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ABSTRACT

We present an ef� cient algorithm for statistical multiple alignment based on the TKF91
model of Thorne, Kishino, and Felsenstein (1991) on an arbitrary k-leaved phylogenetic
tree. The existing algorithms use a hidden Markov model approach, which requires at least

O.
p

5
k
/ states and leads to a time complexity of O.5kLk/, where L is the geometric mean

sequence length. Using a combinatorial technique reminiscent of inclusion/exclusion, we are
able to sum away the states, thus improving the time complexity to O.2kLk/ and consid-
erably reducing memory requirements. This makes statistical multiple alignment under the
TKF91 model a de� nite practical possibility in the case of a phylogenetic tree with a modest
number of leaves.
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1. INTRODUCTION

Amajor way by which biological sequences evolve is mutation. Three main types of mutation
events are substitutions, insertions, and deletions of amino acids or nucleotides. The latter two events,

insertions and deletions, introduce the problem of aligning sequences, so that homologous positions appear
in the same column of an alignment. When the aim is to � nd sequences from a database which are
homologous to a query sequence, current alignment techniques perform quite well. The alignment problem
in phylogenetics, however, is still a serious challenge (Lee, 2001; Goldman, 1998). For example, the
phylogenies inferred from different, but equally good, alignments can be quite different (Goldman, 1998).
Some researchers have suggested that the regions in the sequences which are responsible for this variance
in the inferred phylogeny (usually referred to as unalignable regions [Lee, 2001]) should be omitted. It is
unclear, however, how much information is lost by ignoring such regions. Moreover, several studies have
suggested that accurate evolutionary parameters cannot be obtained using only a single “best” alignment
(Thorne et al., 1991; Hein et al., 2000), even if this alignment is seemingly reliable (Hein et al., 2000).
A more robust approach is to take into account all possible alignments, or a large subset of those, in a
statistical framework.

Since insertions and deletions, like substitutions, are rare random events, it seems natural to model them
by a continuous time stochastic process, with rates for the three types of mutations. Stochastic models
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for the substitution process are well known and widely used to obtain maximum-likelihood evolutionary
parameters (Felsenstein, 1981; Whelan et al., 2001). The model of Thorne, Kishino, and Felsenstein (the
TKF91 model, hereafter) of sequence evolution incorporates such a mutation model, and moreover allows a
nucleotide to spawn new nucleotides adjacent to itself, and to die. To model evolution on a phylogenetic tree,
the TKF91 model is applied to each branch of the tree, and likelihood calculation of multiple alignments
then becomes possible.

Since the TKF91 model is reversible (and the sequence distribution at the root is assumed to be at
equilibrium), the root placement is immaterial. In the case of two sequences, one of the sequences may
therefore be considered the ancestral sequence and the other its descendant. In that framework, the number
of possible alignments is � nite. When the TKF91 model is applied to a tree, however, an in� nite number
of sequences may appear at internal nodes, for any given set of sequences which appear at the leaf nodes.
Thus, such an extension is not straightforward, and several methods have been proposed. For star-shaped
trees, Steel and Hein (2001) have constructed an algorithm with O.L2k/ running time for k sequences with
geometric mean length L, and it has subsequently been extended, with similar time complexity, to binary
trees (Hein, 2001). Thenceforth, the time complexity has been reduced to O.4kLk/ for star-shaped trees
(Miklós, 2002) and to O.5kLk/ for arbitrary binary trees (Hein et al., 2002) (see Appendix B). In the latter
paper, the TKF91 model has been reformulated as a multiple hidden Markov model, in which likelihood
calculations can be performed using forward and backward algorithms known in the HMM literature
(Durbin et al., 1998). Similar ideas have appeared for pairwise and triplewise statistical alignment as well,
e.g., Holmes and Bruno (2001) give HMM formulations for alignment on two- and three-leaved trees and

use it for sampling larger trees. In the Markov models, there are O.
p

5
k
/ states, and therefore the running

time of these algorithms is indeed O.5kLk/, in accordance with the general theory of HMMs (Durbin

et al., 1998). The memory usage is of the order O.
p

5
k
Lk/ if the entire dynamic programming table is

retained and O.
p

5
k
Lk¡1/ if not (Hirshberg, 1977).

Because of the large number of states, the aforementioned algorithms are quite slow, even for a moderate
number of sequences. Hein et al. (2000), however, have developed an algorithm for statistical alignment of
two sequences which needs neither different states of a HMM nor partition of probabilities into different
types of alignments (Thorne et al., 1991). This is in contrast to the original formulation of the TKF91
model, which uses three states. The algorithm of Hein et al. (2000) is, both in time and space complexity,
as simple as the traditional distance- or similarity-based dynamic programming algorithms (Needleman
and Wunsch, 1970; Sankoff and Kruskall, 1983). Henceforward, we refer to it as the one-state recursion.

In this paper, we present a one-state recursion for statistical alignment on arbitrary phylogenetic trees.
Essentially, it combines the idea of Hein et al. (2000) generalized to trees and Felsenstein’s reverse traversal
algorithm (1981). The � rst idea allows us to reduce the number of states to one, and the second to compute
in linear time the exponential number of terms that occur in the transition factors. The resulting algorithm
has time complexity O.2kLk/ and space complexity O.Lk/ if the entire dynamic programming table is
stored in memory, O.Lk¡1/ if not. This represents a great saving in both space and time compared to
the hidden Markov recursion and makes statistical alignment on a phylogenetic tree of modest size a
de� nite practical possibility. Indeed, we have implemented both methods for three and four sequences and
achieved a considerable acceleration. One of us (IM) was able to perform a likelihood ratio test (Felsenstein,
1981; Whelan et al., 2001) for more than 250 triplets of yeast protein sequences in a day, using triplewise
statistical alignments. Moreover, this one-state recursion can be coupled with corner-cutting techniques
(Hein et al., 2000), which provides further reduction both in time and space complexity.

The organization of this paper is as follows. We brie� y describe the TKF model in Section 2 and discuss
in Section 3 the one-state recursion in the case of two sequences. The two-sequence example is simple,
but well illustrates our general approach. We discuss in Section 4 our algorithm for the one-state recursion
and consider a speci� c application in Section 5. The main ideas underlying our proof are sketched in
Section 6. The general one-state recursion is described in Section 7 and the computation of the transition
factors which occur in the recursion is discussed in Section 8. In Appendix C we draw a connection with
a hidden Markov model and describe how optimal alignments can be obtained. We conclude with some
remarks and discussion in Section 9. In the appendix, we show that the number of Markov states in the

HJP recursion is O.
p

5
k
/ and give a proof of Lemma 1 from Section 7.
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2. THE TKF MODEL

The TKF91 model is a continuous time reversible Markov model for the evolution of nucleotide (or
amino acid) sequences. It models three of the main processes in sequence evolution, namely substitutions,
insertions, and deletions of nucleotides, approximating these as single-nucleotide processes. A nucleotide
sequence is represented by an alternating string of nucleotides and links connecting the nucleotides, and
this string both starts and terminates with a link. We adopt the view that insertions originate from links and
add a nucleotide–link pair to the right of the original link; deletions originate from nucleotides and have
the effect of removing the nucleotide and its right link. (This view is slightly different but equivalent to the
original description; see Thorne et al. [1991].) In this way, nucleotide subsequences evolve independently
of each other, and the evolution of a nucleotide sequence is the sum of the evolutions of individual
nucleotide–link pairs. The leftmost link of the sequence has no corresponding nucleotide to its left; hence,
it is never deleted, and for this reason it is called the immortal link.

Since subsequences evolve independently, it suf� ces to describe the evolution of a single nucleotide–link
pair. In a given time span ¿ , this evolves into a sequence of nucleotides of � nite length. The � rst nucleotide
of this sequence may be homologous to the original one, while subsequent ones will be nonhomologous.
Table 1 summarizes the corresponding probabilities. The parameters ¸ and ¹ are the birth rate per link
and the death rate per nucleotide, respectively, and in order to have a � nite equilibrium sequence length,
we require ¸ < ¹. For brevity, we write

¯.¿/ D 1 ¡ e.¸¡¹/¿

¹ ¡ ¸e.¸¡¹/¿
:

On the right-hand side of the arrow in the column labeled “Fate,” C denotes a nucleotide homologous
to the original nucleotide, whereas #’s denote nonhomologous nucleotides. The immortal link is denoted
by ?, and other links are suppressed. All � nal arrangements can be thought of as being built from � ve
basic “processes” which we call Birth, Extinction, Homologous, New (or Nonhomologous) and Initial (or
Immortal). These processes are labeled by their initials, and each corresponds to a speci� c probability
factor as follows:

B¿ D ¸¯.¿/ E¿ D ¹¯.¿/ I¿ D 1 ¡ ¸¯.¿/

H¿ D e¡¹¿ .1 ¡ ¸¯.¿// N¿ D .1 ¡ e¡¹¿ ¡ ¹¯.¿//.1 ¡ ¸¯.¿//
(1)

In a tree, time � ows forward from the root to the leaves, and to each node of the tree we associate a time
parameter ¿ which is set equal to the length of the incoming branch. For the root, ¿ D 1 by assumption
of stationarity at the root, and the resulting equilibrium length distribution of the immortal link sequence is
geometric with parameter B1 D ¸=¹ (where length 0 is possible); other links will have left no descendants
since H1 D N1 D 0.

In the original TKF91 model, a simple substitution process known as the “Felsenstein81 model” (Felsen-
stein, 1981) has been used. It is straightforward to replace this by more general models for substitutions of
nucleotides or amino acids (Hein et al., 2000). In the present paper, when a new nonhomologous character
appears at a node (as the result of a B or N process), it is always drawn from the equilibrium distribution;
if a character at a node is homologous to the character at its immediate ancestral node, then the probability
of this event is given by the chosen substitution model.

Table 1. Probabilities of the TKF91 Model (See Text)

Fate Probability Label

C ! C#n¡1 e¡¹¿ .1 ¡ ¸¯.¿ //.¸¯.¿//n¡1 H¿ Bn¡1
¿

C ! #n .1 ¡ e¡¹¿ ¡ ¹¯.¿ //.1 ¡ ¸¯.¿ //.¸¯.¿//n¡1 N¿ Bn¡1
¿

C ! ¡ ¹¯.¿/ E¿

? ! ?#n .1 ¡ ¸¯.¿ //.¸¯.¿//n I¿ Bn
¿
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Note that we do not sum over possible alignments, but over what we call evolutionary histories (see
section 7.1), which is a discrete summary of the actual evolutionary events in the model specifying the
fate of all ancestral nucleotides. As was pointed out by Thorne et al. (1991), for two sequences, there is
almost a correspondence between alignment and evolutionary history (except that gaps in two sequences
that immediately follow each other may be interchanged without changing the interpretation as alignments
whereas the evolutionary interpretation in the TKF model is different.) This almost-correspondence breaks
down for trees with larger number of leaves, since information on what occurs at internal nodes is lost in
an alignment, which only records the homology structure of observed nucleotides.

3. ONE-STATE RECURSION: A GRAPHICAL PROOF FOR TWO SEQUENCES

Hein et al. (2000) give a proof for the one-state recursion in the case of two-sequence alignment. Here
we provide a different proof for this particular case. Our proof for the general case follows a similar line
of ideas.

Suppose A1 is the ancestral sequence observed at the root and A2 is the descendant sequence which
results from the TKF91 process after time ¿ . Let Ak

i (respectively, ak
i ) denote the i-long pre� x (respectively,

the ith character) of sequence Ak . Let P .i; j/ be the joint probability of observing A1
i and A2

j . Given that
P .i ¡ 1; j /, P .i; j ¡ 1/, and P .i ¡ 1; j ¡ 1/ are known, we want to compute P .i; j/.

The possible evolutionary histories (or alignments) are customarily (Thorne et al., 1991) classi� ed into
three groups, S0, S1, and S2, according to whether the rightmost root link has 0, 1, or at least 2 descendants
at the leaf. Another way to de� ne these sets is by the last columns in the alignment; symbolically, S0 D f #

¡ g,
S1 D f #

# ; #
¡

¡
# g, and S2 D f #

#
¡
# ; ¡

#
¡
# g, where the upper symbols represent nucleotides at the root. These

sets are associated to the evolutionary processes as follows. After the B1E¿ process, the rightmost root
link has 0 descendants, so the history is in f #

¡ g. After B1H¿ or B1N¿ , it is in f #
# ; #

¡
¡
# g, while after a

birth at the leaf node (B¿ ), the alignment ends in either of f #
#

¡
# ; ¡

#
¡
# g. These processes may happen in any

order, except that a transition from f #
¡ g to f #

#
¡
# ; ¡

#
¡
# g is not allowed: new births at the leaf (B¿ processes)

are allowed except after an extinction (E¿ ) process; see Table 1. A graphical depiction of the three-state
recursion that implements this restriction is provided in Fig. 1. The labeled circle segment represents
probabilities of observing the associated sequence pre� xes, provided the alignment ends according to the
labeling.

If we combine the three states at each position, by summing their probabilities, we can still compute
the contribution of the vertical and diagonal transitions to the probabilities at .i; j /, since the transition
probabilities (p0 and p1) do not depend on the state. But, for the horizontal transition we would include
a contribution from the illegal transition f #

¡ g ! f #
#

¡
# ; ¡

#
¡
# g (denoted by a dashed arrow), leading to an

overestimation of the probability at .i; j /. This overestimation can be exactly corrected for, however, since
the segment labeled #

¡ at .i; j ¡ 1/ is the result of a B1E¿ process from position .i ¡ 1; j ¡ 1/ (the
dot-dashed arrows in Fig. 1). In summary, if we let P .i; j / be the sum of the three conditional probabilities
at .i; j/, we obtain the following one-state recursion:

P .i; j / D P .i ¡ 1; j / £ B1¼.a1
i /E¿

C P .i ¡ 1; j ¡ 1/ £ B1¼.a1
i /

h
N¿ ¼.a2

j / C H¿ p.a1
i ! a2

j /
i

C
h
P .i; j ¡ 1/ ¡ P .i ¡ 1; j ¡ 1/B1¼.a1

i /E¿

i
£ B¿ ¼.a2

j /:

Here ¼.¢/ denotes the equilibrium nucleotide distribution, and p.® ! ° / is the probability that nucleotide
® evolves into ° in time ¿ . After rearranging terms, we arrive at the recursion depicted in Fig. 2.

Although it is possible, in principle, to manually derive analogous recursions for an arbitrary number of
sequences following the same line of reasoning, such an approach rapidly gets very tedious, as the number
of terms which one needs to consider grows exponentially with the number of sequences. The goal of the
present paper is to provide a more constructive method that allows us to prove that a one-state recursion
indeed exists for arbitrary trees. Of more practical importance, the proof immediately suggests an ef� cient
method for calculating the transition factors, through a post-order tree traversal algorithm, thus allowing
computational derivation of the desired one-state recursion for arbitrary trees.
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FIG. 1. A graphical representation of the three-state recursion for two-sequence alignment. The pk are transition
probabilities associated to Sk (see text): p0 D B1E¿ , p1 D B1H¿ C B1N¿ , and p2 D B¿ . Circles represent
positions in the dynamic programming table; circle segments correspond to the three states. The # and ¡ symbols
represent residues and gaps in the last (two) column(s) of the partial alignment.

FIG. 2. The one-state recursion for two sequences. The factors next to the arrows are “transition factors,” not
probabilities. Due to combining states, negative terms appear to compensate for illegal transitions implicit in other
transition factors.

4. ALGORITHM

Using the TKF model, it is easy to compute the likelihood of a speci� c evolutionary history, given as
a sequence of events. In effect, this integrates out all possible evolutionary histories on the edges of the
phylogenetic tree, while � xing the nucleotide sequences and their mutual alignment at internal nodes. The
likelihood of observing the given nucleotide sequences at the leaves is obtained by summing this likelihood
over all possible sequences of events. Since we usually do not have information about nucleotide sequences
at the internal nodes, such a computation should sum out the internal nucleotide sequences as well. This
is what our algorithm computes.

In order to write down the main theorem, we need some notation. Set T is the set of nodes of the
phylogenetic tree relating the sequences, and r is its root. If n 2 T is a node, then nl and nr denote the
left and right immediate descendants of n. For a node n, ¿ .n/ denotes the length of the incoming branch,
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and we abbreviate Bn :D B¿.n/ etc. For the root, ¿ .r/ D 1 by assumption. Finally, pn.® ! ° / is the
probability that nucleotide ® evolves into ° in time ¿ .n/.

Theorem 1. Suppose A1; : : : ; Ak are sequences related by a phylogenetic tree T with k leaves and
root r . Let K D .K1; : : : ; Kk/ and let P .K/ be the probability of producing, under the TKF91 model, the
pre� xes of A1; : : : ; Ak up to position K1; : : : ; Kk , respectively, where the numbering starts at 0 with the
immortal link. The following algorithm computes P .K/:

P .0/ D
Q

n2T .1 ¡ Bn/

G0
0.r; ¡/

;

P .K/ D 1

G0
K.r; ¡/

X

v2f0;1gkn0

.¡Gv
K.r; ¡//P .K ¡ v/:

If n is an internal node, then

Gv
K.n; ®/ D

2

4Enl
Gv

K.nl; ¡/ C
X

°

³
Hnl

pnl
.® ! ° / C Nnl

¼.° /

´
Gv

K.nl ; ° /

3

5

£

2

4Enr
Gv

K.nr ; ¡/ C
X

°

³
Hnr

pnr
.® ! ° / C Nnr

¼.° /

´
Gv

K.nr ; ° /

3

5 ;

Gv
K.n; ¡/ D Gv

K.nl ; ¡/Gv
K.nr ; ¡/ ¡ Bn

X

°

¼.° /Gv
K.n; ° /:

If n is a leaf node, then

Gv
K.n; ®/ D

(
1; if vn D 1 and an

Kn¡1 D ®,

0; otherwise.

Gv
K.n; ¡/ D

(
1; if vn D 0,

¡Bn¼.an
Kn¡1/; if vn D 1.

By Kn , we mean the component of the vector K corresponding to leaf n, and similarly for vn. By an
Kn¡1

we denote the character at position Kn ¡ 1 in the sequence at leaf n.

The numbers Gv
K.r; ¡/ are the transition factors and play the same role as the transition factors in

Fig. 2. They are sums and differences of probabilities, designed to exactly cancel all contributions of
illegal transitions due to the merging of states into a single probability, analogous to the two-sequence
case described in Section 3. Since we now have k leaves, the dynamic programming recursion for P refers
back to 2k ¡ 1 entries, instead of just three.

Note that G0
K does not depend on K, so a small acceleration can be achieved by computing the prefactor

1=G0
K only once. A more substantial acceleration is achieved by noting that Gv

K.n; ®/ and Gv
K.n; ¡/ depend

only on the components of v which correspond to the leaves contained in the subtree of n. Therefore,
if the tree with root n has s leaves, it is enough to compute Gv

K.n; ®/ for 2s values of v. Once these
are computed, any entry for the ancestral node can be computed in constant time. Therefore, the overall
running time of the algorithm is 2kLk , where k is the number of sequences and L is the geometric mean
of the sequence lengths.
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5. AN EXAMPLE

As a concrete example, we have used our algorithm to � nd the most likely evolutionary tree which relates
the following four globins: human ®1 and ¯ hemoglobins, human myoglobin, and leghemoglobin from
the bean Canavalia lineata. There are three topologically different unrooted trees with four leaves, and
we have estimated maximum likelihood parameters for each of them. The most likely tree is, as expected,
the one that groups human ®1 and ¯ hemoglobin together; the likelihoods of the other two trees are about
a factor 400 smaller (see Fig. 3). After obtaining the maximum likelihood tree, the maximum likelihood
alignment can be obtained using the Viterbi algorithm. This alignment is shown in Table 2. For a more
detailed discussion on the Viterbi algorithm, see Appendix C.

We have optimized the likelihood as a function of the � ve branch length parameters and ¸; the dele-
tion rate parameter ¹ has been adjusted to make the expected sequence length ¸

¹¡¸ equal to the average
sequence length. By using corner cutting methods, we could con� ne the calculation to the parts of the

FIG. 3. Maximum likelihood trees relating human ®1 and ¯ hemoglobins, myoglobin, and bean leghemoglobin, for
all three topologically distinct trees; total likelihood values and insertion rate; and estimated standard deviations. The
numbers refer to branch lengths in units of expected number of substitutions per site. As substitution rate matrix we
used Dayhoff’s PAM matrix.
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Table 2. The Maximum Likelihood Alignment for the First Pedigree in Fig. 3a

Hba1: MV--LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF--DLS-H-----GSAQVKGHGKKVAD-AL-TNA-
Hbb: MV-HLTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESF-GDLSTPDAVM-GNPKVKAHGKKVLG-AF-SDG-
Myo: MG--LSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFK-HLKSEDE-MKASEDLKKHGATVLT-AL-GGI-
Legh: MGA-FSEKQESLVKSSWEAFKQNVPHHSAVFYTLILEKAPAAQNMFS-F---LSNGVD-P-NNPKLKAHAEKVFKMTVDSAVQ

VAHVDDMPNALSALSDLHAHKLRVDPVNFK-LLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVL-TS-K---YR-
LAHLDNLKGTFATLSELHCDKLHVDPENFR-LLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANAL-AH-K---YH-
LKKKGHHEAEIKPLAQSHATKHKI-PVKYLEFISECIIQVLQSKHPGDFGADAQGAMNKALELFRKDMASNYKELGFQG
LRAKGEVVLADPTLGSVHVQKGVLDP-HFL-VVKEALLKTFKEAVGDKWNDELGNAWEVAYDELAAAI-KK-A-MGSA-

aThe log-likelihood of this alignment is ¡1593:223.

dynamic programming table which contribute nonin� nitesimally to the � nal probability, resulting in a
speedup of about a factor of 500. At the extremal point we estimated the second derivative to get a co-
variance matrix; see Fig. 3 for the standard deviations in the directions of the eigenvectors of this matrix.

6. IDEA OF PROOF

Our aim is to give a “one-state” dynamic programming algorithm for calculating the joint likelihood
of observing a set of sequences at the leaves of an evolutionary tree. This likelihood is the sum of the
probabilities of all evolutionary histories which produce the observed sequences at the leaves.

We introduce the concept of an event which corresponds to a nucleotidebirth at a node of the phylogenetic
tree and its subsequent fate down its descendant subtree. More precisely, in the process of going from one
node to a descendant node, one of the following three things may happen: The nucleotide may survive as
a homologous nucleotide, it may die leaving at least one surviving new nucleotide, or it may go extinct
altogether. These three possibilities are labeled H, N, and E, respectively, as discussed in Section 2. In the
� rst two cases, other nonhomologous descendants may have been born, but these possibilities are dealt
with in subsequent events. Hence, in this model, evolutionary histories of nucleotide sequences correspond
to sequences of events. However, this correspondence is not one to one for two reasons. One reason is that
we need to honor the TKF model, which does not allow extinct nucleotides to spawn new ones. (In Table 1,
this is re� ected by the third entry, C ! ¡, which is the only one that may not be followed by a string of
#’s.) The other reason is that different sequences of events may represent the same evolutionary history,
since the relative ordering of events on disjoint subtrees has no meaning. In a Markov chain approach,
these two requirements are met by de� ning states and by ruling out certain events (i.e., transitions, in the
Mealy machine view [Durbin et al., 1998]) in certain states. Essentially that is how we also approach
the problem. We de� ne a “state” and use it to rule out events which violate the TKF model. Our choice
of state (see Fig. 4) still allows overcounting of histories. To overcome this, we require the events to be
ordered in a speci� c way depending on the state.

The ordering we use has the property that in properly ordered sequences of events, an event which
violates the TKF model can be recognized by comparing it to its immediate predecessor. This means that
we do not need the state to decide which events are allowed, but the state is still used to de� ne the proper
ordering. We can now use a recursion which, as a � rst approximation, allows all events. This includes all
legal sequences of events, as well as some sequences of events which end in an illegal pair, either because
they are not properly ordered, or because they violate the TKF model. As a second approximation, we
subtract all sequences of events which end in particular illegal pairs. In the same way as before, this
includes some illegal triplets which should not have been subtracted, and these are added in again, etc.,
in a procedure reminiscent of inclusion–exclusion. We have dubbed the pairs, triplets, etc. involved in this
procedure the disallowed sequences.

It turns out that there exist only � nitely many disallowed sequences, so that the inclusion–exclusion pro-
cedure stops after � nitely many steps (bounded by the number of nodes in the tree). Moreover, disallowed
sequences emit at most one nucleotide per leaf, and that leads to a recursion which refers back only to the
2k ¡1 nearest predecessors in the k-dimensionaldynamic programming table,where k is the number of leaves.
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FIG. 4. (a) A 6-leaved phylogenetic binary tree. (b) A possible state. Filled circles ² (resp., open circles ±) represent
the nodes which are contained (resp., not contained) in the state. (c) A possible event. Any node without a label is
not contained in the subtree corresponding to the event.

The ordering, and hence the disallowed sequences we have to sum over, still depends on the state.
However, the state turns out to in� uence only the ordering of the elements of these disallowed sequences,
not the set of events themselves. More precisely, for each state, there is a one-to-one correspondence
between such sets (that we call illegal sets) and disallowed sequences. The terms involved in the summation
do not depend on the ordering, and this enables us to sum away the dependence on the state. A small
technical problem is that some events do not emit any character (known in the HMM literature as “silent
states”). These events lead to self-references in the recursion, turning it into a (trivial, one-dimensional)
linear equation. We can sum over in� nitely many possible silent events using the standard “wing folding”
technique (Eddy, 2001), which amounts to solving the linear equation.

It remains to compute the transition factors, which involve sums over illegal sets of events that lead to
speci� c emissions. The number of illegal sets is still exponential in the number of nodes in the phylogenetic
tree. However, using a correspondence between illegal sets and labelings of the tree, it is possible to compute
this sum in linear time using a reverse-traversal algorithm. This recursion also deals with the nucleotide
assignments in the internal nodes of the tree, similar to Felsenstein’s postorder tree traversal algorithm
(Felsenstein, 1981).

7. THE GENERAL ONE-STATE RECURSION

In this section, we introduce the general one-state recursion. The main result is presented in Section 7.2;
to maintain the � ow of discussion, we defer the proof until Appendix A. In Section 8, to arrive at the
algorithm discussed in Section 4, we combine the result of the present section with a fast algorithm for
computing the transition factors.

7.1. De� nitions

Let T denote the set of nodes of a rooted phylogenetic binary tree. Note that we suppose the tree edges
to be given and � xed and that we only include the nodes in our representation T . Although the tree is
rooted, the root position is immaterial because of reversibility of the model (Felsenstein’s pulley principle,
[1981]). The root may coincide with an internal node, giving a zero-length edge and somewhat simplifying
the recursion, but for clarity we do not consider that case here.

A subtree t of T is a set of nodes with the properties that (i) for any node n 2 t , its descendants are in
t , and (ii) there is a unique node, called the root of t and denoted by r.t/, without a parent. A labeling of
a tree t is a function l : t ! fB®; ¡; H ® ; N ® j ® 2 Ag, where A is the alphabet, which is fA; C; G; T g in
the case of DNA sequences. Symbols B , H , and N stand for birth, homologous, and new, respectively, as
discussed in Section 2, and ® is the character associated to the process. The symbol “¡” stands for “no
character” and means that an E¿ (extinction) process has occurred somewhere higher up in the tree.

An event e is a pair .et ; el/, where et is a subtree of T and el a labeling of et , with the additional
properties that (i) el.n/ D B® (any ®) if and only if n D r.et /, and (ii) if el.n/ D ¡ for any n 2 et , then
el.n0/ D ¡ for all descendants n0 of n. In this way, an event represents the birth of a nucleotide at r.et /
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FIG. 5. Three possible events.

and its subsequent fate down the phylogenetic tree. An event carries a de� nite probability p.e/ which can
be calculated from the TKF91 model, and we will concern ourselves with that in Section 8. Note that an
event gives rise to at most one new nucleotide at each leaf sequence, and that such nucleotides may or
may not be homologous to each other.

We consider sequences of events, denoted by E D .e1; e2; : : : ; eN /. These give rise to sequences of
states .S1; S2; : : : ; SN /, which are de� ned recursively as follows: S1 :D T and SiC1 :D .Si n et

i/ [ fnjn 2
et

i and el
i.n/ 6D ¡g. The state Si determines at which nodes new nucleotides may be born at event i.

Figures 4 and 5 illustrate these de� nitions.
We introduce some notation for convenience: ti :D et

i , ri :D r.et
i/, li :D el

i . These stand for the tree, the
root, and the labeling of event ei . We de� ne the context ci by ci :D F if ri 2 Si , and ci :D I if ri =2 Si ,
meaning fertile if the birth of event ei occurred at a live node, infertile if not. An event ei is called legal
if ci D F . A sequence of events is called legal if all events are legal. We de� ne those (and only those)
states that may result from a sequence of legal events to be legal states. Equivalently, we may de� ne legal
states as those which are the result of a single event at the root, or yet differently as T with a number of
proper subtrees removed. Examples of legal and illegal states are provided in Fig. 6.

In a sequence E of events, the ordering of the events is important insofar as it determines the ordering
of events pertaining to each individual leaf sequence. Permutations do not change the evolutionary history
represented by a sequence as long as, for all leaves n, the ordering in the subsequence of those events which

FIG. 6. Sequences of states corresponding to the sequences .e; e0/ and .e; e00/ of events, where e; e0; e00 are as in
Fig. 5. The sequence .e; e0/ is a legal sequence resulting is a legal state, whereas .e; e00/ is an illegal sequence giving
rise to an illegal state. Note that .e; e0; e00/ is a legal sequence.
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intersect the path from root to n is undisturbed. More precisely, two sequences E D .e1; : : : ; eN /; E0 D
.e0

1; : : : ; e0
N / represent the same history iff there exists a permutation ¾ of f1; : : : ; Ng such that

e¾ .i/ D e0
i and i < j; ti \ tj 6D ? ) ¾ .i/ < ¾.j/:

We call these ¾ allowed permutations (for E). This de� nes an equivalence relation on the set of sequences
of events. We call the equivalence class of any sequence of events the (evolutionary) history de� ned by
that sequence.

Although in general the state depends on the ordering of events, the context cj depends only on the
history, since it depends on whether rj 2 Sj , which in turn depends on li.rj /, for the unique i < j with
rj 2 ti and rj =2 tk for all i < k < j . The pair .j; i/ so de� ned is equivariant under allowed permutations;
i.e., the indices of the pair transform according to the permutation. This allows us to de� ne a legal history
to be a history represented by a legal sequence of events.

7.2. Summing away the states

We denote by E.K/ a set of legal sequences of events which emit the pre� xes of the given sequences
A1; : : : ; Ak up to position K D .K1; : : : ; Kk/ and which contains precisely one representative of each
history compatible with the emissions. The quantity of interest is the likelihood

P .K/ :D
Y

n2T

.1 ¡ Bn/
X

.e1;:::;eN /2E.K/

p.e1/ ¢ ¢ ¢ p.eN /:

To state the main result of this section, we need to introduce one more de� nition, which admittedly comes
out of the blue at this point. The connection is made at the end of the proof in Appendix A.

De� nition 1 (set of nested events). A set of events fe1; : : : ; eN g is called a set of nested events if
ti ¶ tj ) li.rj / D ¡.

Lemma 1. The likelihood P .K/ satis�es the following equation:

P .K/ D
X

e

P .K ¡ ve/p.e/

¡
X

fe1;e2g nested events

P .K ¡ ve1 ¡ ve2/p.e1/p.e2/

C
X

fe1;e2;e3g nested events

P .K ¡ ve1 ¡ ve2 ¡ ve3 /p.e1/p.e2/p.e3/

¡ ¢ ¢ ¢ (2)

Here ve is the emission vector corresponding to the event e, that is, a k-dimensional vector whose component
corresponding to each leaf is 0 if the leaf is labeled “¡” (or if it is outside t .e/ and hence unlabeled), and
1 otherwise.

Proof. See Appendix A.

7.3. Eliminating the silent events

Note that, for a nontrivial tree T , the set E.K/ of legal sequences of events emitting a certain pre� x is
in� nite, even for K D 0. This is due to the so-called silent events, i.e., events e without emissions at the
leaves (ve D 0). This results in the appearance of the term P .K/ on the right-hand side of (2). However,
the contribution of these silent events can easily be calculated using a trick analogous to the “wing folding”
technique in the HMM literature (Eddy, 2001). A similar trick can be found in Steel and Hein (2001).
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Note that by de� nition, the set feg is a set of nested events, and therefore (2) can be rewritten as follows:

P .K/ D
X

M 6D ? nested events,

P
±

K ¡
P

ei2M vei

²
.¡1/jM jC1

Y

ei 2M

p.ei/: (3)

We can decompose the sum as

P .K/ D
X

M 6D ? nested events,
not all vei

D 0

P
±

K ¡
P

ei2M vei

²
.¡1/jM jC1

Y

ei 2M

p.ei/

C P .K/
X

M 6D ? nested events,
all vei D 0

.¡1/jM jC1
Y

ei2M

p.ei/:

Solving this equation for P .K/ gives the correct answer and includes histories with 0; 1; 2; : : : silent events.
A heuristic way to see this is to observe that the equation X D a C sX, where s and a are the silent and
nonsilent contributions, respectively, is solved by X D a=.1 ¡ s/ D a.1 C s C s2 C ¢ ¢ ¢ /. This expansion
clearly shows the separate contributions of chains of silent events of length 0; 1; 2; : : : . The reasoning in
the proof of Lemma 1 makes sure that only sequences of legal events are included, and that applies to the
silent states as well.

8. PRUNING THE TREE

In this section we shall present Theorem 1. The recursion (2) enables us to compute P .K/, but it requires
summing over a number of terms exponential in the number of sequences. A similar problem occurs when
calculating the likelihood of nucleotide emissions on a tree under a simple substitution model, in which
case one needs to sum over an exponential number of nucleotide assignments to internal nodes. This can
be computed in linear time by Felsenstein’s linear time post-order tree traversal algorithm, which is again
a dynamic programming algorithm, now on a tree instead of the more familiar square lattice. We proceed
in a similar way, by � nding a correspondence between certain labelings of T and sets of nested events.
The summation over all such labelings, including the .¡1/kC1 sign arising from the inclusion–exclusion
argument, can be performed in linear time by a dynamic programming algorithm similar to Felsenstein’s.

The probability factor associated to an event is the product of conditional factors at the nodes of the
phylogenetic tree, and the conditional factor at a node depends only on the labeling of the node and its
ancestral node. The label determines both the process and the associated nucleotide, except for “¡” which
implies an Extinction event only if its ancestral node is not labeled “¡”. Symbolically,

p.B®j¡/ D Bn¼.®/;

p.N® jX° / D Nn¼.®/; p.N®j¡/ D 0;

p.H® jX° / D Hnpn.° ! ®/; p.H ®j¡/ D 0;

p.¡jX° / D En; p.¡j¡/ D 1;

where ®; ° 2 A (c.f. Section 7.1). The symbol X, denoting the process in the ancestral node, may be
anything except “¡”. The probability factors Bn, Nn , Hn , and En are subscripted with a node and are
de� ned (c.f. (1)) in terms of the length of the incoming branch (1 if n D r.T /). Note that p.B®jX° / will
never occur.

This allows us to calculate probability factors of events, but we want to sum over nested events directly.
It follows from De� nition 1 that for each node n 2 T , at most one event in the nested set has n labeled
with a symbol other than “¡”. Furthermore, since the roots of events are uniquely identi� ed as the only
nodes labeled B® , there is a one-to-one correspondence between sets of nested events and labelings of T
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FIG. 7. The tree labeling corresponding to the set of nested events fe; e00g, where the events e and e00 are as in Fig. 5.

with B®; H ® ; N ®; “¡” which obey the following rule: the root and the immediate descendants of “¡”
are labeled with B® or “¡”. See Fig. 7 for an example. Indeed, such labelings can be decomposed into
sets of nested events by recursively removing subtrees containing exactly one B® label at their roots and
resetting the labelings to “¡”. Note that the all-“¡” tree has a proper labeling according to these rules and
corresponds to the empty set of nested events.

The factor associated to a nested set S is the product of the separate probability factors of the event in
S, with a sign .¡1/jSjC1. The exponent jSj C 1 is just one more than the number of B®’s occurring in
the associated tree labeling. Hence, analogous to computing the probability factor of an event, the factor
associated to a tree labeling may be calculated (except for a single overall minus sign) as the product of
several “conditional factors” as follows:

f .B® jX° / D ¡EnBn¼.®/; f .B® j¡/ D ¡Bn¼.®/;

f .N® jX° / D Nn¼.®/; f .N® j¡/ D 0;

f .H® jX° / D Hnpn.° ! ®/; f .H® j¡/ D 0;

f .¡jX° / D En; f .¡j¡/ D 1:

If we group terms in (3) according to their total emission vector v D ve1 C¢ ¢ ¢Cvem , the sum of contributing
factors may be obtained by a Felsenstein-like recursion:

F .n; ®/ D

2

4Enl
F v

K.nl ; ¡/ C
X

°

F .nl; ° /
¡
Hnl

pnl
.® ! ° / C Nnl

¼.° / ¡ Enl
Bnl

¼.° /
¢
3

5

£

2

4Enr
F .nr ; ¡/ C

X

°

F .nr ; ° /
¡
Hnr

pnr
.® ! ° / C Nnr

¼.° / ¡ Enr
Bnr

¼.° /
¢
3

5 ;

F .n; ¡/ D

2

4F v.nl; ¡/ ¡
X

°

Bnl
F v.nl ; ° /¼.° /

3

5 £

2

4F v.nr ; ¡/ ¡
X

°

Bnl
F v.nr ; ° /¼.° /

3

5 ;

where nl and nr denotes the left and right child node of n. Here, F .n; ®/ (respectively, F .n; ¡/) is the sum
of all products of conditional factors on the subtree with root n, given that n is labeled X® (respectively,
“¡”).

Note that we suppressed the dependence on v. This dependence surfaces only when n is a leaf, in which
case the recursion terminates with F .n; ®/ D 1 if vn D 1 and ® is the character in sequence An at the
current position, and F .n; ¡/ D 1 if vn D 0; F D 0 in all other cases. The transition factor associated to
v is � nally

X

fe1;:::;ekg nested set
ve1

C¢¢¢Cvek
Dv

.¡1/kC1
Y

i

p.ei/ D ¡

Á

F .r; ¡/ ¡
X

®

F .r; ®/Br¼.®/

!

;
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where r is the root of T . A � nal useful simpli� cation occurs if we set G.n; ®/ D F .n; ®/ and G.n; ¡/ D
F .n; ¡/ ¡

P
° Bn¼.° /F .n; ° /, in which case the recursion for G takes the form given in Section 4 and

the transition factor is simply ¡G.r; ¡/.
To compute P .K/, we have to eliminate the silent events by solving a linear equation, as described in

Section 7.3. This amounts to dividing each transition factor by

1 ¡
X

? 6Dfe1;:::;ek g nested set
ve1 C¢¢¢Cvek

D0

.¡1/kC1
Y

i

p.ei/; (4)

one minus the transition factor associated to the null emission. Since the recursion for F also includes the
“¡”-labeled tree which gets assigned a term C1 (corresponding to also including the empty set in (4)), in
fact G.r; ¡/ for v D 0 is precisely equal to (4).

It remains to compute the initial value P .0/, the probability of emitting no nucleotides to any sequence
and being left with only the immortal link. According to the TKF91 model, this is the product of the
immortal link prefactors In D 1 ¡ Bn, where the product extends over all nodes in T , and silent events are
included by dividing this by G.r; ¡/. This completes the proof of Theorem 1.

9. DISCUSSION

The importance of incorporating statistical analysis into biological studies has become abundantly clear
over the years. In particular, many interesting problems which arise in the � eld of bioinformatics have been
successfully addressed using statistical models. For instance, the evolution of biological sequences, which
is the focus of the present paper, has been formulated in a statistical framework in which mutation events
are seen as stochastic processes. A closer examination of the past progress reveals, however, that although
substitution processes have been modeled as continuous-time evolutionary processes for more than three
decades (Jukes and Cantor, 1969) and have been widely used in phylogenetics and genealogy (Felsenstein,
2001), modeling insertion and deletion processes based on evolution has only recently been generalized
to an arbitrary number of sequences (Steel and Hein, 2001; Hein, 2001; Miklós, 2002; Hein et al., 2002).
Furthermore, implementations of such generalizations have hitherto required quite a large running time.
Alternative probabilistic approaches to sequence alignment exist (for example, see Mitchison [1999]), but
insertion and deletion processes in such models are not explicitly based on evolution.

In the present paper, we have constructed several algorithmic improvements which make multiple sta-
tistical alignment computationally tractable. More precisely, we have proved that the one-state recursion

exists for an arbitrary number of sequences, thus reducing the space complexity by a factor of O.
p

5
k
/,

where k is the number of sequences. Furthermore, we have developed a reverse traversal algorithm which
calculates, with time complexity linear in the number of sequences, each transition factor appearing in the
one-state dynamic programming algorithm. This reduces the time complexity of the entire algorithm to
O.k2kLk/, where L is the geometric mean sequence length. In fact, most of the transition factors appearing
in the recursion share a common part, which hence needs to be calculated only once. Therefore, with a
more careful implementation, the running time of the � nal algorithm can be reduced to O.2kLk/.

The achieved improvements are not only theoretical, but make multiple statistical alignment on trees
possible in practice, as we have shown in the globin example. Compared to the ordinary hidden Markov
model implementation on a four-sequence tree, our method gives rise to a speedup of about a factor 50,
and as well as reduces the number of states from 45 to 1, with an associated reduction in memory usage.

Our algorithm is useful mainly for trees with small number of leaves and may be used for hypothesis
testing or as a basis for the quartet method. Even for small trees, however, corner cutting techniques are
necessary in practical applications. The example of Section 5 requires computing a table of size 4:8 £ 108

in a straightforward implementation, while corner cutting can reduce this by a factor of about 500. Because
the probability mass is highly concentrated around the alignment region, we lose almost no contribution
to the total probability, even though only 0:2% of the entire table is actually visited. For more than, say,
six sequences, our method will cease to be practical, and MCMC methods will be more useful. Some
promising attempts have already been made in this direction (Holmes and Bruno, 2001; Jensen and Hein,
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2002). Our algorithm can be used to compare exact likelihood calculations and approximations, and hence
it might still be useful for developing new sampling techniques.

The underlying sequence evolution model has the drawback of treating only single nucleotide insertions
and deletions, as was already mentioned in the original paper (Thorne et al., 1991). A model that can handle
insertion and deletion events of whole subsequences is expected to perform better (Thorne et al., 1992),
just as af� ne gaps improve alignments in score-based methods. Similarly, models that incorporate some
structure information will probably result in better multiple alignments as well. We hope to incorporate
these ideas in the future.

APPENDIX A. PROOFS

The main goal of this section is to prove Lemma 1 from Section 7.2. In the � rst two subsections, we
� rst establish some results which are used in the proof of Lemma 1.

A.1. Unique legal sequences

To de� ne a unique ordering of events for legal histories, we introduce a condition on sequences of
events. We suppose the nodes of T to be ordered. For purposes later on, we choose the speci� c ordering
which satis� es, for every subtree t of T ,

fleft subtree of tg < fright subtree of tg < root of t;

where left and right are arbitrary but � xed. An example of our choice of ordering is shown in Fig. 8. We
also order (context,node) pairs as follows:

.c; n/ < .c0; n0/ if c D I and c0 D F , or c D c0 and n < n0:

To specify a unique ordering of events, we introduce condition 1 for a sequence of events E D .e1; : : : ; eN /

as follows:

1.i/ : ti \ tiC1 6D ? or .ci; ri/ < .ciC1; riC1/;

1 : 1.i/ holds; 8 1 · i < N:

Lemma 2. Condition 1 holds for precisely one representative of each legal history.

Proof. First we prove existence. Let k be the � rst index for which 1.k/ is false. Interchanging ek

and ekC1 is an allowed permutation and makes 1.k/ true, but might render 1.k ¡ 1/ false. In this case,
interchanging ek¡1 and ek is allowed and renders 1.k ¡ 1/ and 1.k/ true, the latter because 1.k ¡ 1/ was
true originally. Continuing backwards, eventually all 1.i/ for i · k are true. By induction on k, we � nd
an allowed permutation ¼ such that ¼.E/ satis� es 1.

We now prove uniqueness. Assume there are two representatives for which condition 1 holds, E and E0.
Let ¼ be the allowed permutation such that ¼.E/ D E0. We can � nd an i < j such that ¼.j/ C 1 D ¼.i/

FIG. 8. A 6-leaved tree with its nodes labeled according to our convention.
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(Christie, 1996). Since ¼ is an allowed permutation, ti \ tj D ?. E0 satis� es 1, therefore tj and ti are part
of the left and right subtree of a node C0, respectively. Moreover, i C 1 6D j , because this would contradict
1.i/ for E.

We prove by induction that for each k ¸ 0, a node Ck exists such that tj¡k is in the left subtree of
Ck , ti is in the right subtree of Ck , and tj is contained in either. This means that there is no k such that
i C 1 D j ¡ k; therefore, there is only one representative that satis� es the 1 condition.

We already proved that the induction hypothesis holds for k D 0. Assume it holds for certain k. Four
possible cases are to be considered.

1. tj¡k¡1 \ ti 6D ? and tj¡k¡1 \ tj¡k 6D ?. This implies that Ck 2 tj¡k¡1 and hence tj¡k¡1 \ tj 6D ?.
Since ¼ is an allowed permutation, ¼.i/ < ¼.j ¡ k ¡ 1/ and ¼.j ¡ k ¡ 1/ < ¼.j/, but this is impossible.

2. tj¡k¡1 \ ti 6D ? and tj¡k¡1 \ tj¡k D ?. This means that tj¡k¡1 is on the right subtree of Ck , and
therefore rj¡k¡1 > rj ¡ k, but this contradicts the 1 condition, since all cj D F because the history is
legal.

3. tj¡k¡1 \ ti D ? and tj¡k¡1 \ tj¡k 6D ?. This means that tj¡k¡1 is on the left part of Ck . For
CkC1 D Ck , the condition of the induction holds.

4. tj¡k¡1 \ ti D ? and tj¡k¡1 \ tj¡k D ?. In this case, rj¡k¡1 < rj¡k < ri . The � rst inequality comes
from the 1 condition, while the second one is from the induction hypothesis. However, these inequalities
guarantee the existence of a proper CkC1.

In properly ordered sequences, legal sequences may be recognized by looking at pairs of events.

De� nition 2. A pair of events .e1; e2/ is called pairwise legal if t1 ¶ t2 ) l1.r2/ 6D ¡.

Lemma 3. The set

f.e1; : : : ; eN /j1 holds; .ei ; eiC1/ pairwise legal for i D 1; : : : ; N ¡ 1g

consists of precisely one representative of each legal history.

Proof. µ: Since 1 holds, at most one of each legal history is included. We prove that illegal histories
are not included. Let e1; : : : ; eN be an illegal sequence in the set. Let ei be the � rst event with ci D I ,
that is, ri =2 Si . Since cj D F for j < i, in particular Si¡1 is legal. Suppose ti¡1 \ ti 6D ?. If ti¡1 ½ ti ,
then ri =2 Si implies ri =2 Si¡1, but ri¡1 2 Si¡1 and ri¡1 is a descendant of ri , in contradiction with Si¡1

legal. So ti¡1 ¶ ti , but then ri =2 Si implies .ei¡1; ei/ is not pairwise legal. So ti¡1 \ ti D ?. Note that
ci¡1 D F and ci D I , so 1 is false, which is the required contradiction.

¶: For all legal histories there exists a sequence obeying 1 by Lemma 2, and all neighboring pairs in
legal sequences are pairwise legal.

This result enables us to determine the sequences of events we want to sum over, by looking only at
neighboring pairs. To use the inclusion/exclusion trick, we next have to characterize sequences of event
pairs that do not obey our condition.

A.2. Disallowed sequences and illegal sets

De� nition 3. Suppose Si is a legal state, and suppose that for all j D i; : : : ; k ¡ 1 we have .ej ; ejC1/

not pairwise legal or 1.j/ false. We call such (sub)sequences disallowed sequences.

Lemma 4. Let .ei ; eiC1; : : : ; ek/ be a disallowed sequence starting from state Si . Then:

(a) The sequence .cj ; rj /, i · j · k, is strictly decreasing.
(b) All events ej with cj D F are disjoint.
(c) For each node n, there is at most one event ej with n 2 tj and lj .n/ 6D ¡.

Note that statement (c) implies that there is at most one emission per leaf.
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Proof. If .ej ; ejC1/ is not pairwise legal, then rjC1 is a descendant of rj and lj .rjC1/ D ¡. This
means that rj > rjC1 and cjC1 D I , so .cj ; rj / > .cjC1; rjC1/. If 1.j/ is false, then it directly follows
from the de� nition of condition 1 that .cj ; rj / > .cjC1; rj C1/.

Now, that the sequence .cj ; rj / is strictly decreasing implies that, for some m, we have ci D ciC1 D
¢ ¢ ¢ D cm D F and cmC1 D cmC2 D ¢ ¢ ¢ D ck D I . For i · j < m, the pair .ej ; ejC1/ is pairwise legal
since cjC1 D F ; therefore, we must have 1.j/ false, which implies that tj \ tjC1 D ?. Furthermore,
tj \ tjC1 D ? and rj > rjC1 together imply that there exists a subtree t of T such that tj is in a right
subtree of t , whereas tjC1 is in a left subtree of t . Applying this reasoning sequentially, we conclude that
for all i · a < b · m there exists a subtree t such that ta (tb) is in a right (left) subtree of t . Hence,
ta \ tb D ? and it follows that all of ti ; tiC1; : : : ; tm are pairwise disjoint.

Note that SmC1 is a legal state since Si is a legal state and all events ei ; eiC1; : : : ; em are legal events.
For every m < j · k, that the event ej is illegal implies that rj =2 Sj . Now, suppose Sj \ tj 6D ?. Then,
Sj must contain at least one descendant of rj , which is possible only if, since SmC1 is a legal state and
rj =2 Sj , at least one of emC1; emC2; : : : ; ej¡1 has a birth at a descendant node of rj . But this contradicts
the fact that rmC1 > rmC2 > ¢ ¢ ¢ > rk , and therefore we must have Sj \ tj D ? for every m < j · k.

Finally, the results from the previous two paragraphs together imply (c).

Lemma 5. For a given legal initial state S, there is a one-to-one correspondence between illegal sets
and disallowed sequences starting from S.

Proof. We prove the correspondence by establishing two injections.
From disallowed sequence to illegal set: The events with cj D F are pairwise disjoint, and their trees

not the subtree of any other because the initial state is legal. The trees with cj D I may be subtrees
of another tk , in which case lk.rj / D ¡, so the events form an illegal set. There is only one disallowed
sequence giving rise to this set, since the sequence .cj ; rj / corresponding to the disallowed sequence is
ordered.

From illegal set to disallowed sequence: Take the events whose trees are not a subset of another and
whose root is in S, sorted decreasing by root. Follow them by the other events, sorted decreasing by root.
A disallowed sequence results.

A.3. Proof of Lemma 1

For ease of reference, we here restate the lemma. We denote by E.K/ a set of legal sequences of events
which emit the pre� xes of the given sequences A1; : : : ; Ak up to position K D .K1; : : : ; Kk/ and which
contains precisely one representative of each history. The quantity of interest is the likelihood

P .K/ :D
X

.e1;:::;eN /2E.K/

p.e1/ ¢ ¢ ¢ p.eN /:

Lemma 1. The likelihood P .K/ satis� es the following equation:

P .K/ D
X

e

P .K ¡ ve/p.e/

¡
X

fe1;e2g illegal

P .K ¡ ve1 ¡ ve2 /p.e1/p.e2/

C
X

fe1;e2;e3g illegal

P .K ¡ ve1 ¡ ve2 ¡ ve3/p.e1/p.e2/p.e3/

¡ ¢ ¢ ¢ :

Here, ve is the emission vector corresponding to the event e, that is, a k-dimensional vector whose
component corresponding to each leaf is 0 if the leaf is labeled ¡, or 1 otherwise.



886 LUNTER ET AL.

Proof. Let S.e/ denote the state after event e in state S. De� ne PS.K/ to be the likelihood of emitting
legal sequences up to position K and ending up in state S. We allow illegal states S, in which case
PS.K/ D 0 always. For brevity, we denote by C.S0; e0; S1; e1; : : : ; en¡1; Sn/ the condition S0.e0/ D
S1 ^ : : : ^ Sn¡1.en¡1/ D Sn, and by Dis.S; e0; : : : ; en/ the condition that .e0; : : : ; en/ is a disallowed
sequence when starting from state S. Then

PS.K/ D
X

.S 0;e/:C.S 0;e;S/

PS 0.K ¡ ve/p.e/

¡
X

.S 0;e;S 00;e0/:
C.S 00;e0;S0;e;S/^Dis.S 00;e0;e/

PS 00.K ¡ ve ¡ ve0/p.e0/p.e/

C
X

.S 0;e;S00;e0;S 000;e00/:
C.S 000;e00;S 00;e0;S0;e;S/^

^ Dis.S000;e00;e0;e/

PS000.K ¡ ve ¡ ve0 ¡ ve00/p.e00/p.e0/p.e/

¡ ¢ ¢ ¢ :

This recursion sums over all sequences of events which do not have disallowed subsequences, since all
terms in the � rst line that include a disallowed subsequence (of length 2) are subtracted in the second line;
this also subtracts terms involving disallowed subsequences of length 3 that were not included in the � rst
place, which are added in again in the third line, and so on. By Lemma 3, this implies that we indeed
sum over all sequences of legal events (which end up in state S). Note that for illegal states S, PS.K/ D 0
always, so we may de� ne Dis.S; e0; : : : / arbitrarily for illegal states S.

Now we sum the recursion equation over all states S. The left-hand side becomes P .K/. The � rst
summation on the right-hand side turns into

X

S

X

.S 0;e/:S 0.e/DS

PS 0.K ¡ ve/p.e/ D
X

.S 0;e/

PS0.K ¡ ve/p.e/ D
X

e

P .K ¡ ve/p.e/;

which is the desired term. Similarly, the second summation becomes

X

.S 00;e0;e/:Dis.S 00;e0;e/

PS 00.K ¡ ve ¡ ve0/p.e0/p.e/:

Observe that the summand is independent of the ordering of events e0; e. Hence, we can also sum over
illegal sets of events and over S 00, using Lemma 5. This turns the summation into

X

S 00

X

fe0;eg illegal

PS 00.K ¡ ve ¡ ve0/p.e0/p.e/ D
X

fe0;eg illegal

P .K ¡ ve ¡ ve0/p.e0/p.e/;

which is the desired term. All other summations are dealt with analogously. Note that only � nitely many
summands contribute to the recursion, since illegal sets have a bounded number of elements.

APPENDIX B. STATES FOR THE HJP RECURSION

For a � xed number k of sequences, the total number of Markov states1 in the HJP recursion depends
on the tree topology. Let T be a k-leaved rooted binary tree. Let w.n/ denote the number of leaves joined
to the internal node n 2 T , and let q.T / be the number of internal nodes n 2 T with w.n/ D 2.

1We refer the reader to Hein et al. (2002) for their de� nition of “state.”
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If q.T / D 2 and the root2 r of the tree has w.r/ D 2, then the number of Markov states in the HJP
recursion for such a tree is equal to

0

@2k C
k¡1X

jD0

2j

1

A C 2

2

4
k¡4X

nD0

0

@2k¡2¡n C
k¡2¡n¡1X

jD0

2j

1

A

3

5 C
k¡4X

nD1

n¡1X

mD0

0

@2n¡m C
n¡m¡1X

jD0

2j

1

A :

As the tree topology we just considered has the least number of states, the above formula is a lower bound
on the number of Markov states for any k-leaved rooted binary tree of arbitrary topology.

For q.T / À 2, the total number of states chie� y depends on whether or not the nodes n with w.n/ D 2
are assigned “#” (which stands for having a nucleotide). The number of states associated to such choices is

qX

mD0

2

4
³

q

m

´ 0

@2k¡2m C
k¡2m¡1X

jD0

2j

1

A

3

5 D 2k

qX

mD0

³
q

m

´ ³
2¡2m C 2k¡2m ¡ 2

2k

´

¼ 2 ¢ 2k

³
5
4

´q

: (5)

For q.T / D bk=2c, i.e., in the case of a “balanced” tree, the expression in (5) is of order O.
p

5
k
/.

APPENDIX C. A HIDDEN MARKOV MODEL

In many cases, it is useful to obtain the maximum likelihood alignment using the Viterbi algorithm. This
cannot be done with the one-state recursion, and we need to use the full Markov chain corresponding to
the TKF91 model on a tree. We give two versions here. The � rst is not properly a Markov chain, in that
the sum of exit probabilities from states do not sum to 1, but it does assign the right probability to full
paths through the chain. This is enough for Viterbi to work. Secondly, we show how to turn this simpler
chain into a proper Markov chain, which can be used for sampling alignments.

We have used the word state in a different way than is usual for Markov chains. In this section, we
write State with a capital letter if we use it in the Markov chain sense.

We view our chain as a Mealy machine (Durbin et al., 1998), i.e., events and their emissions correspond to
transitions, and paths through the chain correspond to histories. Lemma 3 gives a one-to-one correspondence
between histories and paths through our chain. Given a sequence of events e0; : : : ; e1, a new event eiC1

is allowed if .ei ; eiC1/ is pairwise legal, and if condition 1.i/ holds. Both can be determined if we know
the state SiC1 and the root of et

i , so as a � rst approximation to our Markov State we can use the pair
.SiC1; et

i/. We say that the nodes r.t/ and r.t 0/ are directly related if t \ t 0 6D ?, i.e., one is the ancestor
of the other, or they coincide. Then, the transition rule is that from State .S; v/, event e is allowed if (1)
r.et / 2 S and (2) r.et / is directly related to v or r.et/ ¸ v. Now, if we set

S 0
iC1 :D SiC1 n fn j n indirectly related to r.et

i/ and n < r.et
i/g;

the transition rule simpli� es to: eiC1 is allowed if r.et
iC1/ 2 S 0

iC1, and it can be shown that the update rule

S 0
iC1 :D

¡
S 0

i n .et
i [ fn 2 S0

i j n indirectly related to r.et
i/ and n < r.et

i/g/
¢

[ fn 2 et
i j el

i.n/ 6D ¡g

correctly updates S 0
i to S 0

iC1.
Let p.e/ be the probability factor associated to event e. The States S0 and transition and update rules

give rise to a graph with states S 0 as vertices, and we associate the probability factors p.e/ to the edges.

2In Hein et al. (2002), the root of a tree T is one of the internal nodes n 2 T of degree 3.
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To complete the graph, we introduce the initial and end States A and Ä. Furthermore, we introduce a
single edge (with p D

Q
n2T In) between A and the State T and join each State except A to Ä by a single

edge (with p D 1). In this way, the product of probability factors along any path from A to Ä is just the
probability of the associated sequence of events, or history, under the TKF91 model. Since by our choice
of States, each permissible history is counted exactly once, the probabilities sum up to 1.

For sampling, it is necessary to have a proper Markov chain, i.e., have the probabilities of outgoing
edges sum to 1, and the graph just de� ned can be turned into one by a scalar base change. Let PS be
the probability of being in State S, i.e., the sum of probabilities of all paths ending in S. Then, the state
equation can be written as PS D

P
S 0 PS 0 tS 0S , where tS 0S is the transition matrix. If we introduce new

variables OPS D fSPS , then we can write OPS D
P

S 0 OPS 0 OtS 0S , where OtS 0S D tS 0SfS=fS 0 . The graph becomes

a Markov chain if
P

S
OtS0S D 1. A tedious but straightforward calculation shows that fS D

¡Q
n2S In

¢¡1

solves this equation, and the transition probabilities become

Si
e¡! SiC1 :

fSiC1

fSi

p.e/;

where fA D fÄ D 1.
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