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Here we present a model of nucleotide substitution in protein-coding regions that also encode the formation of conserved
RNA structures. In such regions, apparent evolutionary context dependencies exist, both between nucleotides occupying
the same codon and between nucleotides forming a base pair in the RNA structure. The overlap of these fundamental
dependencies is sufficient to cause ‘‘contagious’’ context dependencies which cascade across many nucleotide sites. Such
large-scale dependencies challenge the use of traditional phylogenetic models in evolutionary inference because they
explicitly assume evolutionary independence between short nucleotide tuples. In our model we address this by replacing
context dependencies within codons by annotation-specific heterogeneity in the substitution process. Through a general
procedure, we fragment the alignment into sets of short nucleotide tuples based on both the protein coding and the
structural annotation. These individual tuples are assumed to evolve independently, and the different tuple sets are
assigned different annotation-specific substitution models shared between their members. This allows us to build
a composite model of the substitution process from components of traditional phylogenetic models. We applied this to
a data set of full-genome sequences from the hepatitis C virus where five RNA structures are mapped within the coding
region. This allowed us to partition the effects of selection on different structural elements and to test various hypotheses
concerning the relation of these effects. Of particular interest, we found evidence of a functional role of loop and bulge
regions, as these were shown to evolve according to a different and more constrained selective regime than the
nonpairing regions outside the RNA structures. Other potential applications of the model include comparative RNA
structure prediction in coding regions and RNA virus phylogenetics.

Introduction

Some genome regions direct both the synthesis of
a protein and the formation of biologically functional RNA
structures. This overlap of information can be achieved
because of redundancy in the genetic code and in the
mapping of sequence to RNA structure, which provides
a nucleotide string with considerable flexibility to optimize
the composition of the encoded protein and RNA structure
simultaneously. In RNA viruses several structural ele-
ments have been proposed to overlap protein-coding
regions (Goodfellow, Kerrigan, and Evans 2003; Tuplin
et al. 2002). One of these, the cis-acting replication ele-
ment of the poliovirus has been shown to be involved in
genome replication (Goodfellow, Kerrigan, and Evans
2003). As for cellular organisms, RNA structural elements
within the protein-coding parts of the yeast ASH1 gene
have been found to mediate protein localization during cell
division (Chartrand et al. 1999, 2002). A recent study,
however, suggests that a large fraction of protein-coding
regions in bacterial and eukaryotic genomes may contain
conserved local RNA secondary structure under a thermo-
dynamic criterion (Katz and Burge 2003). The function-
ality of these RNA structures remains to be investigated,
but in addition to protein localization several potential
roles have been suggested, including an involvement in the
splicing of introns, an effect on protein folding via the
regulation of translation speed, and a regulation of gene
expression mediated by mRNA stabilization (Katz and
Burge 2003).

In this article we present a model of the nucleotide
substitution process in such coding regions with conserved
RNA structure (hereinafter, CORS). The model can be
applied to data where there is a priori knowledge of the
protein-coding and RNA structural annotation. Our focus
here is to estimate parameters that contain information
about the evolutionary process. Other potential applica-
tions of the model include comparative RNA secondary
structure prediction in coding regions and the estimation of
RNA virus phylogenies between higher taxonomical units
where the double evolutionary constraints upon CORS
could potentially alleviate the often incurred problems of
saturation (Zanotto et al. 1996).

The functional and structural interactions of the
amino acids within a protein can create a variety of evolu-
tionary dependencies between protein-coding nucleotides.
Most stochastic models of nucleotide substitution for
coding regions consider only the simplest of these,
namely the context dependency in the evolutionary
process among nucleotides within adjacent non-over-
lapping three-tuples (codons) introduced by the triplet
nature of the genetic code (Goldman and Yang 1994;
Muse and Gaut 1994). These models ignore other inter-
actions and assume evolutionary independence between
codons, which means that the transition probability
between sequences can be factored into the product of
the transition probabilities between codons and calculated
with relative ease.

Only certain base pairs can form the stable chemical
bonds needed to maintain an RNA structure. The con-
servation of structure therefore introduces long-range con-
text dependencies in the evolutionary process between
base-pairing nucleotides. Existing stochastic models of
nucleotide substitution for regions with RNA structure
incorporate long-range correlations by considering two-
tuples of base-pairing nucleotides as independent units of
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evolution resulting in a similar factorization of the

transition probability as described above [see Savill et al.
(2001) for a description].

An evolutionary model of nucleotide substitution
CORS must acknowledge that selection evaluates new
mutations both in the context of the encoded protein and in
the conserved RNA structure. As a consequence of the
context dependencies described above, the evolutionary
process of base-pairing two-tuples in stem regions can no
longer be assumed to be independent of neighboring
nucleotides, because these now make up the protein-
coding context in which substitutions occur. The neigh-
boring nucleotides may in turn base-pair with nucleotides
from yet other codons, and thus expand the context
dependency to include these (fig. 1). In this manner
context dependency cascades throughout the structural
regions and questions the computationally convenient
assumption of evolutionary independence between short
N-tuples of nucleotides.

A possible solution is to construct a model of
nucleotide substitution that considers entire structures to
be the unit of evolution and thus has a state space
consisting of N-tuples spanning full structural regions.
Here we shall refer to this type of model as context

elaborate. These models were pioneered by Pedersen and
Jensen (2001) in a study of viral genes with overlapping
reading frames, and were later elaborated to model global
context dependency introduced by protein-tertiary struc-
ture (Robinson et al. 2003). However, the size of the state
space means that the calculation of transition probabilities
in these models must rely on approximate statistical
techniques such as Markov chain Monte Carlo with
a computational demand that at present restricts their use
to very small data sets.

An alternative solution is to reduce context de-
pendencies to a level manageable by traditional phyloge-
netic models. The model presented here achieves this
by replacing context dependencies within codons with
codon position–specific heterogeneity in the substitution
process and is inspired by the previous work of Hein and
Stovlbaek (1995) and Yang (1996). Thus the input to our
analysis is an alignment of DNA or RNA sequences with
multiple layers of annotation, which we use to define sets
of nucleotide tuples considered to evolve via independent,
but annotation-specific, substitution processes. As this pre-
sents a general procedure in the construction of what we
refer to as context-reducing models of molecular evolu-
tion, we develop a general conceptual framework for its
presentation. (See Siepel and Hausler (2003) for a different
approach to context reduction.) The assumption of in-
dependence between N-tuples allows for the factorization
of transition probabilities and subsequent application of
the model to a large data set of full-length genome
sequences from the hepatitis C virus with known RNA
structural elements. Using this data set, we evaluate
different components of the model and estimate evolu-
tionary parameters.

Materials and Methods

This section describes a general formalism for stating
phylogenetic models for multiply annotated alignments. It
begins by introducing the elements of traditional phylo-
genetic models. It then describes how multiply annotated
alignments can be fragmented into independent N-tuples
upon which a composite phylogenetic model can be
defined, and how the parameter space of such composite
models may be restricted. Finally, a specific model of
nucleotide substitution in CORS is derived, based on
the presented formalism. The notation for representing
a phylogenetic model has been in part adopted in part from
Siepel and Haussler (2003). A table of terms is given as
Supplementary Material online.

Components of Phylogenetic Models

The data of traditional phylogenetic analysis is an
alignment of n homologous sequences. Let the alignment
be represented by a matrix x of dimension n 3 L with
entries belonging to the alphabet �. The rows xj (1 � j �
n) of x correspond to the aligned sequences, and the entries
of a column xi (1 � i � L) correspond to homologous
sequence symbols.

A standard assumption in phylogenetic analysis is
that of evolutionary independence between short N-tuples

FIG. 1.—A region of coding RNA folded into an RNA secondary
structure. Shaded areas indicate codon boundaries and subscripts indicate
codon positions of nucleotides. The fragmentation function defines
evolutionary independent tuples of nucleotides (dashed lines). Via
a mapping function c, tuples are assigned a phylogenetic model based
on the codon position and RNA structural annotation (ns¼ nonstructural,
pp¼ base-pairing, l ¼ loop and bulge).
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of nucleotides. In the following we consider models that
split the alignment into such N-tuples.

Let a phylogenetic model for independent alignment
columns be given by a five-tuple of model components
w¼ f�, Q, p, s, bg, where � is the sequence alphabet of
size d, Q is the instantaneous rate matrix of dimension
d 3 d, p is a vector of equilibrium frequencies of length
d, s is a rooted binary tree topology, and b is a vector of
branch lengths. Phylogenetic models defined for N-tuples,
instead of single columns, will have � replaced by �N and
the dimensionality of Q and p adjusted accordingly.

�, Q, and p define a continuous Markov process
which is used to model the substitution process along the
branches of the phylogenetic tree represented by s and b.
The likelihood of an N-tuple given a phylogenetic model
can be calculated in time O(nj�j2N) by the dynamic pro-
graming algorithm of Felsenstein (1981), where j�jN is the
size of the N-tuple alphabet.

Let xv be an N-tuple defined as the concatenation of
the alignment columns specified by the N-long vector of
indices v(vi 2 f1, . . . , Lg). The columns of xv need not be
direct neighbors in x. Let I be a set of index vectors
defining a fragmentation of x into N-tuples. The likelihood
of x given I is:

Pðx j I;wÞ ¼
Y
v2 I

Pðxv j wÞ: ð1Þ

Annotated Alignments

Alignments can be annotated with information on the
structure or function of different regions. This information
can be given in the form of m label sequences, each drawn
from a set Ak defined by annotation category k (1 � k �
m). The annotation of x can then be represented by
a matrix y of dimension m3L. The rows y j (1 � j � m) of
y correspond to the label sequences. The complete
annotation of alignment position i is contained in the
column yi (1 � i � L), which is a member of the combined
label set A¼ fu : uk 2 Ak 8kg. The complete annotation
of an N-tuple is given by the vector yv belonging to the
label set AN ¼ fw : wk 2 (Ak)

N 8kg.
The fragmentation of an alignment is determined by

its annotation and the specific independence assumptions
of a given model. Let frag(x, y) be a mapping from an
alignment and its annotation to an index set I, which then
defines the fragmentation. The fragmentation of x thus
partitions the sites in the alignment into nucleotide tuples
which may be of varying lengths.

Defining a Composite Phylogenetic Model

Differences in the selective regime acting on the
regions defined by the annotation will give rise to dif-
ferences in the substitution process. It is therefore of
interest to use different phylogenetic models for N-tuples
with different annotations. A phylogenetic model for
annotated alignments can be defined as the set w ¼
fw1, . . . , wKg, where the submodels wi¼f�i, Qi, pi, si, big
are traditional phylogenetic models for N-tuples as defined
above.

Let c define a mapping from the annotation of an N-
tuple onto f1, . . . , Kg representing the set of phylogenetic
models. The likelihood of an alignment given its
annotation and a composite phylogenetic model is

Pðx j y;wÞ ¼
Y

v2 fragðx;yÞ
Pðxv j wcðyvÞÞ: ð2Þ

Parameterizations

The parameter space of a composite phylogenetic
model is potentially large, but it can be reduced by
introducing constraints on the legal parameter values.
These constraints can be expressed by equations defining
legal subspaces of the parameters and express assumptions
about the substitution process. They can, for example, be
introduced to test hypotheses or to create robust models for
sparse data.

The off-diagonal entries of a rate matrix qa,b (with
a 6¼ b, a, b 2 �) denote the instantaneous rate of change
from a to b. The diagonal entries are defined by the
requirement that rows sum to zero (qa,a ¼ 2

P
a 6¼b qa,b).

The matrix of transition probabilities P for a given time
span t can be found by matrix exponentiation (P(t) ¼
exp(Qt) ¼

Pi¼‘
i¼0 (Qi)i/i!) (Liò and Goldman 1998). It is

convenient to normalize Q to one expected substitution per
site per time unit by requiring the equality

N ¼
X
a

pa

X
a 6¼ b

dða; bÞqa;b; ð3Þ

where N is the length of a symbol and d(a,b) count the
number of positions at which a and b differ. This is
a generalization of the normalization used by Siepel and
Haussler (2003), and it allows direct comparison of branch
length estimates between models of evolutionary units
with different values of N.

The substitution process is commonly assumed to be
time reversible, which can be ensured by the constraint of
detailed balance: paqa,b¼ pbqb,a 8a . b. Other constraints
commonly applied to nucleotide models include strand
symmetry (Lobry and Lobry 1999) and a fixed ratio
between transitions and transversions (Hasegawa, Kishino,
and Yano 1985).

The substitution processes of the regions defined by
an annotation can often be assumed to have some common
properties. These properties can be intrinsic to the type of
sequence being modelled—e.g., the transition bias of
nucleotide sequences—or it can be due to a selective force
acting across several regions. Including constraints
between rate matrices allows tests of the validity of such
assumptions and can considerably reduce the number of
free parameters.

If there is no exchange of genetic material between
the lineages of the phylogenetic tree, si can be assumed to
be the same between submodels. If the substitution process
does not change between branches, b can also be assumed
equal between submodels, in which case differences in the
rate of substitution can be incorporated by defining bi as
a scaling of a general branch length vector: bi¼ rib. Each
submodel can then be defined as wi¼ (�i, Qi, pi, ri, s, b).

Protein-Coding Regions with Conserved RNA Structure 1915



Likelihood Ratio Tests

When two models have nested parameter spaces, their
relative fit can be evaluated by a likelihood ratio test (LRT)
between the simpler (null) model wi and a more complex
(alternative) model wj. The test statistic

LR ¼ 2ln
Pðx j y;wjÞ
Pðx j y;wiÞ

� �
ð4Þ

will be asymptotically v2�df distributed, where�df denotes
the difference in degrees of freedom between two models
(Ewens and Grant 2001).

A Composite Phylogenetic Model for Coding Regions
with Conserved RNA Structures

In this section, the general framework outlined above
is used to define a model of the substitution process in
coding nucleotide sequences with overlapping RNA
secondary structure.

Let the RNA structural annotation be given by the
sequence yS drawn from AS¼ fns, l, pg, where ns denotes
nonstructural positions, l denotes loop and bulge positions,
and p denotes RNA stem-pairing positions. Let the coding
annotation be given by the sequence yC drawn from AC¼
f1, 2, 3g, where 1, 2, and 3 represent first, second, and
third codon positions, respectively. (See figure 1 for
examples of the annotation.)

All columns of the alignment, apart from the RNA
stem-pairing ones, are assumed to evolve independently.
As opposed to the standard models of coding regions, this
corresponds to ignoring context dependency between
nucleotides within the same codon. The fragmentation
function thus maps stem-pairing positions onto index
vectors for two-tuples, and everything else onto index
vectors for single columns. The specific pairing of sites
can be given to the frag function as an extra annotation
sequence, which is implicit here.

Each possible labeling of the N-tuples defined by the
fragmentation now defines a submodel. The possible
labelings for single columns consist of the set
Asingle ¼ fns; lg3 AC, and for the two-tuples it consists
of Apair ¼ fpg23 (AC)2, since the criteria defining the set
of single columns and two-tuples were the presence or
absence of the RNA-structure label p. The total number of
submodels therefore becomes 15 (jAsinglej 1 jApairj ¼ 6 1
9). This corresponds to three different submodels for single
nucleotides in the three codon positions of nonstructural
regions, three different submodels for single nucleotides in
the three codon positions of loop/bulge regions, and nine
different submodels for the nine different codon-position
combinations of a base-pairing nucleotide pair.

The enumeration of the submodels is given by the
mapping c : Asingle [ Apair ! f1, . . . , 15g (fig. 1). In the
following discussion the submodels and their parameters
will be referred to through their defining labels, as this is
more informative than an explicit enumeration. A dot (�) is
used to represent a label of any type. For example, the
submodel for two-tuples modeling RNA stem-pairing first
and third codon positions will be denoted wc(pp,13), and
wc(pp,�) will represent all submodels for stem-pairing two-
tuples.

Rate Matrices for Single Sites

The rate matrices of submodels for single columns
(Qc(ns,�) and Qc(l,�)) are parameterized according to the
HKY model (Hasegawa, Kishino, and Yano 1985). The
constraints of the HKY model can be expressed by
defining each off-diagonal entry in terms of four free
parameters:

qiab ¼
pi
b if a and b differ by a transversion,

jipi
b if a and b differ by a transition,

�

where i is the index of the submodel, j is the transition-
transversion ratio (ts-tv ratio), and p is the equilibrium
distribution defined by three free parameters.

Rate Matrices for Two-Tuples

The rate matrices of submodels for two-tuples
(wc(pp,�)) are highly constrained to allow estimates from
sparse data (table 2). Matrix entries are based on a pre-
estimated reversible pair-symmetric two-tuple (i.e., 16 3
16) rate matrix (Qfixed), which was estimated from a large
set of stem-pairing sites from noncoding RNA-structures
(Knudsen and Hein 1999). The rate matrix can be found
at www.stats.ox.ac.uk/;meyer/CORSmodel. The off-
diagonal entries of Qi are defined by the equations

qiab ¼

qfixedab sileft if a and b differ in the left

position,

qfixedab siright if a and b differ in the right

position,

qfixedab silefts
i
right if a and b differ in both positions,

8>>>><
>>>>:

where sileft and siright represent the relative rate of
substitution in the left and right site of a pair. These
parameters are introduced to allow the relative rate of
substitution to be dependent on the codon position
involved, and they have an effect similar to the parameter
that adjusts the ratio of nonsynonymous to synonymous
substitutions in the codon model by Goldman and Yang
(1994). The equilibrium frequencies (pc(pp,�)) used in the
likelihood calculations for two-tuples are all fixed to the
equilibrium distribution of Qfixed. Because equilibrium
frequencies are an implicit part of Qfixed, they do not enter
the parameterization of the rate matrices (Qc(pp,�)), but their
values can be extracted from Qfixed as this matrix fulfills
detailed balance.

The Phylogenetic Tree and Tree Scales

The phylogenetic tree defined by s and b is common
to all submodels. The differences in substitution rates are
modeled by the tree scales ri, which are directly com-
parable because of the normalization of all rate matrices to
one substitution per site per time unit (see eq. 3).

The Start Model

The most general form of the model wfull that we can
construct has no shared parameters between the 15
submodels and thus contains 6 � 51 9 � 3¼57 parameters,
excluding the phylogenetic tree.
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We start, however, with a model wstart that is
constrained in some dimensions. These constraints reflect
the amount of available data, our hypotheses concerning
the substitution process, and our desire to obtain bi-
ologically interpretable parameters.

In wstart we let the submodels for the three different
codon positions in the nonstructural regions have separate
parameter sets. Hence, we expect to see differences in the
substitution process and rate which reflect the average
effect that nucleotide substitutions in each codon position
has on protein conservation. Specifically, we expect that
third positions, where nearly all substitutions are synon-
ymous, will show a higher estimated rate of substitution
than first positions, where fewer substitutions are synony-
mous, and that these will again show higher rate estimates
than second positions, where all substitutions are non-
synonymous. A similar relation is expected from the ratio of
the rate of transitions to the rate of transversions (j), again
reflecting the relative number of transitions that contribute
synonymous substitutions in each codon position. No
scaling of the phylogenetic tree is needed for nonstructural
third positions (Ic(ns,3)), because the phylogenetic tree was
estimated from these. We therefore fix the rate of the third-
position submodel to one (rc(ns,3)¼ 1).

Although both nonstructural and loop/bulge regions
are nonpairing, the latter may have a biological function-
ality which distinguishes them from the former. In the
starting model, therefore, no ties were introduced between
parameters of loop/bulge and nonstructural substitution
models.

Because of the relative sparseness of data columns in
each of the two-tuple annotation categories (Ic(pp,�)), we
have chosen to constrain their submodels considerably.
Thus, we set s

cðpp; jkÞ
left ¼ sj, s

cðpp; jkÞ
right ¼ sk, s3¼ 1 8j, k 2 f1, 2,

3g, where s1 and s2 are two new free parameters shared
between all relevant two-tuple models. This corresponds to
assuming that the codon-position–specific effects on the
relative rate of substitution are independent of the specific
position combination and removes 16 free parameters
compared to wfull. Because Q

fixed is symmetric, this specifi-
cally induces equivalence between models with symmetric
codon positions, so that wc(pp,jk) ¼ wc(pp,kj). The normal-
ization procedure means that s1 and s2 are defined relative
to s3 ¼ 1. Their estimates can thus be interpreted as the
effect that protein conservation has on the relative rate of
substitution compared to the rate in third positions. Hence,
we would expect these estimates to rank like the rates of
substitution in the nonstructural regions.

We also constrain the substitution rate parameters of the
two-tuple models by parameterizing the rate as rc(pp,jk) ¼
rp(r

c(ns,j) 1 rc(ns,k)/2) 8j, k 2 f1, 2, 3g, where rp is a new
free parameter shared between all two-tuple models.
Given the previously mentioned normalization procedure,
(rc(ns,j) 1 rc(ns,k))/2 is the expected rate of substitution for
a nonstructural nucleotide pair evolving independently.
This means that rp can be interpreted as a scaling of the
substitution rate in the nonstructural regions, induced by
structure conservation.

Constraints on the parameters of wstart will be used to
express hypotheses on the substitution process, which are
then tested in a likelihood ratio framework (see Results).

Parameter Estimation

The maximum likelihood estimate (MLE)
argmaxwP(x j y, w) can be found through numerical
optimization. Such optimizations are computationally
intensive and prone to be caught in local optima when
the dimensionality of the parameter space is large. The
number of parameters subject to numerical optimization is
here reduced by pre-estimating the phylogenetic tree (s and
b), and by following the normal practice of using a simple
analytic estimate for the equilibrium frequencies, which is
derived by counting, and thus is not based on s and b. In the
following discussion we denote the set of index vectors
mapped to wi by Ii¼ fv 2 frag(x, y) : c(yv)¼ ig.

The estimate of s and b is based on third-codon
positions in nonstructural regions (Ic(ns,3)). This allows the
ri estimates to be interpreted as the rate of substitution
relative to sites in Ic(ns,3) (third position). A distance matrix
based on Kimura’s two-parameter model (Kimura 1980)
was found using DNADIST with default settings from the
PHYLIP package (Felsenstein 1993). s was estimated from
this distance matrix using Weighted Neighbor Joining
(Bruno, Socci, and Halpern 2000). The BASEML program
from the PAML program package (Yang 2000) was used
to find a MLE of b under a HKY model (which thus
corresponds to Q

cðns;3Þ
0 ), keeping s fixed.

The estimator for pi is the symbol frequency in the set
of N-tuples defined by Ii. When the equilibrium distribu-
tion is constrained to being the same for several
submodels, the estimator becomes the symbol frequency
in the corresponding union of N-tuple entry sets. Recall
that only pc(ns,�) and pc(l,�) are free parameters, because
pc(pp,�) are pre-estimated along with Qfixed.

The MLEs of the remaining parameters of w (i.e., Qi

and ri) are found using the quasi-Newton numerical
optimization method, with BFGS approximation of the
Hessian implemented in the OPT11 package (Meza
1994). The optimization was found to be robust to the
initial parameter values. Rewriting the composite-likeli-
hood expression (see eq. 2),

Pðx j y;wÞ ¼
YK
i¼1

Y
v2 Ii

Pðxv j wiÞ; ð5Þ

makes it clear that submodels with no shared parameter
constraints can be optimized independently to reduce
computational time.

Approximative standard errors of the MLE found by
the numerical optimization procedure were calculated from
an estimate of the Fisher information matrix [e.g., Ewens
and Grant (2001)]. The estimator used was a difference
approximation to minus the Hessian of the log-likelihood
function (ln(P(x j y, w)) evaluated at the MLE. This
approximation of the standard errors relies on the
asymptotic behavior of the MLE; the standard errors of
estimates based on sparse data (i.e., parameters based on
subsets of Ic(pp,�) or Ic(l,�)) are therefore only indicative.

Implementation

A general framework for phylogenetic analysis has
been written in C11 which allows models to be specified
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in XML. A Linux executable version can be downloaded
from www.stats.ox.ac.uk/;meyer/CORSmodel.

The Data

Hepatitis C virus (HCV) is a flavivirus belonging to
the Flaviviridae family with a positive-sense single-
stranded RNA genome. The genome is approximately
9,500 bases long and contains a single open reading frame
(ORF) which encodes one large polyprotein. On the basis
of phylogeny, hepatitis C viruses are divided into
genotypes 1 through 6, and these are further divided into
subtypes designated by a, b, and c, in order of discovery.
Two RNA structures have been described in the 59 and 39
untranslated regions of the HCV genome: one is involved
in initiation of RNA replication (Yi and Lemon 2003) and
the other functions as an internal ribosomal entry site
(Reynolds et al. 1996). However, it has recently been
demonstrated, via bioinformatics (Tuplin et al. 2002) and
enzymatic mapping techniques (Tuplin et al. personal
communication), that five RNA secondary structures exist
within the 39 part of the coding region. These structures
define our structural annotation.

The alignment, which contained only 0.27% gaps,
was generated manually from the coding part of 99 HCV
genotype 1a and 1b genomic sequences (alignment with
accession numbers available at www.stats.ox.ac.uk/
;meyer/CORSmodel). The RNA structure annotation of
the alignment was extrapolated from the genotype 1a
sequence used in the experimental validation of the coding
structures. Tables 1 and 2 provide the distribution of
nucleotides between the different structural categories. All
sites outside these five structures were annotated as
nonstructural (ns). The first 50 sites of the alignment were
discarded due to an RNA structure known to extend from
the 59 UTR into the beginning of the coding region
(Reynolds et al. 1996).

Results

The estimated phylogenetic tree had a total branch
lengthof9.84expected substitutionsper site and canbedown-
loaded from www.stats.ox.ac.uk/;meyer/CORSmodel.

Model Comparisons

The model wstart was taken as a starting point for the
model comparisons. Simpler models are defined by

successively adding constraints to the parameter space of
wstart. This leads to a hierarchy of nested models, which is
depicted in figure 2. The relative fit of successive models is
evaluated by likelihood ratio tests where the simpler model
represents the null hypothesis and the more general model
represents the alternative hypothesis. A significant P value
will therefore give rise to rejection of the simpler model
and retention of the more general model. A nonsignificant
P value does not lend support to rejection of the simpler
model, in which case the simpler model is adopted. Table
3 defines the models in terms of their constraints. Table 4
reports the likelihoods, the test statistics, and the P values
of each test.

The first model comparisons were made to evaluate
the importance of allowing for heterogeneity in the sub-
stitution process between loop/bulge and nonstructural
regions. In the model w1 we allow for differing rates of
substitution in the three codon positions of the single-site
models, but tie these rates between nonstructural and loop/
bulge regions. The comparison of wstart and w1 thus tests
the significance of letting codon position–specific rates of
substitution in loop/bulge regions differ from those in
nonstructural regions. This feature was found to be signif-
icant, but it does not illuminate whether this heterogeneity
consists of a difference in the relative rates of substitution
in the three codon positions or of a general rate change
affecting all codon positions evenly. We therefore con-
structed model w2, which represents the hypothesis that the
relative position-specific rates of substitution are equal
between loop/bulge and nonstructural regions but allows
for a general scaling of all three rates in loop/bulge
positions through the parameter rl, so that rc(l,k)¼ rlr

c(ns,k),
8k 2 f1, 2, 3g. This simpler model provided a fit to data
not significantly worse than wstart, and it was therefore
adopted as our new null model.

A further LRT showed no significant effect of
letting nucleotide equilibrium frequencies differ between
nonstructural and loop/bulge regions (w3 vs. w2), and w3

therefore replaced w2 as our null model. The opposite was
observed when testing for difference in the transition bias
between nonstructural and loop/bulge regions (w4 vs. w3).

Comparisons of models w5 and w6 versus w3 showed
that both transition bias and nucleotide equilibrium
frequencies are significantly different between the three
different codon positions in the nonstructural regions.

Next, we turned to the submodels that describe
substitution of two-tuples. By comparing models w7 and

Table 1
Label Distribution for Single Columns

Label 1 2 3 �
ns 2914 2915 2919 8748
l 21 21 24 66
� 2935 2936 2943 8814

NOTE.—The distribution of non-base-pairing sites in the analysed data given by

the structural and coding annotation. RNA-structure labels (AS) are given vertically

and divide the sites into nonstructural sites (ns) i.e., sites outside RNA structural

elements and loop and bulge sites (l) which are located inside structural elements

but not involved in base-pairing. Coding labels (AC) which correspond to codon

position are given horizontally. The sum over all labels within a category is

represented by a dot.

Table 2
Label Distribution for Two-Tuples

Label 1 2 3 �
1 16 10 8 34
2 10 9 15 34
3 7 13 9 29
� 33 32 32 97

NOTE.—The distribution of base-pairing nucleotide two-tuples in the analysed

data set as given by the structural and coding annotation. The label of all base-

pairing two-tuples consists of the codon position of the left-most nucleotide and the

codon position of the right-most nucleotide (pleftpright). The left part of the coding

label (pleft) is listed vertically, and the right part of the coding label (pright) is listed

horizontally. The sum over all labels within a category is represented by a dot.
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w3, we found a significant effect of including the codon-
position–specific skewing via the parameters s1 and s2. A
similar observation was made for the parameter rp, which
scales the rate of substitution in base-pairing regions (w8

vs. w3).
Lastly, we tested our restricted start model wstart

against the completely unrestricted full model wfull, which
was found to provide a significantly better relative fit.

Parameter Estimates

Parameter estimates from the final model (w3) and
standard errors are listed in table 5. Values of the rate of
substitution and the transition bias estimated for the
nonstructural submodels followed our prediction and were
ordered by codon position as follows: third . first .
second.

This relation was not followed by the estimated
parameters of transition bias in the loop/bulge regions, but
the large degree of uncertainty associated with these does
not permit any strong conclusion about the ordering.
Estimates from third codon positions in loop/bulge regions
had confidence intervals which did not overlap those of their
counterparts in the nonstructural regions, showing that this
position has a significant difference in the transition bias.

Considering the two-tuple submodels, we found
a reduced relative rate of substitution in first and second
codon positions. Contrary to expectation, the estimated
effect was slightly more pronounced (s2 . s1) in first than

in second positions, but these estimates are also associated
with a high degree of uncertainty.

The scaling parameters for the structural regions (rl
and rp) showed a reduction in the absolute rate of
substitution to about half in loop/bulge regions and about
a third in base-pairing regions.

Discussion

Here we have presented a composite phylogenetic
model of nucleotide substitution in protein-coding regions
with conserved RNA structures and applied it to a data set
of full-length genome sequences of the hepatitis C virus.

In base-pairing regions we found that the substitution
process is affected by selection to conserve both the amino
acid sequence of the encoded protein and the RNA
structure. The protein-coding constraint was reflected as
a lowering of the relative rate of substitution in base-pairing
nucleotides occupying first and second codon positions,
compared to that observed in noncoding RNA structural
regions, and the constraints from structural conservation
caused a marked reduction of the rate of substitution in
base-pairing regions compared to nonstructural regions.

We also inferred that selection imposes a significantly
different filtering of mutations in loop/bulge regions
compared to nonstructural regions, which results in
a lowered rate of substitution and a difference in the
relative number of accepted transitions and transversions.
This indicates that loop/bulge regions of the investigated

FIG. 2.—Graph of the nesting relationship between the CORS models. wfull represents the most general model. All other models are defined by
introducing constraints on the free parameters of wfull. Each arrow thus corresponds to a set of parameter constraints (see table 3), and is accompanied
by a likelihood ratio test (see table 4). Broken arrows represents tests which reject the constrained model as fitting the data significantly worse. Solid
arrows represent tests which did not lead to rejection of the constrained model.
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structures are not mere spacer regions but have a biological
function imposing additional selective constraints. This
added constraint could occur because loop/bulge regions
mainly occupy slowly evolving protein regions. The amino
acid composition of loop regions, however, shows no sign
of a bias toward slowly evolving amino acids like proline,
cysteine, and tryptophan when compared to the overall
amino acid composition (results not shown). It therefore
seems more likely that this functionality is related to the
RNA structures where it could be mediated by the
formation of pseudo knots via complementary base-pairing
or the interaction with proteins as described for the loop
region of the cis-acting replication element (CRE) of
polioviruses (Goodfellow, Kerrigan, and Evans 2003).

A factor which may affect both parameter estimates
and LRTs is the fidelity of the structural annotation. The
experimental annotation employed in our study is based on
a HCV genotype 1a strain, and our fragmentation of the
alignment, and subsequent parameter estimation, is based
on the assumption that its structure is conserved
throughout the alignment. However, a comparison to an

experimental annotation of homologous RNA structures in
HCV genotype 2 shows considerable differences (Tuplin
et al. in progress). Our data set does not contain any
genotype 2 sequences but consists solely of sequences
from the more closely related subtypes 1a and 1b. Still, we
found that 10.1% of the positions annotated as pairing
contain mismatching nucleotides (mismatching with re-
spect to base-pairing—i.e., pairs other than A-T, C-G, or
T-G), indicating that functional conservation within HCV
genotype 1 may be achieved with some structural

Table 4
Model Comparisons and Test Statistics

wi Tested Against � df Likelihood LR P value

wfull — — 8.34231*10265371 — —
wstart wfull 25 6.07838*10265405 157.21 0.0
w1 wstart 3 2.47814*10265419 66.27 0.0
w2 wstart 2 9.71299*10265406 3.67 0.160
w3 w2 9 7.47754*10265407 5.13 0.823
w4 w3 3 5.39943*10265411 19.07 0.0003
w5 w3 6 7.53933*10265619 976.28 0.0
w6 w3 2 1.04188*10265843 2011.80 0.0
w7 w3 2 4.58388*10265489 378.60 0.0
w8 w3 1 5.71316*10265481 341.32 0.0

NOTE.—�df is the difference in the number of free parameters, and LR is the

value of the likelihood ratio test statistic.

Table 5
Parameter Estimates and Standard Errors for
Our Final Model w3

name value stderr

jc(ns,1) 4.84 0.22
jc(ns,2) 4.28 0.26
jc(ns,3) 19.71 0.63
jc(l,1) 1.605 1.47
jc(l,2) 16.07 20.8
jc(l,3) 8.621 3.19
rc(ns,1) 0.206 0.0044
rc(ns,2) 0.115 0.0032
s1 0.0461 0.018
s2 0.0573 0.019
rp 0.384 0.034
rl 0.476 0.066

NOTE.—Estimated parameters from the substitution model include the

following: (1) The ratio of the rate of transition over the rate of transversions in

the single-site models (j). These are given for each of the three codon positions and

for both nonstructural sites (ns) and loop/bulge sites within RNA structures (l). (2)

The rate of substitution in first and second codon positions of nonstructural regions

relative to the rate of substitution at third codon-positions (rc(ns,1) and rc(ns,2)). (3) The

scaling of the rate of substitution of base-pairing nucleotides occupying first and

second codon positions, compared to those occupying third codon positions (s1 and

s2). (4) The scaling of the rate of substitution in the base-pairing regions (rp) and in

the loop/bulge regions (rl), as compared to the rate of substitution in nonstructural

regions. (See also text section, The Start Model, for an interpretation of the

parameters.) stderr denotes the standard error. Approximative confidence intervals of

parameters can be found as61.96 � stderr. (See text section, Parameter Estimation.)

Table 3
Model Descriptions

wi

Preceding
Model Parameter Constraints Introduced df

wfull 57
wstart wfull rc(ns,3) ¼ 1 32

s
cðpp;jkÞ
left ¼ sj, s

cðpp;jkÞ
right ¼ sk, s3 ¼ 1 8 j,k 2 f1, 2, 3g,

rc(pp,jk) ¼ rp(
rcðns;jÞ1rcðns;kÞ

2
) (A) 8 j,k 2 f1, 2, 3g

w1 wstart rc(l,j) ¼ rc(ns,j)(B) 8 j 2 f1, 2, 3g 29
w2 wstart rc(l,j) ¼ rlr

c(ns,j) (C) 8 j 2 f1, 2, 3g 30
w3 w2 pc(l,j) ¼ pc(ns,j) (D) 8 j 2 f1, 2, 3g 21
w4 w3 jc(l,j) ¼ jc(ns,j) (E) 8 j 2 f1, 2, 3g 18

w5 w3 pc(ns,1) ¼ pc(ns,2) ¼ pc(ns,3)(F) 15
w6 w3 jc(ns,1) ¼ jc(ns,2) ¼ jc(ns,3)(G) 19
w7 w3 s1 ¼ s2 ¼ s3

(H) 19
w8 w3 rp ¼ 1 (I) 20

NOTE.—df denotes the number of free parameters. The parameter constraints are introduced relative to the preceding model.

Brief interpretation of constraints: A: The rate of the third position nonstructural sites set to scale with phylogenetic tree. The

skewing of the two-tuple rate matrices only depends on the involved codon positions. The rate of two-tuple changes is

proportional to rate of change had the codon positions been in nonstructural regions. B: Equal evolutionary rates between equal

codon positions of loop/bulge regions and nonstructural regions. C: Proportional evolutionary rates between equal codon

positions of loop/bulge regions and nonstructural regions. D: Equal equilibrium frequencies between equal codon positions

between loop/bulge regions and nonstructural regions. E: Equal ts-tv ratio between equal codon positions between loop/bulge

regions and nonstructural regions. F: Equal equilibrium frequencies among all single sites submodels. G: Equal ts-tv ratio

between codon positions of nonstructural regions. H: No codon position–specific effect on the relative rate of changes in two-

tuples. I: Paring regions evolve with the same evolutionary rate as nonstructural regions.
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flexibility. Some positions may thus be mis-annotated on
part of the tree and could potentially affect parameter
estimates. To investigate this possibility, we re-estimated
parameters under model w3, using a ‘‘cleaned’’ data set,
where alignment columns containing mismatching nucleo-
tides were treated as missing data. This showed that mis-
annotation results in a small upward bias in the estimated
rate of substitution in base-pairing regions (rp¼ 0.323 vs.
rp ¼ 0.384). A slight effect was also observed on the s
parameters, which changed their relation from s1 , s2 to
the expected relation s2 , s1.

The rate estimates of loop/bulge submodels could poten-
tially be downward biased if regions annotated as loop/bulge
are indeed base-pairing throughout a part of the tree. How-
ever, because of the strength of the constraints introduced by
complementary base-pairing, we expect the effect of
structural evolution to be greatest in two-tuple models.

Although the effects we observe are small, it is clear
that the assumptions on which our model rests are sensitive
to structural evolution. This question could be addressed
through the use of models that allow the RNA structure to
evolve along the tree. Such models do not exist at present
but represent an exciting challenge.

There are more immediate ways in which the present
approach could be improved. One would expect that the
constraints of protein conservation differ between amino
acids with different structural or functional roles in the
protein. The resulting heterogeneity in the substitution
process could be accommodated either by adding addi-
tional layers of annotation describing protein structure and
function or by integrating over a distribution of, e.g., substi-
tution rates (Yang 1993; Felsenstein and Churchill 1996).

We have stated our model via a general framework for
constructing context-reducing phylogenetics models for
genetic data with multiple annotations. There are several
potential applications of this modeling framework, in-
cluding, for example, protein sequences where both
secondary and tertiary structure is taken into account,
coding regions with overlying splice-sites, and coding
regions annotated by genomic characteristics (e.g., isochore
vs. non-isochore). The main practical limitations on the use
of the presented framework will be of time usage and
robustness of the parameter optimizations. Total time usage
will depend on the time and number of likelihood
calculations in the optimization procedure. Because the
time spent in each likelihood calculation is proportional to
the number of sites and squares in the alphabet size of the
sites, it becomes impractical in most cases to fragment the
alignment into tuples longer than three. Adding free
parameters to amodelwill generally increase the complexity
of the search space. Thus, the needed number of likelihood
calculationswill growmore than linearlywith the number of
free parameters, and the chance of finding the global
optimum will decrease. This is true for a given submodel,
but the relation between the total number of free parameters
and the overall optimization procedure is more complex. A
way of reducing the overall number of parameters is by
constraining these between submodels. However, such
constraints make submodels interdependent, and they
increase the number of free parameters which have to be
optimized simultaneously and thus the complexity of the

search space. As a consequence, the effect of the total
number of parameters on the speed and fidelity of the
estimation procedure will depend on a complex interplay
between the data and the structure of the model, and no clear
guidelines are available. However, we note that the
optimizations procedure employed here was both feasible
and robust with more than 50 free parameters.

The comparison between the full model and our
constrained starting model showed that the latter does not
capture the full complexity of the evolutionary process. As
more data from CORS accumulate, more elaborate models
should be explored. It would also be of great interest to
evaluate the goodness-of-fit that our model provides to
data, and to estimate the validity of our assumption of
a v2�df distributed LRT statistic. Both could be tested by
parametric bootstrapping (Goldman 1993), but because of
the numerical optimization procedures used, this would be
extremely demanding computationally.

Furthermore, it would be interesting to evaluate how
well our context-reducing model compares to context-
elaborate models such as that of Pedersen and Jensen
(2001), which represent a more loyal description of the
true evolutionary process in structural regions. The latter
approach employs a more accurate model of the
evolutionary process, but it must resort to approximative
computational techniques, whereas our model represents
an approximation to the known context dependencies in
the evolutionary process but relies on exact calculations.
Thus the choice of substitution model type stands between
models which treat a small amount of information with the
greatest possible accuracy and approximative models
which treat the greatest possible amount of information
with reduced accuracy. Our objectives here were to
develop a model that could be used in the estimation of
evolutionary parameters and the testing of evolutionary
hypotheses, in comparative RNA structure prediction in
coding regions, and in RNA virus phylogenetics. At
present the challenges in implementation and computation
do not allow for the routine use of process-based models to
solve any of these problems. This motivated our choice of
a context-reducing model. As algorithms and computers
improve, context-elaborate models will, however, become
more attractive. The choice of model will then be
determined by the type of analysis performed. Thus,
context-elaborate models may become the models of
choice for the estimation of evolutionary parameters and
the testing of evolutionary hypotheses. However, for use in
comparative RNA structure prediction and RNA virus
phylogenetics, we believe that the computational demand
of high throughput sequence analysis and phylogenetic
algorithms will dictate the use of computationally
convenient approximative models for quite some time.

Conclusion

Here we have presented a first model of nucleotide
substitution in protein-coding regions with embedded,
conserved RNA structure. The model is based on an
approximation to the known context dependencies in the
substitution process and proposes a general framework for
constructing context-reducing models by fragmentation of
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a multiply annotated alignment into short independent N-
tuples. This framework should find use in the construction
of phylogenetic models for genomic regions that are under
overlapping functional constraints. We have used the
model to demonstrate that the nonpairing parts of RNA
structures in the hepatitis C virus (loop and bulge regions)
evolve according to a selective regime different from that
of nonpairing nucleotides outside the structural regions,
indicating a functional role of these. The emphasis here
has been on exploring the importance of different model
features and the estimation of evolutionary parameters.
Other immediate applications of the model are in RNA
virus phylogenetics and in comparative RNA structure
prediction in coding regions. We are at present pursuing the
latter by incorporating the presented model into a stochastic
context-free grammar which is capable of generating
alignments of coding regions with RNA structures.
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