing a set of sequences related by a given tree in time
O((�i Li)2), where Li is the length of the ith sequence. This is also
the time required by Steel and Hein’s algorithm (3). Holmes and
Bruno (5) used the algorithm by Hein (4) to design a Gibbs sampler
that has the potential of analyzing a higher number of sequences
than the exact algorithms. The present work accelerates, extends,
and formalizes the algorithm in ref. 4. In particular, the time
requirement for the algorithm presented here is reduced to
O(�i Li).

The TKF model is formulated in terms of links and associated
letters. To each link is associated a letter that undergoes changes,
independently of other letters, according to a reversible substitution
process (identical to the site-substitution process, where insertions
and deletions are not allowed). A link and its associated letter are
deleted after an exponentially distributed waiting time with mean
1��. While a link is present, it gives rise to new links at the rate �.
A new link is placed immediately to the right of the link from which
it originated, and the associated letter is chosen from the stationary
distribution of the substitution process. At the left of the sequence
is a so-called immortal link that never dies and gives rise to new links
at the rate �, preventing the process from becoming extinct.

For the TKF model on a tree, the defining parameters are the
death rate � and the birth rate �, as described above, together with

a time parameter � for each edge of the tree. The time parameter
� defines how long the process runs along a given edge. When the
process splits into two subprocesses at an inner node, the two
subprocesses are independent.

The main probabilistic aspects of the TKF model are given by
Eqs. 2–4 and 8 below. The structure of probabilities 3 and 4 allows
us to write the joint probability of observed sequences at the leaves
of a tree together with the alignment and the unobserved sequences
at inner nodes of the tree as a Markov chain along the sequences
observed, until the process reaches an absorbing state. The process
of observed sequences therefore becomes a hidden Markov chain.
Having obtained this identification, we can use traditional methods
for obtaining a recursion for the calculation of the probability of the
observed sequences. In particular, we state two recursions, one
corresponding to splitting the process according to the first state of
the Markov chain, and the other corresponding to splitting the
process according to the last state of the Markov chain. In Approach
1, a state of the hidden Markov chain describes an element in the
alignment for the whole tree, which gives a recursion with time
complexity O(�i Li) when implemented using dynamic program-
ming. In Approach 2, we take a state of the hidden Markov chain
to be an element in the alignment of the tree consisting of
inner nodes only. This gives a recursion with time complexity
O((�i Li)2); however, this can be reduced to O(�i Li), and actually
we obtain a recursion with slightly fewer terms than that considered
in Approach 1. We start in Preliminaries by defining the states of our
hidden Markov chain and finding the transition probabilities of the
Markov chain. This section introduces necessary notation to allow
for a precise mathematical formulation.

Preliminaries
Notation. We consider a tree with d� inner nodes and d leaves. The
inner nodes are numbered from 1 to d�, with 1 being the root and
where the ancestor a(i) of i is to be found in {1, 2, . . . , i � 1}. The
leaves are numbered from d� � 1 to d� � d, with the descendants
of inner node i being numbered before the descendants of inner
node j for j � i. For a tree with two inner nodes and four leaves, the
numbering can be seen in Fig. 1.

The evolutionary time distance from the ancestor a(z) of a node
z to the node z is �(z). The observed sequences are Sj for j � d� �
1, . . . , d� � d, where Sj is the observed sequence at the leaf j. The
length of Sj is Lj, and the ath entry of Sj is denoted Sj(a). We write
Sj(a : b) for entries from a to b with a and b included. We let S
denote the collection of sequences, and for two d-dimensional
vectors u, v indexed by j � d� � 1, . . . , d� � d and with integer entries
S(u : v) denote the collection of subsequences Sj(uj : vj). To com-
pare two d-dimensional vectors u, v, the notation

u � v if uj � vj @j, and u �
w

v if uj � vj for some j

is used, with similar definitions for other relations. To shorten the
formulae, we write for two vectors, K, l, with l � 0, S[K, l] � S((K �
l � 1) : K). Finally, L is the vector with entries Lj.

Abbreviation: TKF model, Thorne–Kishino–Felsenstein model.

‡To whom correspondence should be addressed. E-mail: jlj@imf.au.dk.

© 2003 by The National Academy of Sciences of the USA

14960–14965 � PNAS � December 9, 2003 � vol. 100 � no. 25 www.pnas.org�cgi�doi�10.1073�pnas.2036252100

The notation 1(E) is used for the function that is 1 when the
expression E is true and 0 otherwise. We use the symbol # for a link,
and when following the fate of a link along the tree, we write # at
node i if the link is present, and we write � at node i if the link died
along the edge from a(i) to i.

Markov Structure of the TKF Model for Two Sequences. In this
subsection, the TKF model from time zero to time � is considered.
We rewrite the probabilities for the deletion of a link and for the
number of new links that appear before time � in such a way that
we recognize a Markov structure along the sequences with states

�#
#� , � #

� � , � �
� , [1]

corresponding to survival of the link, deletion of the link, and
insertion of a new link.

Let V � 1 if the link survives, and let V � 0 if the link dies.
Because the death rate is �, we have

P�V � 1� � exp(���) and P�V � 0� � 1 � exp(���).

[2]

Let N be the number of new links after time �. From Thorne,
Kishino, and Felsenstein (2), we have

P�N � k�V � 1� � �1 � �������k, k � 0, [3]

P�N � k�V � 0� � �1 � 	 k � 0
	�1 � �������k�1 k � 1, [4]

where

� �
1 � exp��� � ����

� � �exp��� � ����
and 	 � 1 �

��

1 � exp� � ���
.

From these formulae, we find

P�N � k�V � 1� � ����k, k � 0,

P�N � k�V � 0� � 	����k�1, k � 1,

and this implies

P�N � k
 1�N � k, V � 1� � ��, k � 0, [5]

P�N � k
 1�N � k, V � 0� � �	 k � 0
��, k � 1 . [6]

The important point for establishing a Markov structure along the
sequences is that Eqs. 5 and 6 are equal and independent of k for
k � 1. The independence of k gives the Markov structure for the
number of new links, that is, a new link is added with probability ��,
and we stop adding new links with probability 1 � ��. We can thus
generate V and N by a Markov chain with transition probabilities

�#
#� � #

� � � �
� stop

start e��� 1 � e��� 0 0

�#
#� 0 0 �� 1 � ��

�#
�� 0 0 	 1 � 	

��
#� 0 0 �� 1 � ��

. [7]

To interpret the whole alignment as a Markov chain, we note that
the number K of links at stationarity has the following distribution.
(see Thorne, Kishino, and Felsenstein, ref. 2),

P�K � k� � �k�1 � ��, k � 0, � �
�

�
. [8]

Again this corresponds to a Markov chain where we add a link with
probability �, and we stop adding more links with probability 1 �
�. Having reached the stop state in system 7, we thus add a new link
at time zero with probability � and start a new round of the Markov
chain in Eq. 7. We can combine this into a Markov chain on the
states in Eq. 1 together with an End state as follows:

�#
#� � #

� � � �
� End

�#
#� (1 � ��)�e��� (1 � ��)�(1 � e���) �� (1 � ��)(1 � �)

�#
�� (1 �)�e��� (1 �)�(1 � e���) 	 (1 �)(1 � �)

��
#� (1 � ��)�e��� (1 � ��)�(1 � e���) �� (1 � ��)(1 � �)

.

[9]

As an example, the (#
#), (#

#) entry corresponds to going to the stop
in Eq. 7 from (#

#), adding a link at time zero with probability �, and
going to (#

#) from start in Eq. 7.
When considering the TKF model on a tree, we will need the

terms in Eq. 7 for each edge of the tree. Because we number the
edges by the node at the end of the edge, we introduce for each node
j � 1 the terms

b�#, #; j� � ���j�, b�#, �; j� � 1 � b�#, #; j�,

b� � , � ; j� �
���j�

1 � exp�����j��
,

b� � , #; j� � 1 � b� � , � ; j� ,

s�#; j� � exp�����j��, s� � ; j� � 1 � s�#; j� ,

where �(j) � {1 � exp((� � �)�(j))}�{� � � exp((� � �)�(j))}.

States. Because the probability of an alignment on the tree is the
product of the probabilities of the pairwise alignments along the
edges, we can use the hidden Markov structure presented in Markov
Structure of the TKF Model for Two Sequences for pairwise align-
ment to obtain the hidden Markov structure for alignment on the
tree. To obtain this, we need to choose states for the hidden Markov
model on the tree that allow us to identify the states of the hidden
Markov model for the pairwise alignments along the edges.

When translating a set of pairwise alignments between the nodes
(a(j), j), 2 � j � (d � d�) into a sequence of states for the multiple
alignment, we will use the convention that if a birth at node i and
a birth at node j � i both are the result of a birth at node z 	 i, then
the birth at node j will appear before the birth at node i in the
sequence.

Fig. 1. A tree with four leaves, where the link a root 1 survives at inner node 2
and produces a new link at leaf 2.

Hein et al. PNAS � December 9, 2003 � vol. 100 � no. 25 � 14961

EV
O

LU
TI

O
N

A state represents two things, a new event in part of the tree and
a ‘‘history’’ in the complementary part of the tree. The two together
give information on which new events are possible in the next state.
A state consists of some subsets of nodes together with a value (z)
� {#, �} for the nodes z in these subsets. The new event attached
to a state is a birth of a link at some node t() and, if t() is an inner
node, the survival ((z) � #) or nonsurvival ((z) � �) along the
tree down from t(). We let T(), respectively L(), be the set of
inner nodes z � t(), respectively leaves, where we have survival or
where the link died on the edge leading to the node. The history
corresponds to a birth at node 1 and the survival ((z) � #) or
nonsurvival ((z) � �) along inner nodes z 	 t(), with the property
that the link survived at the ancestor a(t()). We let H() be the set
of inner nodes z 	 t() where the link survived or died on the edge
leading to the node. Furthermore, if t() is a leaf, the history
contains an inner node h() 	 a(t()), h() � H() with (h()) �
and a set HL() of leaves z � t() being descendant of h() and
for which the link at h() survived or died on the edge leading to
the leaf. For a state where t() is an inner node, the next state can
have a birth of a new link in any of the nodes in H() � {t()} �
T() � L(), and for a state with t() a leaf, a new link can be born
at the nodes in H() � HL() � {t()}. Note that the history is
defined in such a way as to respect our convention of the ordering
of the births.

To exemplify the definitions above, let us consider the tree in Fig.
1 with two inner nodes. We represent the states as six-dimensional
columns with values # or � in {t()} � T() � L(), with values (#)
or (�) in H() � HL(), and with no value in the remaining nodes.
All 45 possible states are listed in Table 1. Column 1 of Table 1 gives
the 16 states corresponding to a birth at node 1 that survived at
inner node 2. That the birth is at node 1 leaves no room for a history.
Column 4 gives the two states corresponding to a birth at leaf 4 with
H() � {1, 2}, h() � 1, and HL() � {3}. There are no values at
leaves 5 and 6 due to our convention of the ordering of the births.
Column 9 gives the four states corresponding to a birth at inner
node 2. Here there are no values at leaves 3 and 4 due to our
convention. In Fig. 1, the translation between the set of pairwise
alignments and the states of the multiple alignment is illustrated.
Fig. 1 displays the situation where there is one link only at node 1.
This link survives at inner node 2 and produces a new link at node
2. The original link does not survive at leaves 4–6, but produces a
new link at leaf 5. The original link survives at leaf 3 and produces
two new links at this leaf. The new link at inner node 2 survives in
both leaves 5 and 6 and produces a new link at leaf 5. The set of
states in the multiple alignment is shown in Fig. 1 Right. The first
state is the birth of the link at node 1 together with the survival and
nonsurvival of this link. State 2 is the birth at node 5 coming from
the original link at node 1. States 3 and 4 are the two births at node
3. State 5 is the birth of a new link at node 2 together with the
survival at nodes 5 and 6. Note that there are no values in this state
at nodes 3 and 4 due to the convention that a birth at inner node
2 implies that all births at nodes 3 and 4 have been handled. Finally,

the last state is the birth at node 5 originating from the new link at
node 2.

As mentioned in the beginning of this subsection, we get a
Markov chain because we can identify all the pairwise alignments
along the edges from the states we use. To illustrate this, let us write
down the probability of the alignments in Fig. 1 as follows:

s�#; 2�
s�#; 3�
s��; 4�
s��; 5�
s��; 6�

b��, #; 5�
b��, � ; 6�

b�#, #; 3�
b��, � ;4�
b�#, ��

b�#, #; 3�
b�#, #; 2�
b�#, �; 3�

s�#, 5�
s�#, 6�

b�#, #; 5�
b�#, �; 6�

b�#, �; 2�

b�#, �; 5�
.

[10]

Here each row represents the probability of the alignment along
one of the edges. The terms in a row have been spread out to align
terms vertically, as explained below. The terms s(#; j) and s(�; j)
are the two entries in the first row of Eq. 7 corresponding to survival
and nonsurvival of a link along the edge leading to node j, b(#, #;
j), b(#, �; j) are the two entries from the second and fourth row of
Eq. 7, and b(�, #; j) and b(�, �; j) are the two entries from the third
row of Eq. 7. The first row of Eq. 10 gives the probability of the
alignment between nodes 1 and 2, which is given through the
survival of the link together with the probability of a birth of a new
link and the probability of no further links. The product of the terms
in each column in Eq. 10 represents a transition probability in the
chain with 45 states, except for the first column that has to be
combined with the probability related to leaving a previous state,
and the last column that has to be combined with the probability
related to the next link at root 1. As can be seen, each column is a
function of the corresponding consecutive set of states in Fig. 1.

When stating the transition probabilities, it is convenient to have
the following notation. For a state , we let � � �(r,) be the state
we enter when having a birth at the leaf r. If t() is an inner node
r � L(), H(�) � H() � {t()} � T(), h(�) � t(), HL(�) � {z �
L()�z 	 r}, and �(z) � (z) for nodes in these sets. If t() is a leaf
r � HL() � {t()}, H(�) � H(), h(�) � h(), HL(�) � {z �
HL()�z 	 r}, and �(z) � (z) for nodes in these sets. The set of all
states is denoted
, and the subset of states with t() an inner node
is denoted
1.

Transition Probabilities. A transition probability p(x, y) of going from
state x to state y can be written formally as p(x, y) � stop � new �
survival, where stop gives the probability of no new links at certain
nodes, new gives the probability of a new link at a particular node,
and survival gives the probability of the fate of the new link. We thus
find for a state �
 1

p�, ��r, �� � �
j�L��, j�r

b��j�, �, j�b��r�, #, r�. [11]

For a state with t() a leaf, we get with s � t()

p�, ��r, �� � b�#, �, s�1�s�r� �
j�HL��, r	j	s

b��j�, �, j�

� b��r�, #, r�1�s�r� b�#, #, r�1�s�r�. [12]

For two states , � �
1, a transition from to � is possible only
if � corresponds to a new link at one of the inner nodes from which
 allows the introduction of new links. This can be formulated
formally as

t��� � H�� � �t��� � T��, ��j� � �j�, j � H���,

H��� � � j � H�� � �t��� � T���j � t����.

In this case, the transition probability is

Table 1. States of the Markov chain for the tree in Fig. 1

Node

Column number

1 2 3 4 5 6 7 8 9 10 11

1 # (#) (#) (#) (#) # (#) (#) (#) (#) (#)
2 # (#) (#) (#) (#) - (-) (-) # (#) (#)

3 a3 (a3) (a3) (a3) # a3 (a3) #
4 a4 (a4) (a4) # a4 #
5 a5 (a5) # a5 (a5) #
6 a6 # a6 #

16 8 4 2 1 4 2 1 4 2 1

Any of the variables ai can be either # or �. The last row gives the number
of states of the indicated form.

14962 � www.pnas.org�cgi�doi�10.1073�pnas.2036252100 Hein et al.

p�, �� � �
j�L��

b��j�, �, j� �
j�T���H��, j�t���

b��j�, �, j�

 b��t����, #; t����1�t����1� �����1�t����1�

 �
j�T����L���

s���j�, j�. [13]

When t() is a leaf and t(�) is an inner node, the transition from
to � requires

t��� � H��, ��j� � �j�, j � H���,

H��� � � j � H���j � t����,

and the transition probability p(, �) is

b�#, �, t��� �
j�HL��

b��j�, �, j� �
j�H��, j�t���

b��j�, �, j�

� b��t����, #; t����1�t����1������1�t����1� �
j�T����L���

s���j�, j�.

[14]

For a transition to the end state, only the first line of Eqs. 13 and
14 should be used, multiplied by (1 � ���), and with t(�) � 1.
Finally, the transition probabilities from the immortal state I can be
calculated as if I corresponds to the state 0 with a new link at node
1 that survives in all of the tree.

Algorithms
In this section, we present two algorithms for computing the
probability of the observed sequences Sj, for j � d� � 1, . . . , d� � d,
being related by the given evolutionary tree. Both algorithms are
based on the hidden Markov chain described in the previous section
but differ in their choice of states. In the first algorithm, the states
describe the alignment for both inner nodes and leaves. The
running time is O(�j�d��1

d��d Lj) � O(Lmax
d), where Lmax is the

maximum length of the observed sequences. In the second
algorithm, the states describe the alignment for inner nodes only.
The running time is now O(Lmax

2d), but the algorithm can be
rewritten to obtain an O(Lmax

d) running time as in the first
approach. The principle for deriving the algorithms is classical
and very well known: we consider what happens in either the first
or last step of the Markov chain.

Approach 1: Inner Nodes and Leaves. Notation. We consider a Markov
process x0, x1, . . . , xN that starts in the initial state I and stops at a
random time N � 1 in the end state E. Thus x0 � I, xi �
, for i �
1, . . . , N, and xN�1 � E. The transition probability going from x to
y is p(x, y) as described in Transition Probabilities. A state �
1,
corresponding to the birth of a link at an inner node, emits a letter
in those observed sequences Sz for which z � L1() � {u �
L()�(u) � #}. A state �
1 emits a letter in the sequence St()
only. For any state x �
, we let

l�x� � �ld��1�x�, ld��2�x�, . . . , ld��d�x�� [15]

be a vector indexed by the numbering of the observed sequences
and consisting of ones in those coordinates for which x emits a letter
and zeroes in the other coordinates:

lj�x� � �1 if x emits a letter in sequence Sj

0 otherwise. [16]

For the state xi in the hidden Markov chain, we use the shorthand
notation li for the vector l(xi). The lengths Li of the sequences
emitted by the first i states x1, . . . , xi can then be written as Li �
�r�1

i lr. With this notation, the state xi emits the letters S(Li� 1 � 1:
Li�1 � li) � S[Li, li], where Sj(Lj

i�1 � 1 : Lj
i�1 � lj

i) is the empty set

if lj
i � 0. The probability that a state x emits the vector of letters s

(with the possibility that some of the coordinates of s are equal to
the empty set) is pe(s�x).
Backward recursion. For an arbitrary vector K � 0 and state x0 �
,
we define F(K�x0) � P(S(K � 1 : L)�x0), that is, the probability that
the sequences S((K � 1) : L) are produced by a set of states x1, x2,
. . . given that the Markov chain starts in the state x0. Clearly, P(S(1
: L)�x0 � I) � F(0�I). Summing over the states of the Markov chain
F(K�x0) is given by

�
n�0

� �
x1,. . .,xn�
:K�Ln�L

p�xn, E��S�K
 Li, li��xi�.
[17]

When K 	w L and K � L, the recursion for F(K�x0), with L̃i �
�r�2

n l(xi), is

F�K�x0� � �
n�1

� �
x1�

p�x0, x1�pe�S�K
 l1, l1��x1�

 �
x2,· · ·,xn�
:

�K�l�x1���L̃n�L

p�xn, E�

� �
i�1

n

p�xi�1, xi�pe�S�K
 l1
 L̃i, li��xi�

� �
z�

p�x0, z�pe�S�K
 l�z�, l�z���z�F�K
 l�z��z�. [18]

When K � L, the recursion is

F�L�x0� � p�x0, E�
 �
z�
:l�z��0

p�x0, z�F�L�z�. [19]

Recursion 18 states that the probability of the sequences S((K �
1) : L) produced by states x1, x2, . . ., given that we start in state x0,
is a sum over the possible states of x1. Each term in the sum is the
product of the transition probability of going from x0 to x1, the
emission probability for those letters emitted by x1, and the prob-
ability of the remaining sequences S((K � l(x1) � 1) : L) given that
we start in x1. If in recursion 18 we replace the summation by the
max operation, we obtain a recursion for finding the alignment with
the highest probability. This is known as the Viterbi algorithm in the
hidden Markov model literature.

Hein, Jensen, and Pedersen (6) also derive a forward recursion
by separating out the contribution from xn instead of x0. Compu-
tationally, there is no difference between the forward and backward
recursions. However, the latter has an interpretation as a proba-
bility, thereby making it easier to understand.
Emission probabilities. For a full description of the TKF model, we
need a model for the substitution process. We let f b�a

� be the
probability for the substitution of a letter a by b over a time period
�. The stationary probabilities for this transition matrix are denoted
by �.

When a state corresponds to a birth of a new link in one of the
leaves only, that is, t() is a leaf, the emitted vector s has a letter at
the node t() only, and the emission probability is simply the
stationary probability �(s(t())). For a state �
1 corresponding
to a birth of a new link at inner node t(), the emitted vector s has
letters at those nodes z � L() for which (z) � #. With a(j), the
ancestor of a node j, and with

T1�� � �z � T����z� � #�, L1�� � �z � L����z� � #�,

[20]

we can write the emission probability as

Hein et al. PNAS � December 9, 2003 � vol. 100 � no. 25 � 14963

EV
O

LU
TI

O
N

pe�s�� � �
�t��

���t��� �
�z,z�T1��

�
z�T1��

f�z��a�z�

��z� �
z�L1��

fsz��a�z�

��z� . [21]

This formula simply says that the probability of the emitted letters
sz, z � L1() is the sum of the joint probability of the ancestral and
emitted letters over the possible values of the ancestral letters.
Implementation and analysis. Let us briefly discuss how to implement
the recursion given by Eqs. 18 and 19. There is a complication, in
that there will always be terms on the right-hand side of the
equations for which K � l(z) � K or l(z) � 0. The states �
1 for
which l() � 0 are characterized by having (z) � � for all z � L(),
that is, the new link does not survive at any of the leaves. Let us
denote this class of states by C. Imagine that for some K, the term
F(K̃�x) has been calculated for all K̃ �w K, K̃ � K and all x �
. For
each x � C, recursion 18 gives

F�K�x� � �
z�C

p�x, z�F�K�z�
 ��x�, [22]

with �(x) known. Let Q be the matrix with entries p(z1, z2), z1, z2 �
C. Then, because the entries are nonnegative and the sum along a
row is 	 1, the matrix IC � Q, where IC is the identity matrix, is
invertible, and the set of linear equations 22 has a unique solution.
Having solved this system of equations, we can next calculate F(K�x)
for x � C directly from Eq. 18, or from Eq. 19 when K � L. Also
in the case of the Viterbi algorithm for finding the alignment with
the highest probability, we must, for a given K in the recursion, first
solve for the states in C. The boundary conditions for the recursion
are F(K�x) � 0 when K �w L.

To run the algorithm, we need to calculate F(K�x) for any K � L
and for any x �
. The number of steps needed is therefore of the
order N �i�1

d Li, where N is the number of elements in the set
.
For illustration purposes, we have implemented recursion 18 as

well as the Viterbi algorithm and an algorithm for simulating
alignments conditional on the observed sequences for the case of
four observed sequences. No attempt to optimize the program has
been made, and the program therefore runs only on short se-
quences. As an example, we use a set of simulated sequences kindly
supplied by Yun Song (Oxford University, Oxford). The parameters
used in the simulation are � � 0.05, � � 0.052, and the Jukes–
Cantor model for substitution where the rate of leaving a state is 0.3.
All edges of the tree have lengths 1. We use the same parameters
when finding the maximal alignment. The true alignment that
generated the sequences and the maximal alignment can be seen in
Table 2. We have also included an alignment obtained from the
CLUSTAL W program by Higgins, Thompson, and Gibson (7). The
total probability of the observed sequences is 7.62 10�41, as
obtained from recursion 18, and the probability of the maximal
alignment is 2.04 10�43, contributing only 0.27% to the total
probability.

The maximal alignment and the CLUSTAL W alignment agree on
aligning GAC in the middle. We have run 500 simulations of the
conditional alignment given the observed sequences, and in 78% of
the cases, we find that GAC is aligned. CLUSTAL W aligns the last
C of the four sequences, and this is not seen in the maximal
alignment. In the 500 simulations from the conditional alignments,
we never encountered a case where the last C was aligned.

Generally, the possibility of simulating alignments from the con-
ditional distribution given the observed sequences allows us to make
statements on the reliability of features seen in an alignment.

Approach 2: Inner Nodes Only. Notation. In Approach 1, a state
described a column of the alignment for all of the inner nodes and
leaves, and a state emitted at most one letter in each of the observed
sequences. In this section, we will instead let the states describe the
inner nodes only, which in turn necessitates the emission of arbi-
trary long subsequences among the observed sequences. This
implies an extra sum in the recursion, thus seemingly making the
recursion more complicated. However, we can rewrite the recur-
sion, ending up with a recursion of the same complexity as before
and with fewer terms than in Approach 1.

More precisely, a state is a birth of a new link at an inner node
and is characterized by the node t() at which the link is born; the
set T() of inner nodes describes the fate of the link, and the set H()
gives the history of the new link. As before, L() is the set of leaves
descending from t() or from the nodes in T1() (see Eq. 20). As in
Eq. 15, l(x) denotes the lengths of the emitted subsequences.
Contrary to Eq. 16, l(x) is no longer determined by the state x; the
state determines only at which nodes it is possible to emit letters:

lj�x� � � � 0

0

j � L�x�

otherwise.
[23]

We again use li � l(xi), furthermore take l0 � 0 to be the length
of the subsequence emitted by the immortal link, and define Li �
�r�0

i lr to be the lengths of the sequences emitted by the first i states.
The emission probability qe(K, l�x) is now both the probability of
emitting subsequences of length lj, j � d� � 1, . . . , d� � d and the
probability that the emitted letters are Sj((Kj � lj � 1) : Kj). To state
this probability, we define

L1�, l� � �z � L���lz � 0�.

In the formula below, u denotes the subset of the leaves L1(, l) at
which the link survives from the ancestral inner nodes. To shorten
the formula, we define q(#; z) � s(�; z)b(�, #; z), q(�; z) � s(�;
z)b(�, �; z), Az

m,l � s(#; z)�(Sz(mz � 2 : mz � lz)), and Bz
m,l � s(�;

z)b(�, #; z)�(Sz(mz � 1 : mz � lz)), where �(Sj(a : b)) �
�i�a

b �(Sj(i)). Then the probability that the state emits the
subsequences S(m � 1 : m � l) is qe(m � l, l�), given by

�
z�L��\L1�,l�

q��; z� �
z�L1�,l�

b�#, #; z�lz�1b�#, � ; z�

� �
u�L1�,l�

f�m, u, ��
z�u

Az
m,l �

z�L1�,l�\u

Bz
m,l. [24]

The function f(m, u,) is the emission probability for the first letter
at those leaves where we have survival of the link and is given by
pe(s�) from Eq. 21, with L1() replaced by u and sz replaced by Sz(mz

� 1). Furthermore,

qe�l , l�I� � �
d�	z�d��d

b�#, #; z�lzb�#, �; z���Sz�1 : lz��.

Backward recursion. The backward recursion is obtained by defining

F�K�x0� � �
n�0

� �
x1,. . .,xn�

�
l0,l1,. . .,ln:K�Ln�L

qe�K
 l0, l0�x0�

� ��
i�1

n

p�xi�1, xi�qe�K
 Li, li�xi��p�xn, E�, [25]

Table 2. Example of alignment

True Maximal CLUSTAL W

TTATAT-G-ACTTG-CC-GG T-TATA-TGACTTGCCGG TTATAT--GAC-TTGC-CGG
CT-TCG-G-ACGTG-GC-TC C-T-TC-GGACGTGGCTC CT-T-C-GGACGTGGCTC--
CCAAAC-GGACGTTAC--GC CCAAAC-GGACGTTACGC CCAAAC-GGACGTTACGC
-AAAACAG-GACTTAT-A-C A-AAACAGGAC-TTATAC -AAAACAGGAC-TTATAC--

Four sequences and their true alignment that generated the sequences, the
maximal alignment obtained from the Viterbi algorithm, and the alignment
obtained from the CLUSTAL W program (www.ebi.ac.uk�clustalw).

14964 � www.pnas.org�cgi�doi�10.1073�pnas.2036252100 Hein et al.

which equals P(S(K � 1 : L)�x0). Separating out the sum over the
first state x1, we find

F�K�x0� � qe�L, L � K�x0�p�x0, E�

 �
�

�
l��

p�x0, �qe�K
 l��, l����F�K
 l����

[26]

for K 	w L and K � L, and when K � L, the recursion is

F�L�x0� � p�x0, E�
 �
�

p�x0, �P�l�� � 0��F�L��. [27]

A forward recursion can be derived in the same way. The details are
described by Hein, Jensen, and Pedersen (6).
Reduction of complexity. For the recursions described in the previous
subsection, we need to calculate F(K�x) for any value of K � L. This
takes of the order O(Lmax

d) steps. Each step here, however, involves
the sum over l (see Eq. 26) and therefore requires of the order
O(Lmax

d) steps. The time complexity of the algorithms is thus of the
order O(Lmax

2d). The algorithms are therefore inferior to those given
in Approach 1. It turns out, though, that we can rewrite the
algorithms in such a way that the resulting time complexity becomes
O(Lmax

d) and where the constant factor hidden by the O notation is
slightly smaller than for the algorithms of Approach 1. We start by
inserting Eq. 24 into recursion 26.

F�K�x� � qe�L, L � K�x�p�x, E�
 �
�

p�x, �

 �
lz�0, z�L��;
lz�0,z�L��

�
z�L��\L1�,l�

q��; z� �
z�L1�, l�

b�#, #; z�lz�1

 �
u�L1�,l�

f�K, u, ��
z�u

Az
K,l �

z�L1�,l�\u

Bz
K,lF�K
 l��,

[28]

where, as before, u is the subset of the leaves L1 (, l) at which we
have survival from the ancestral inner node. If we let w be the subset
of the leaves L()\u at which there is no survival, but the number
of new links is positive, and we introduce the subset v of u � w at
which lz � 2, this gives

F�K�x� � qe�L, L � K�x�p�x, E�
 �
�

p�x, �

 �
u�L��

f�K, u, � �
w�L��\u

�
z�L��\�u�w�

q��; z�

 �
v��u�w�

�
z�u

s�#; z��
z�w

q�#; z�

 ��Sz�Kz
 1���
z�v

b�#, #; z�G�K
 1�u � w��, v�,

[29]

where 1(u � w) is 1 when z � (u � w) and 0 when z � (u � w). The
function G is defined as

G�M�, v� � �
mz�1, z�v; mz�0,z�v

F�M
 m��

� �
z�v

b�#, #; z�mz�1��Sz�Mz
 1 : Mz
 mz��

[30]

for a nonempty subset v of L(), and G(M�, �) � F(M�).
We can obtain a recursion for G by splitting the sum in Eq. 30

into �ṽ�v �mz�2,z�ṽ;mz�1,z�(v\ṽ);mz�0,z�� v, where ṽ can be the empty
subset. This gives

G�M�, v� � �
z�v

��Sz�Mz
 1���
ṽ�v

�
z�ṽ

b�#, #; z�

� �
mz�2,z�ṽ;mz�1,z��v\ṽ�;mz�0,z�v

G�M
 1�v��, ṽ�.

[31]

Combining Eqs. 29 and 31, we have established a recursion involv-
ing the functions F(K�) and G(K�, v). For the tree in Fig. 1, the
recursions of Algorithms involves 45 terms, whereas the number of
terms for the recursions in this section is 24.

Discussion
This work presents algorithms that have the same complexity as the
traditional nonstatistical multiple alignment algorithm in Sankoff
(8). The statistical alignment approach to sequence analysis differs
relative to the optimization approach in focusing on obtaining the
probability of the sequences under the given model, rather than
obtaining an alignment. Among molecular biologists, however, it is
popular to consider the actual alignment, and the one chosen is
typically the alignment that contributes the most to the probability
of the observed sequences. The latter can be calculated by simple
modifications of the central recursions of this work, where a
summation operator is substituted by a maximization operator.
Several additional problems have to be solved to make the algo-
rithm of this paper useful in real data analysis. Besides actually
implementing the algorithm, it needs to be coupled to a numerical
optimization method to find maximum likelihood estimates of the
unspecified parameters, such as branch lengths, substitution pa-
rameters, and insertion and deletion rates. This method can then be
used to analyze up to, say, four sequence of realistic lengths
(hundreds of base pairs�amino acids). Elementary computational
tricks can extend this to six or seven sequences; beyond this,
radically different methods will have to be applied. Jensen and Hein
(9) suggested a simulation technique where the basic step is the
simulation of the alignment of a three-star tree. The Gibbs sampler
proposed by Holmes and Bruno (5) is based on samplings that
require pairwise alignments only. This is a faster operation, whereas
the Gibbs sampler proposed by Jensen and Hein (9) achieves a
more efficient mixing per move. From the perspective of a biologist,
the underlying model for this paper can be criticized. First, the
assumption that all insertions�deletions are only one nucleotide�
amino acid long does not conform to the biological reality and
should be relaxed. Second, the assumption that all positions in a
sequence evolve according to the same rates is also unrealistic.
Formulating models and ways to calculate the relevant probabilities
in such models is a major challenge to the field if a statistical
approach to alignment is to be of widespread use.

1. Needleman, S. B. & Wunsch, C. D. (1970) J. Mol. Biol. 48, 443–453.
2. Thorne, J. L., Kishino, H. & Felsenstein, J. (1991) J. Mol. Evol. 33, 114–124.
3. Steel, M. & Hein, J. (2001) Appl. Math. Lett. 14, 679–684.
4. Hein, J. (2001) Proc. Pac. Symp. Biocomp. 179–190.
5. Holmes, I. & Bruno, W. J. (2001) Bioinformatics 17, 803–820.
6. Hein, J., Jensen, J. L. & Pedersen, C. N. S. (2002) Recursions for Multiple

Statistical Alignment (Dept. of Theoretical Statistics, University of Aarhus,

Aarhus, Denmark), Technical Report no. 425.
7. Higgins, D. G., Thompson, J. D. & Gibson, T. J. (1994) Nucleic Acids Res. 22,

4673–4680.
8. Sankoff, D. (1975) SIAM J. Appl. Math. 78, 35–42.
9. Jensen, J. L. & Hein. J. (2002) Gibbs Sampler for Statistical Multiple Alignment

(Dept. of Theoretical Statistics, University of Aarhus, Aarhus, Denmark), Tech-
nical Report no. 429.

Hein et al. PNAS � December 9, 2003 � vol. 100 � no. 25 � 14965

EV
O

LU
TI

O
N

