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Abstract. In representing the evolutionary history of a set of binary DNA sequences by a
connected graph, a set theoretical approach is introduced for studying recombination events.
We show that set theoretical constraints have direct implications on the number of recom-
bination events. We define a new lower bound on the number of recombination events and
demonstrate the usefulness of our new approach through several explicit examples.

1. Introduction

DNA sequence data, much of which is for studying populational variations, is
presently accumulating at an increasing rate. It is of interest to investigate the evo-
lutionary history of sampled sequences, but such investigations are complicated by
the fact that DNA sequences from a species have often been subjected to recom-
bination events. An important problem in this regard is to determine how many
recombination events must have occurred in the evolutionary history of the sam-
pled sequences. In [HK] Hudson and Kaplan have constructed an algorithm which
gives a lower bound on the number of recombination events. The primary goal of
this paper is to construct an improved lower bound.

Let S = {sα} be a set of binary DNA sequences

sα = cα
1 , cα

2 , . . . , cα
h ,

where cα
i ∈ {0, 1} for every α ∈ {1, 2, . . . , n} and i ∈ IS := {1, 2, . . . , h}. Note

that each sequence is of fixed length h. The entry cα
i is called the i th character of

sequence sα , and the index i denotes the character site. A mutation event at the i th

character site of a sequence, say s = c1, c2, . . . , ch, is a map mi : {0, 1}h → {0, 1}h
which sends the sequence s to mi (s) = c1, c2, . . . , ci−1, c̄i , ci+1, . . . , ch, where
c̄i = 1 if ci = 0 and c̄i = 0 if ci = 1. In other words, mi changes the i th character
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of the binary sequence which undergoes mutation. Throughout this paper we make
the following assumption:

Assumption 1. There are no reverse or recurrent mutations.

Under this working assumption Hudson and Kaplan have constructed an algorithm
for determining a lower bound RHK(S) on the number of recombination events nec-
essary to represent S by a connected graph [HK]. In this paper, the minimum number
of recombination events is denoted by Rmin(S) and is defined by the property that
there exists no graphical representation of S with less than Rmin(S) recombination
events. The term “graph” refers to a finite graph which may have cycles but no
loops. In our way of drawing graphs, time runs from top to bottom. To any point
on the graph except for a finite set � of points, there corresponds a unique DNA
sequence of length h. Every point in � corresponds to either a mutation event or a
recombination event. More precisely, every point-like mutation event occurs on an
edge of the graph, and to every recombination event, there corresponds a unique
trivalent vertex which belongs to a cycle. Let v be a trivalent vertex where a recom-
bination event occurs. We call such a vertex a recombination vertex. Let e1, e2, e3
be the edges incident with v and let s1, s2, s3 be their corresponding DNA sequences
in the immediate neighbourhood of v where neither a mutation event nor any other
recombination event occurs. Then, there exists a cycle C such that e1 and e2 belong
to C, and s3 is the by-product of a recombination event between s1 and s2. In fact,
every cycle in the graph contains at least one such recombination vertex. Lastly,
we remark that for each recombination event the position of the break-point in the
involved DNA sequences must be specified. The reader should refer to Figure 1
and the explanation therein for a specific example.

Although Hudson and Kaplan’s estimate RHK(S) certainly is a lower bound,
in many cases of S, RHK(S) is in fact less than the minimum number Rmin(S) of
necessary recombination events. In this paper we improve upon the ideas in [HK]
to construct a sharper lower bound on the number of recombination events. In so
doing, we show why Hudson and Kaplan’s algorithm does not give the minimum
Rmin(S) for a general data set S.An important observation is that the total number of
recombination events depends on which sequences have undergone recombination.
Hudson and Kaplan’s algorithm, however, does not take that point into account,
thus often leading to an underestimation of the minimum number of recombination
events. As we illustrate in this paper, the gist of our new approach is that, in order to
obtain a lower bound which is sharper than RHK(S), we need to choose judiciously a
proper subset of S for each pair of incompatible character sites. More precisely, the
proper subset must be chosen from what we call “the quadpartition” of S associated
to each pair of incompatible character sites.

The organisation of this paper is as follows. In §2, we establish some set theoret-
ical results and discuss their implications on the number of recombination events.
Our new lower bound RQ(S) is defined in §3, where we also provide an algorithm
for simplifying the determination of RQ(S). In the subsequent section we discuss
applications of our result to some specific examples, including Kreitman’s 1983
data of the alcohol dehydrogenase locus from 11 chromosomes of Drosophila mel-
anogaster [K]. We conclude with some remarks in §5, and for ease of reference,
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rephrase in Appendix A Hudson and Kaplan’s algorithm for determining RHK(S).
Proofs of the lemmas from §2 are provided in Appendix B.

Notations. We here summarise our notations to be used throughout the paper:

S A set {sα} of binary DNA sequences of fixed length h.

2S The set of all subsets of S.

X \ A The complement of A relative to X, where A ⊂ X.

cα
i The i th character of sequence sα .

mi A mutation event at the i th character site.

(i, j) A pair of character sites.

I (i, j) The open interval {x ∈ R i < x < j}.
{Bi, B

c
i } The bipartition of S associated to the character site i.

{Qij
a } The quadpartition of S associated to the pair (i, j) of incompat-

ible character sites. See Definition 2

Ri,j The recombining subset corresponding to the pair (i, j) of
incompatible character sites. See Definition 3.

P(S) The set of all pairs (i, j), where 1 ≤ i < j ≤ h, of incompatible
character sites in S.

R(S) The set of Ri,j , where (i, j) ∈ P(S)

A An assignment. See §3.1.

ω(X; A) The weight of X ∈ 2S in the assignment A. See §3.1.

A The set of all assignments which satisfy Properties (P1) and (P2)
described in §3.1.

Rmin(S) The minimum number of recombination events necessary for
representing S by a connected graph.

RHK(S) Hudson and Kaplan’s lower bound.

RQ(S) The new lower bound defined in the present paper.

2. Set Theoretical results

To each character site i, there corresponds a bipartition, also known as a split, of
S into disjoint subsets Bi and Bc

i , where c denotes complement relative to S, such

that sα and sβ belong to the same subset if and only if cα
i = c

β
i .

Definition 1 (Informative character site).
The i th character site is called non-informative if

(a) cα
i = 0, ∀ α,

(b) cα
i = 1, ∀ α,
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(c) cα
i = 0 for exactly one value of α, or

(d) cα
i = 1 for exactly one value of α.

In other words, if the i th character site is non-informative, then either Bi or Bc
i has

cardinality ≤ 1. If a character site is not non-informative, it is called informative.

Non-informative character sites are of little importance in our analysis, since no
additional recombination event is needed to explain such a site. Clearly, if the i th

character site is informative, then the corresponding bipartition {Bi, B
c
i } consists

of proper subsets of S.

Definition 2 (Incompatibility & quadpartition).
A pair (i, j) of character sites is called compatible if at least one of the following
intersections is empty:

Bi ∩ Bj , Bi ∩ Bc
j , Bc

i ∩ Bj , Bc
i ∩ Bc

j .

If none of the above intersections is empty, then the pair (i, j) is called incompatible,
and there exists a corresponding quadpartition

{Qij
1 , Q

ij
2 , Q

ij
3 , Q

ij
4 } = {Bi ∩ Bj , Bi ∩ Bc

j , Bc
i ∩ Bj , Bc

i ∩ Bc
j } (2.1)

of S into four pair-wise disjoint proper subsets.

To each pair of incompatible character sites i and j , where i < j , we assign an
open interval of the form

I (i, j) := {x ∈ R i < x < j}.

As discussed in [HK], Assumption 1 implies that recombination events
are necessary to represent incompatible characters sites by a
connected graph. For example, consider the data set on the
right where we denote each sequence sα by its index value.
There are four distinct sequences, each of length 2. But, there
are only two character sites and hence only two possible
mutation events. Therefore, at least one recombination event

S = {1, 2, 3, 4}
1 = 1 0
2 = 1 1
3 = 0 1
4 = 0 0

is necessary to represent S graphically. A possible graphical representation of S is
shown in Figure 1. Notice that all four possible combinations – 0 0, 0 1, 1 0, and
1 1 – of characters are present in the two character sites. Looking for the presence
of all four such combinations in a pair of character sites is commonly known as the
“four gamete” test of incompatibility. For convenience of discussion, we introduce
the following definition:

Definition 3 (Recombining subset). Let (i, j) be a pair of incompatible character
sites. A recombining subset Ri,j = Q

ij
a ∈ {Qij

1 , Q
ij
2 , Q

ij
3 , Q

ij
4 }, associated to the

incompatible pair (i, j), is defined as the set of sequences in S whose character
sites i and j are supposed to be explained by recombination.
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Fig. 1. The symbol mi denotes a mutation event at the ith character site, and the symbol • the
location of the mutation event. Throughout this paper, recombination vertices are denoted
by the symbol ◦. The symbol :̇ in a sequence is used to indicate that the sequence is obtained
by a recombination event, in which the part of the sequence to the left (right) of the symbol
comes from the left (right) edge incident on the recombination vertex. The length of each
edge has been chosen arbitrarily and does not carry any significance. Time runs from top to
bottom.

For each pair of incompatible sites, we need to make a choice of recombining
subset. An important observation is that the total number of recombination events
depends on the choice of the set

R(S) :=
{
Ri,j ∈ {Qij

1 , Q
ij
2 , Q

ij
3 , Q

ij
4 } i < j , (i, j) an incompatible pair in S

}

of recombining subsets. Moreover, there exists a preferred choice of R(S) which
leads to the minimum number Rmin(S) of recombination events. To make this fact
more transparent, we provide the following two examples, which well illustrate the
dependence of the number of recombination events on R(S).

(Remark: Henceforward, when we discuss examples, we adapt the following con-
ventions: For every incompatible pair (i, j), Q(ab) denotes the proper subset of S

whose elements are the sequences sα with cα
i = a and cα

j = b. To further simplify
the notation, we denote the sequence sα , α ∈ {1, 2, . . . , n}, by the value of the
index α.)

Example 1. Let S be a set of binary DNA sequences of length h and assume that
we have constructed a graph G which represents S with the minimum number of
recombination events. Now, consider adding a new character site to the data, so
that the length of each sequence becomes h + 1. Moreover, assume that the newly
added character site is compatible with the original h character sites. Let S′ denote
the newly constructed data set.

Let mh+1 denote a mutation event corresponding to the new character site. In
contrast to common expectation, one might not be able to modify the graph G by a
single mutation mh+1 alone to produce a graph which represents the new data set S′.
In fact, if one insists on using G to represent the original data S, one might have to
introduce an additional recombination event to G in order to represent S′. This does
not necessarily mean, however, that even a compatible character site can affect the
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Fig. 2. A graphical representation of S in Example 1 with R1,2 = {4} and R3,4 = {1}. The
same notations as in Figure 1 are used here.

the minimum number of recombination events. Rather, the point is that one needs
to choose R(S′) judiciously to achieve the minimum. A concrete example would
be timely.

Consider the set S = {1, 2, . . . , 6}, where the sequences 1, 2, . . . , 6 are shown
below:

1 = 1 1 0 1
2 = 1 1 0 0
3 = 1 1 1 0
4 = 0 1 1 1
5 = 1 0 1 1
6 = 0 0 1 1

Incompatibility Q(00) Q(01) Q(10) Q(11)

(1, 2) {6} {4} {5} {1, 2, 3}
(3, 4) {2} {1} {3} {4, 5, 6}

In the table we have listed the pairs of incompatible character sites and their corre-
sponding quadpartitions. It is clear that Rmin(S) = 2 and there are several ways to
achieve this minimum. Let us choose the recombining subsets to be R1,2 = {4} and
R3,4 = {1}, for which case a graphical representation of S is shown in Figure 2.

Now construct a new data set S′ by introducing a fifth character site to S as
follows:

c
1
5 = 0 , c

2
5 = 0 , c

3
5 = 0 , c

4
5 = 1 , c

5
5 = 1 , c

6
5 = 1 . (2.2)

Note that this new character site is compatible with every one of the first four sites.
But, since the part to the right of the symbol :̇ in sequence 1 comes from sequence
5, it is clear that the new data set S′ cannot be represented by simply modifying
Figure 2 with an additional mutation m5. In fact, an additional recombination event,
as well as m5, must be introduced to Figure 2 to represent S′. The same conclusion
would follow if sequence 1 were obtained from 2 and 4 or from 2 and 6, instead
of from 2 and 5. If we had chosen the recombining subsets of S to be R1,2 = {4}
and R3,4 = {2}, however, we would not need an additional recombination event.
This fact is illustrated in Figure 3, where m5 alone is enough to yield a graph which
represents the fifth character site as well.
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Fig. 3. A graphical representation of S ′ in Example 1 with R1,2 = {4} and R3,4 = {2}.

Fig. 4. Graphical representations of S in Example 2 with the minimum number of
recombination event.

Example 2. Consider the data set S = {1, 2, 3, 4, 5}, whose sequences and quad-
partitions are as follows.

1 = 1 1 0
2 = 0 1 0
3 = 0 1 1
4 = 1 0 1
5 = 0 0 1

Incompatibility Q(00) Q(01) Q(10) Q(11)

(1, 2) {5} {2, 3} {4} {1}
(1, 3) {2} {3, 5} {1} {4}

In this example, the minimum number Rmin(S) of recombination event is 1,
which is obtainable if and only if we choose either R1,2 = R1,3 = {1} or R1,2 =
R1,3 = {4}. Furthermore, the location of that single recombination event must be
between the first and the second character sites. For other choices of R1,2 and R1,3,
we need more than one recombination event to represent the data graphically. Two
graphical representations of S each involving only one recombination event are
shown in Figure 4.

In contrast to the above case, the following situation requires at least two recom-
bination events:
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Fig. 5. A schematic representation of the incompatibilities considered in Proposition 1.
There are three inequivalent situations and, in each case, incompatibility between a pair of
character sites is represented by a connecting line.

1 = 1 1 0
2 = 0 1 0
3 = 0 1 1
4 = 1 0 1
5 = 0 0 1
6 = 1 1 1

S ′ = {1, 2, 3, 4, 5, 6}
Incompatibility Q(00) Q(01) Q(10) Q(11)

(1, 2) {5} {2, 3} {4} {1, 6}
(1, 3) {2} {3, 5} {1} {4, 6}

Notice that S and S′ have the same form of incompatibilities; that is, incompatible
pairs are (1, 2) and (1, 3) in both cases. But, whereas in the case of S we can choose
R1,2 = R1,3, that is not possible in the case of S′, for the quadpartitions {Q1,2

a } and
{Q1,3

a } have no matching elements.

As mentioned before, the most important lesson to be learned from the above
examples is that the number of recombination events depends on which sequences
undergo recombination for which pair of incompatible character sites. For instance,
if there are two pairs (i, j), (k, l) of incompatible character sites1, with I (i, j) ∩
I (k, l) 	= ∅, then it might be possible to account for both incompatibilities using
only one recombination event. A necessary condition2 for such a case is that there
exists a common choice of recombining subset, i.e Ri,j = Rk,l . As we show pres-
ently, however, this is not always possible.

In the next section, we define a new lower bound motivated by our observation,
focusing on which sequences undergo recombination and where in the sequences
recombination events occur. As for now, we turn to a rigorous reason why Hud-
son and Kaplan’s algorithm fails to give the minimum Rmin(S) for a general data
set S. The reader unfamiliar with Hudson and Kaplan’s algorithm may refer to
Appendix A of the present paper.

Proposition 1. Let ρ denote the minimum number of recombination events neces-
sary to represent graphically the character sites i1, i2, j1, j2, where i1 < j1 and
i2 < j2. If (i1, j1) and (i2, j2) are incompatible pairs, whereas (i1, i2), (i1, j2),
(j1, i2) and (j1, j2) are compatible pairs, then ρ > 1.

1 Here, i, j, k, l may not all be distinct.
2 We emphasise that, in general, Ri,j = Rk,l is not a sufficient condition for having a

single recombination event which explains both incompatible pairs (i, j) and (k, l). If other
incompatible pairs are present in the data S, then more than one recombination event may
be required to explain the sequences in Ri,j ⊂ S.
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Fig. 6. Venn diagrams pertaining to the situations described in the lemmas. In each diagram,
the enclosed box drawn in solid line denotes the set S. Dashed lines are used to represent
how an informative character site may bipartition S. When two informative character sites
are incompatible, their corresponding dashed lines intersect, partitioning the enclosed box
into four disjoint regions.

As shown in Figure 5, there are three possible situations. To prove the above Prop-
osition, we need to establish several facts and we have decomposed them into the
following set of successive lemmas:

Lemmas 1 & 2 together imply Lemma 3, which in turn implies Lemma 4.
Finally, Lemma 5 follows from Lemma 4. Proofs of the lemmas are provided in
Appendix B. So that the reader can gain some intuition3 behind the lemmas, we
have drawn a couple of Venn diagrams in Figure 6. We would like to encourage the
reader to translate the claims made in the lemmas into graphical statements in the
context of Venn diagrams.

Lemma 1. Let i, j, k denote informative character sites, of which (i, j) is an incom-
patible pair, whereas (i, k) and (j, k) are compatible pairs. If either Bk ∩ Bi = ∅

or Bk ∩ Bc
i = ∅, then

Bc
k ∩ Bj 	= ∅ and Bc

k ∩ Bc
j 	= ∅.

Proof. See Appendix B. 
�
Lemma 2. Let i, j, k be defined as in Lemma 1. Then, exactly one of the following
intersections is empty:

Bi ∩ Bk , Bi ∩ Bc
k , Bc

i ∩ Bk , Bc
i ∩ Bc

k .

Proof. See Appendix B. 
�
Lemma 3. Let i, j, k be defined as in Lemma 1. Then, the quadpartition
{Qij

1 , Q
ij
2 , Q

ij
3 , Q

ij
4 } of S contains exactly one Q

ij
a such that either

3 In fact, the main idea running through the present paper first stemmed from thinking
about such simple diagrams.
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(a) Bk ∩ Q
ij
a 	= ∅ and Bk ∩ ( S \ Q

ij
a ) = ∅,

or (b) Bc
k ∩ Q

ij
a 	= ∅ and Bc

k ∩ ( S \ Q
ij
a ) = ∅.

In other words, up to a choice of relabelling, there exists a unique Q
ij
a ∈

{Qij
1 , Q

ij
2 , Q

ij
3 , Q

ij
4 } such that either Bk ⊆ Q

ij
a or Bc

k ⊆ Q
ij
a .

Proof. See Appendix B. 
�
Lemma 4. Let i, j, k, l be informative character sites such that (i, j) and (k, l) are
incompatible pairs, whose corresponding quadpartitions are
{Qij

1 , Q
ij
2 , Q

ij
3 , Q

ij
4 }and {Qkl

1 , Qkl
2 , Qkl

3 , Qkl
4 }, respectively; and (i, k), (i, l), (j, k),

and (j, l) are compatible pairs. Then, there exists a subset Q
ij
a which is unique, up

to a choice of relabelling, such that

S \ Qkl
b ⊆ Q

ij
a

for exactly one index value b ∈ {1, 2, 3, 4}.
Proof. See Appendix B. 
�
Lemma 5. Let i, j, k, l be defined as in Lemma 4. Then, there exist no a, b ∈
{1, 2, 3, 4} such that

Q
ij
a = Qkl

b .

Proof. See Appendix B. 
�
Having established the above lemmas, we are now in a position to provide the
desired proof of Proposition 1.

Proof of Proposition 1. Since incompatible pairs are present, at least one recom-
bination event is required, so ρ > 0. If I (i1, j1) ∩ I (i2, j2) = ∅, then it is clear
that more than one recombination event is required, and therefore ρ > 1. Sup-
pose I (i1, j1) ∩ I (i2, j2) 	= ∅. Then, a necessary condition for ρ = 1 is that
Ri1,j1 = Ri2,j2 . But, that is never possible according to Lemma 5. 
�

A reason why Hudson and Kaplan’s algorithm for determining the minimum
number of recombination events may not work is now apparent. In their algorithm,
one is to ignore an incompatible pair (k, l), k < l, if there exists another incompat-
ible pair (i, j), i < j , such that either I (i, j) ⊂ I (k, l) or I (i, j) ∩ I (k, l) 	= ∅

and i < k < j [HK]. But, Proposition 1 implies that, in general, such an algorithm
may lead to a lower bound which is less than the minimum Rmin(S).

As we have seen thus far, set theoretical constraints provide interesting informa-
tion which can be used to determine under what conditions a single recombination
event can explain several incompatibilities. Furthermore, it is possible to obtain
more set theoretical results regarding various patterns of incompatibilities, thus
putting more constraints on the problem of counting recombination events. For
example, one can easily obtain the following result:
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Lemma 6. Let i, j, k denote informative character sites. Let (i, j) and (j, k) be
incompatible pairs, and let (i, k) be a compatible pair. Then, there exists a proper
subsetQij

a ∈{Qij
1 , Q

ij
2 , Q

ij
3 , Q

ij
4 }and a proper subsetQjk

b ∈{Qjk
1 , Q

jk
2 , Q

jk
3 , Q

jk
4 }

such thats

Q
jk
b ⊂ Q

ij
a .

Proof. See Appendix B. 
�
We do not pursue here establishing more set theoretical lemmas, however. We have
seen in the present section that set theoretical constraints have direct implications
on recombination events. We can consider various patterns of incompatibilities,
establish more set theoretical results similar to Proposition 1 and construct local
lower bounds based on them. Myers and Griffiths [MG] have proposed a linear pro-
gramming algorithm which uses a set of local lower bounds to construct a global
lower bound. It would be interesting to apply their algorithm using the local lower
bounds obtained from set theoretical results.

In the following section, we proceed to construct a new lower bound using our
newly gained intuition. The underlying theme of our approach is to understand how
a set of incompatibilities can share common recombination events.

3. A new lower bound

The goal of this section is to construct a new lower bound on the number of recom-
bination events. In addition to taking the pattern – for example, overlapping open
intervals I (i, j) – of incompatibilities into account, we also pay particular attention
to recombining subsets Ri,j . In §3.1, we define RQ(S) and show that it satisfies the
inequality RHK(S) ≤ RQ(S) ≤ Rmin(S), where Rmin(S) is the minimum number of
recombination events and RHK(S) is Hudson and Kaplan’s lower bound. We provide
in §3.2 a recursive algorithm for simplifying the evaluation of RQ(S).

3.1. Definition of the new lower bound RQ(S)

Recall that S = {sα} denotes a set of binary DNA sequences

sα = cα
1 , cα

2 , . . . , cα
h,

where cα
i ∈ {0, 1} for every α ∈ {1, 2, . . . , n} and i ∈ IS := {1, 2, . . . , h}. We

denote an open interval by I (i, j) := {y ∈ R i < y < j}.
Henceforth, we denote the set of all pairs of incompatible character sites by

P(S) = {(i, j) ∈ IS × IS i < j, (i, j) an incompatible pair in S.} .

In Definition 3 we have defined recombining subsets Ri,j and subsequently defined
the set R(S) of recombining subsets. We note that if P(S) has cardinality |P|, then
there are 4|P| distinct choices ofR(S).As this number can be very large and our new
lower bounds are obtained by searching through all choices of R(S), our approach
has a possibility of becoming intractable. In the following sub-section, we provide a
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reduction algorithm which simplifies the evaluation of our new lower bounds. From
now on, we denote the set of all choices of R(S) by R and say that R(S) ∈ R.

Before we proceed to define our new lower bound, we wish to lay out some
underlying intuition behind the formalism of our definition. Let 2S denote the set
of all subsets of S. Given a data set S, let G be a graphical representation of S

with Rmin(S) recombination events, i.e. G contains exactly Rmin(S) recombination
vertices4. For each recombination vertex v in G, we define Y (v) ∈ 2S as the set of
all sequences in S whose history at one of its character sites can trace back to v.
Consider an incompatible pair (i, j) ∈ P(S) and let H ⊂ G be the subgraph corre-
sponding to the history of the character sites i and j . Since (i, j) is an incompatible
pair, the subgraph H must contain at least one recombination vertex v whose cor-
responding recombination break-point is somewhere in the open interval I (i, j).
Furthermore, we know that every sequence in the set Rij ∈ {Qij

1 , Q
ij
2 , Q

ij
3 , Q

ij
4 }

must have histories at i and j which trace back to at least one recombination vertex
in H with break-point in I (i, j). We therefore have the following two facts, which
form the guiding principles of our approach:

(F1) In the subgraph H, there exists a finite set of recombination vertices
v1, v2, . . . , vnij

each with recombination break-point somewhere in the open
interval I (i, j), such that

(F2) using their associated sets Y (v1), Y (v2), . . . , Y (vnij
) one must be able to

construct Ri,j .

We now describe the construction of our new lower bound. An assignment A
is defined as follows: We assign to every X ∈ 2S a set of the form5

A(X) := I (r1, r1 + 1) ∪ I (r2, r2 + 1) ∪ · · · ∪ I (rω(X;A), rω(X;A) + 1) ⊂ I (1, h)

and call ω(X; A) the weight of X in the assignment A. If A(X) = ∅, then
ω(X; A) := 0. Roughly speaking, to each open interval of the form I (r, r + 1) in
the assignment, we wish to associate a recombination event in the history of the
sequences in X. We emphasise at the outset that, as we later demonstrate in the
examples in §4, in practice most of the elements Xa in 2S get assigned A(Xa) = ∅

and therefore do not contribute to evaluating our new lower bound.
We now introduce constraints on the assignment A. The assignment must be

performed to satisfy the following properties:
For every Ri,j ∈ R(S), (i, j) ∈ P(S), there exist X1, X2, . . . , Xmij

∈ 2S such
that

(P1) for all a ∈ {1, 2, . . . , mij }, A(Xa) ∩ I (i, j) 	= ∅, and
(P2) • either Ri,j = X1 ∪ X2 ∪ · · · ∪ Xmij

, or
• Ri,j = X1 ∪ X2 ∪ · · · ∪ Xl \ (Xl+1 ∪ Xl+2 ∪ · · · ∪ Xmij

), where for every
a ∈ {l + 1, l + 2, . . . , mij }, Xa ⊂ Xb for some b ∈ {1, 2, . . . , l}.

4 Recombination vertex is defined in Introduction.
5 To avoid cluttering notation, we have suppressed the dependence on X and A in writing

rn.
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Then, we define RQ(S) as the minimum possible value of the sum of the weights
ω(Xa; A) over all choices of R(S); that is, if we denote by A the set of all possible
assignments satisfying the above properties, then

RQ(S) := min
A ∈ A,

R(S) ∈ R


 ∑

X∈2S

ω(X; A)


 . (3.1)

That RQ(S) gives a lower bound on the number of recombination events is
shown in Proposition 2, where we also show that RQ(S) is in general sharper than
Hudson and Kaplan’s lower bound RHK(S). The reader is strongly encouraged to
go through the proof of the proposition to understand the meaning of Properties
(P1) and (P2).

Proposition 2. Let S be a set of binary DNA sequences of fixed length. The quantity
RQ(S) defined in (3.1) satisfies the inequality

RHK(S) ≤ RQ(S) ≤ Rmin(S),

where Rmin(S) is the minimum number of recombination events and RHK(S) is the
lower bound given in [HK].

Proof of Proposition 2. We first show that RQ(S) ≤ Rmin(S). As described in the
beginning of this section, consider the graphical representation G with exactly
Rmin(S) recombination vertices. We again denote by H the subgraph of G which
corresponds to the history of incompatible character sites i and j . In addition, we
let V ij be the set of all recombination vertices in H whose corresponding recom-
bination break-points are contained in the open interval I (i, j).

Without loss of generality, we suppose that the sequences inQ(cicj ) = Q(00) ⊂
S are explained by recombination events; that is, Ri,j = Q(00). Then, every se-
quence sα ∈ Rij has undergone at least one recombination event with break-point
in I (i, j) to attain cα

i = 0 and cα
j = 0. Moreover, Rij must be obtained from

Y (v1), Y (v2), . . . , Y (vnij
), where v1, v2, . . . , vnij

are some recombination verti-
ces in V ij . Before we proceed to elaborate this point, to avoid long-winded phrases,
we introduce coarse classifications of recombination vertices and of their associated
Y -sets, i.e. Y (v). A recombination vertex v in V ij can be of one of the following
two types:

Type A : The recombination event at v produces cicj = 0 0.
Type B : The recombination event at v produces cicj 	= 0 0.

The associated Y -sets can be classified into three types:
Type I : Every sequence sα in Y (v) has cα

i cα
j = 0 0.

Type II : Every sequence sα in Y (v) has cα
i cα

j 	= 0 0.
Type III : Some sequences in Y (v) have cicj = 0 0,

whereas others have cicj 	= 0 0.
We have divided our discussion into two main cases as follows:

• Case 1) Every recombination vertex in V ij is of type A.

We note that both mutation events mi and mj must have already occurred before
the earliest recombination vertex of type A. That is because the earliest recombina-
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tion event must produce cicj = 0 0 from cicj = 0 1 and cicj = 1 0, and mutation
events mi and mj must have occurred between 0 1 and 1 0. Hence, by Assump-
tion 1, no further mutation events occur at sites i and j after the first recombination
event which produces cicj = 0 0. Now, suppose there exists a typeA recombination
vertex v ∈ V ij with Y (v) not of type I, i.e. Y (v) contains at least one sequence with
cicj 	= 0 0. Then, since no further mutation events are allowed, V ij must contain a
recombination vertex of type B so that the sequences in Y (v) with cicj 	= 0 0 are
represented by the graph. This contradicts the condition that every recombination
vertex v in V ij is of type A. Hence, we conclude that if every recombination vertex
in V ij is of type A, then Y (v) must be of type I for every v ∈ V ij . It now follows
that every sα ∈ Y (v), where v ∈ V ij , is also contained in Rij = Q(00). Also, it
is clear that, to every sequence sα ∈ Rij , there must correspond a recombination
vertex v ∈ V ij whose associated set Y (v) contains sα . These two facts together
imply that there exists a set of recombination vertices v1, v2, . . . vnij

∈ V ij such
that Rij = Y (v1) ∪ Y (v2) ∪ · · · ∪ Y (vnij

).

• Case 2) V ij contains at least one recombination vertex of type B.

The present case can be further divided into two sub-cases.

◦ Case 2.1) There exists no type A recombination vertex v with Y (v) of type III.

In this case V ij must contain some type A recombination vertices with associ-
ated Y -sets of type I. Moreover, following a similar line of reasoning as above,
we can conclude that Rij = Y (v1) ∪ Y (v2) ∪ · · · ∪ Y (vnij

), where for every
a ∈ {1, 2, . . . , nij }, va ∈ V ij is of type A and Y (va) of type I.

◦ Case 2.2) There exists at least one type A recombination vertex v with Y (v) of
type III.

Let va ∈ V ij be a type A recombination vertex with Y (va) of type III. Then,
Y (va) contains some sequences sα1 , . . . , sαp which are not contained in Rij –
i.e. cicj 	= 0 0 for sα1 , . . . , sαp – and Assumption 1 implies that the sequences
sα1 , . . . , sαp must have undergone further recombination with break-point in I (i, j).
More precisely, there must exist a subsequent recombination vertex vb ∈ V ij

of type B such that Y (vb) ⊂ Y (va) and {sα1 , . . . , sαq } ⊆ Y (vb) for some q ∈
{1, 2, . . . , p}. Y (vb) cannot be of type I since Y (vb) contains at least one sequence
which is not in Rij = Q(00). If Y (vb) is of type II, then {sα1 , . . . , sαq } = Y (vb).
If Y (vb) is of type III – i.e. contains at least one sequence in Rij – then there must ex-
ist a subsequent typeA recombination vertex vc ∈ V ij such that Y (vc) ⊂ Y (vb) and
Y (vc) contains at least one sequence which is also contained in Rij . Y (vc) can be
either of type I or of type III, and we can continue in a similar vein with the analysis
as we have just described. Returning to the recombination vertex va , we note that the
same logic as sketched above applies to the remaining sequences in sα1 , . . . , sαp .
More generally, what we have just described implies that, in the present case of our
consideration, there exists a set of recombination vertices v1, v2, . . . , vnij

such that
Rij = Y (v1)∪Y (v2)∪· · ·∪Y (vk)\Y (vk+1)∪Y (vk+2)∪· · ·∪Y (vnij

); where for ev-
ery a ∈ {k+1, k+2, . . . , nij }, Y (va) ⊂ Y (vb) for some b ∈ {1, 2, . . . , k}; each of
Y (v1), . . . , Y (vk) is either of type I or of type III; and each of Y (vk+1), . . . , Y (vnij

)

is either of type II or of type III.
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It remains to draw a connection with the definition of RQ(S). There exists an
isomorphism between what we have described in the preceding paragraphs and
a particular assignment A0. Namely, for each incompatible pair (i, j) ∈ P(S),
we take mij = nij and Xa = Y (va) for every a ∈ {1, 2, . . . , nij }. It is easy
to see that Fact (F1) simply translates to Property (P1). To each recombination
vertex w in G, we can associate an open interval of the form I (r, r + 1) which
contains the corresponding recombination break-point of w. Hence, we can asso-
ciate an open interval of the form I (r, r + 1) to each Y (w) and have I (r, r + 1)

included in A0(Y (w)). Therefore, if v is a recombination vertex which appears
in (F1), then it follows that A0(Y (v)) ∩ I (i, j) 	= ∅. If a certain subset X ∈ 2S

satisfies X = Y (v1), X = Y (v2), . . . , X = Y (vd), for d distinct recombination
vertices v1, v2, . . . , vd in G, then A0(X) = I (r1, r1 + 1) ∪ I (r2, r2 + 1) ∪ · · · ∪
I (rd, rd + 1).Rmin(S) is equal to the total number of recombination vertices in G
and therefore Rmin(S) = ∑

X∈2S ω(X; A0), where ω(X; A0) is the weight of X in
the assignment A0 described above. Moreover, it follows from previous paragraphs
that the assignment A0 with Xa = Y (va) satisfies Properties (P1) and (P2) for a
particular R(S), and therefore we conclude that A0 ∈ A. In equation (3.1), we
define RQ(S) by taking the minimum over all possible assignments A ∈ A and all
possible choices of R(S). We therefore conclude that RQ(S) ≤ Rmin(S).

We now show that RHK(S) ≤ RQ(S). Recall that Hudson and Kaplan’s algo-
rithm in [HK] gives a set D which consists of certain incompatible pairs such that
if (i, j), (k, l) ∈ D, then I (i, j) ∩ I (k, l) = ∅. Moreover, RHK(S) is defined to be
equal to the cardinality |D| of D. According to the definition of RQ(S), since D is a
subset of P(S), for every (i, j) ∈ D, we need to take X1, X2, . . . , Xmij

∈ 2S and
A(X1), A(X2), . . . , A(Xmij

) which satisfy the specified properties. In particular,
since there are |D| disjoint open intervals associated to the elements in D, Property
(P1) implies that

|D| ≤
∑

X∈2S

ω(X; A)

for every possible assignment A ∈ A. It thus follows that RHK(S) = |D| ≤ RQ(S).

�

3.2. Reduction algorithm for evaluating RQ(S)

In the definition of RQ(S), we take the minimum over all choices of R(S) in R.
But, as remarked in the previous section, R has cardinality 4|P|, which can be very
large, thus making the evaluation of RQ(S) intractable. Hence we would like to
construct a method of evaluating RQ(S) more efficiently. Instead of considering all
incompatible pairs in P(S), our goal is to isolate a subset, hopefully of small car-
dinality, and only consider the incompatible pairs in that subset to evaluate RQ(S).
In the following we describe a recursive method.
(Remark: We drop the notation (S) when writing sets of incompatible pairs. For
example, we just write P instead of P(S).)

Our method recursively decomposes P into

{E0,E1, . . . ,E�} , {X0,X1, . . . ,X�} , {Y0,Y1, . . . ,Y�} ,
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where En,Xn,Yn are disjoint sets of incompatible pairs which satisfy certain con-
ditions. Only the incompatible pairs in {E0,E1, . . . ,E�} are used in computing
RQ(S). Note that the properties used in defining Xn are a special case of that used
in defining Yn. We have divided them into two separate cases just to make book-
keeping easier. In order to understand wherefore the forthcoming constrains are
imposed, the reader should refer back to Properties (P1) and (P2) of §3.1. The main
idea is that if one can find an assignment A which satisfies Properties (P1) and (P2)
for every incompatible pair in {E0,E1, . . . ,E�}, then A satisfies (P1) and (P2) also
for every incompatible pair in {X0,X1, . . . ,X�} ∪ {Y0,Y1, . . . ,Y�}.
Definition 4 (Essential incompatibility in F). Let F be a set which contains
incompatible pairs and let (i, j) be an incompatible pair in F. We say that (i, j) is
an essentially incompatible pair inF if there exists no incompatible pair (k, l) ∈ F
satisfying I (k, l) � I (i, j).

For non-negative integers n, we define

En = {(i, j) ∈ (P \ Hn−1) (i, j) essentially incompatible in P \ Hn−1} ,

whereHn−1 are defined presently. For each incompatible pair (i, j) ∈ En, we make
a choice of recombining subset Ri,j . We then let Xn = ⋃

(i,j)∈En
X

i,j
n , where

X
i,j
n := {(k, l) ∈ P \ (Hn−1 ∪ En) properties (a) and (b) are satisfied }.

(a) I (i, j) ⊂ I (k, l), and
(b) given a choice of Ri,j for the incompatible pair (i, j) ∈ En, there exists b ∈

{1, 2, 3, 4} such that Qkl
b = Ri,j .

It is straightforward to see that, if there exists an assignment A and subsets X1,

X2, . . . , Xmi,j
∈ 2S such that properties (P1) and (P2) described in §3.1 are satisfied

for (i, j) ∈En, then the same assignment A and subsets X1, X2, . . . , Xmi,j
∈ 2S

satisfy (P1) and (P2) also for the incompatible pair (k, l) ∈ X
i,j
n with Rk,l = Qkl

b ,
where Qkl

b is from property (b) shown above. Therefore, we can ignore the pair

(k, l) ∈ X
i,j
n as long as (i, j) ∈ En is taken into account when computing RQ(S).

The set Yn is defined as

Yn = {
(k, l) ∈ P \ (Hn−1 ∪ En ∪ Xn) (a′) and (b′) are satisfied

}
.

(a′) There exists a set of incompatible pairs (i1, j1),(i2, j2), . . . , (idk,l
, jdk,l

) in⋃n
s=0 Es such that, for all p ∈ {1, 2, . . . , dk,l}, I (ip, jp) ⊂ I (k, l), and

(b′) there exists b′ ∈ {1, 2, 3, 4} such that Qkl
b′ = Ri1,j1 ∪ Ri2,j2 ∪ · · · ∪ R

idk,l
,jdk,l .

Similar to the case ofXn, it is easy to see that if properties (P1) and (P2) are satisfied
for each of (i1, j1), (i2, j2), . . . , (idk,l

, jdk,l
) ∈ ⋃n

s=0 Es , then the same also holds
true for (k, l) ∈ Yn withRk,l = Qkl

b′ , whereQkl
b′ is from property (b′). Hence, we can

ignore the pair (k, l) ∈ Yn as long as (i1, j1), (i2, j2), . . . , (idk,l
, jdk,l

) ∈ ⋃n
s=0 Es

are taken into account when computing RQ(S).
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The recursion begins with the initial condition H−1 = ∅, so that

E0 = {(i, j) ∈ P (i, j) essentially incompatible in P}.
In each succeeding step, we define

Hn := Hn−1 ∪ En ∪ Xn ∪ Yn .

Let � be the index value that satisfies E� 	= ∅ and E�+1 = ∅. At that point we
would have H� = P. The bound RQ(S) can be determined as follows:

1. Determine the set P of all pairs (i, j), i < j , of incompatible character sites.
2. Determine the quadpartitions corresponding to the incompatible pairs in P.
3. Choose Ri,j for each (i, j) ∈ En, n = 0, 1, . . . , �, and recursively construct

M := {{E0,E1, . . . ,E�}, {X0,X1, . . . ,X�}, {Y0,Y1, . . . ,Y�}} .

Denote by M � M the set of all such constructions.
4. Define E := ⋃�

s=0 Es . Find assignments A so that, for every (i, j) ∈ E, Prop-
erties (P1) and (P2) in §3.1 are satisfied

5. Let ω̃(X; A; M) be the weight of X ∈ 2S determined by the above steps. Then,

RQ(S) = min
A ∈ A,

M ∈ M


 ∑

X∈2S

ω̃(X; A; M)


 .

4. Applications

In this section, we consider some specific examples, the last of which being
Kreitman’s 1983 data of the alcohol dehydrogenase locus from 11 chromosomes of
Drosophila melanogaster [K], and demonstrate how one can go about determin-
ing the new lower bound RQ(S). The reduction algorithm in §3.2 pays off the most
when we analyse Kreitman’s data. In each of the examples considered, the new lower
bound RQ(S) coincides with the minimum Rmin(S), whereas RHK(S) < Rmin(S).

We have written a computer program which partially implements the recursive
algorithm described in the previous section, and have applied it to the following
examples.
(Remark: The same notations as in §2 are used here.)

Example 3. Consider the following data set with 7 sequences, each of length 4.
S = {1, 2, . . . , 7}
1 = 0 0 0 1
2 = 0 0 1 1
3 = 0 1 0 0
4 = 1 0 0 1
5 = 0 1 1 0
6 = 1 1 0 0
7 = 1 0 1 0

(i, j) ∈ P Q(00) Q(01) Q(10) Q(11)

(1, 2) {1, 2} {3, 5} {4, 7} {6}
(1, 3) {1, 3} {2, 5} {4, 6} {7}
(1, 4) {3, 5} {1, 2} {6, 7} {4}
(2, 3) {1, 4} {2, 7} {3, 6} {5}
(3, 4) {3, 6} {1, 4} {5, 7} {2}

As shown in the table, there are 5 pairs of incompatible character sites, i.e. |P| = 5.
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Essentially incompatible pairs in P are E0 = {(1, 2), (2, 3), (3, 4)}. Choosing

R1,2 = {6} , R2,3 = {5} , R3,4 = {2}

gives X0 = ∅, Y0 = ∅. In the next step of recursion E1 = {(1, 3)}, and we
can choose R1,3 = {7} to obtain X1 = ∅ and Y1 = {(1, 4)}, since (1, 4) then has
Q(10) equal to R1,2∪R1,3 and I (1, 4) contains both I (1, 2) and I (1, 3). The recur-
sion terminates here and we have E = E0 ∪E1 = {(1, 2), (2, 3), (3, 4), (1, 3)}. We
make the following assignment A to the elements of 2S :

A({6}) = I (1, 2) , A({7}) = I (2, 3) ,

A({5}) = I (2, 3) , A({2}) = I (3, 4) ,

and A(X) = ∅ for all other X ∈ 2S .
Hence, for the present construction M and assignment A, the weights are

ω̃(X; A; M) =
{

1, if X = {2}, {5}, {6}, {7} ,

0, otherwise,

thus giving
∑

X∈2S ω̃(X; A; M) = 4. We have checked that every other possible
pair (A, M) ∈ A × M gives

∑

X∈2S

ω̃(X; A; M) ≥ 4,

and we thus conclude that RQ(S) = 4, which in fact is equal to Rmin(S). A graphi-
cal representation of S with four recombination vertices is shown in Figure 7. Note
that each of 2, 5, 6, 7 has undergone a single recombination event, and in each case
the recombination break-point lies in the open interval specified by the assignment
A we have made above.

In contrast, if we apply Hudson and Kaplan’s algorithm to the same data S,
we end up with the set E0, which contains three pairs of incompatible sites whose
associated open intervals I (i, j) are pair-wise disjoint. Thus, we obtain RHK(S)

= 3.

Example 4. Let S = {1, 2, . . . , 10}, where 1, 2, . . . , 10 are shown below.
1 = 0 0 0 0 0
2 = 1 0 0 0 0
3 = 1 1 0 0 0
4 = 1 1 1 0 0
5 = 0 0 0 0 1
6 = 1 0 0 0 1
7 = 1 1 0 0 1
8 = 1 1 1 0 1
9 = 1 1 1 1 0

10 = 1 1 1 1 1

(i, j)
in P Q(00) Q(01) Q(10) Q(11)

(1, 5) {1} {5} {2, 3, 4, 9} {6, 7, 8, 10}
(2, 5) {1, 2} {5, 6} {3, 4, 9} {7, 8, 10}
(3, 5) {1, 2, 3} {5, 6, 7} {4, 9} {8, 10}
(4, 5) {1, 2, 3, 4} {5, 6, 7, 8} {9} {10}
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Fig. 7. A graphical representation of S from Example 3 with the minimum number of recom-
bination vertices. We have indicated where recombination break-points occur by writing an
open interval I (r, r + 1) next to each recombination vertex.

In this example, regardless of what we choose for R4,5, R3,5, R2,5, R1,5, we
end up with

E0 = {(4, 5)} , E1 = {(3, 5)} , E2 = {(2, 5)} , E3 = {(1, 5)} ,

and Xa = Ya = ∅, for all a ∈ {0, 1, 2, 3}. Hence, the reduction algorithm of
§3.2 is of little use here. For R4,5 = {9}, R3,5 = {4, 9}, R2,5 = {3, 4, 9}, R1,5 =
{2, 3, 4, 9}, a possible assignment is

A({9}) = I (4, 5), A({4}) = I (3, 4), A({3}) = I (2, 3), A({2}) = I (1, 2),

and A(X) = ∅ for all other X ∈ 2S . Hence,
∑

X∈2S ω(X; A) = 4 for the above
assignment. We have checked that every choice of R(S) and possible assignment
A gives

∑
X∈2S ω(X; A) ≥ 4. Thus, RQ(S) = 4. In fact, it is possible to construct

a graphical representation of S with four recombination vertices, and therefore
we have again reproduced the minimum Rmin(S) = 4 using our set theoretical
approach.

On the other hand, Hudson and Kaplan’s algorithm only takes the pair (4, 5)

into account and gives RHK(S) = 1.

Example 5. This example concerns Kreitman’s 1983 data of the alcohol dehydro-
genase locus from 11 chromosomes of Drosophila melanogaster [K]. The aligned
sequence length is 2800 base-pairs. Ignoring insertions and deletions, there are 43
polymorphic character sites in the data. We have transformed the data into binary
sequences as follows:
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1S = 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2S = 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3S = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1

4S = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0

5S = 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

6S = 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 1 0

1F = 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0

2F = 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0

3F = 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0

4F = 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 0 0 0

5F = 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0

Since 2F = 3F = 4F , in our analysis we only need to consider 9 distinct
sequences. Hence, we relabel the sequences as follows:

1 := 1S 2 := 2S 3 := 3S

4 := 4S 5 := 5S 6 := 6S

7 := 1F 8 := 2F = 3F = 4F 9 := 5F

There are a total of 83 pairs of incompatible character sites in the data. Their cor-
responding quadpartitions are summarised in the following table:

(i, j) ∈ P Q(00) Q(01) Q(10) Q(11)

(1, 11) {1, 2, 3, 4, 6, 7} {5} {9} {8}
(1, 12) {1, 2, 3, 4, 6, 7} {5} {9} {8}
(2, 11) {1, 2, 3, 4, 6, 7} {5} {9} {8}
(2, 12) {1, 2, 3, 4, 6, 7} {5} {9} {8}
(3, 4) {1, 3, 4} {5} {2, 6, 7} {8, 9}
(3, 5) {1, 3, 4} {5} {2, 6, 7} {8, 9}
(3, 9) {3, 4} {1, 5} {2, 6, 7} {8, 9}
(3, 11) {1, 3, 4} {5} {2, 6, 7, 9} {8}
(3, 12) {1, 3, 4} {5} {2, 6, 7, 9} {8}
(3, 16) {1, 3, 4} {5} {2} {6, 7, 8, 9}
(3, 19) {3, 4, 5} {1} {6, 7, 8, 9} {2}
(3, 20) {3, 4, 5} {1} {6, 7, 8, 9} {2}
(3, 22) {3, 4, 5} {1} {6, 7, 8, 9} {2}
(3, 23) {3, 4, 5} {1} {6, 7, 8, 9} {2}
(3, 24) {3, 4, 5} {1} {6, 7, 8, 9} {2}
(3, 26) {3, 4, 5} {1} {6, 7, 8, 9} {2}
(3, 27) {3, 4, 5} {1} {6, 7, 8, 9} {2}
(3, 28) {3, 4, 5} {1} {6, 7, 8, 9} {2}
(3, 29) {3, 4, 5} {1} {6, 7, 8, 9} {2}
(3, 36) {1, 5} {3, 4} {2, 7, 8, 9} {6}
(3, 37) {1, 3, 4} {5} {2} {6, 7, 8, 9}
(4, 17) {1, 2, 3, 6, 7} {4} {8, 9} {5}
(4, 18) {1, 2, 3, 6, 7} {4} {8, 9} {5}
(4, 30) {1, 2, 3, 4, 6} {7} {5} {8, 9}
(4, 31) {1, 2, 3, 4} {6, 7} {5} {8, 9}
(4, 32) {1, 2, 3, 4, 6} {7} {5} {8, 9}
(4, 33) {1, 2, 3, 4} {6, 7} {5} {8, 9}
(4, 34) {1, 2, 3, 4, 6} {7} {5} {8, 9}
(4, 35) {1, 2, 3, 4} {6, 7} {5} {8, 9}
(5, 17) {1, 2, 3, 6, 7} {4} {8, 9} {5}
(5, 18) {1, 2, 3, 6, 7} {4} {8, 9} {5}
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(5, 30) {1, 2, 3, 4, 6} {7} {5} {8, 9}
(5, 31) {1, 2, 3, 4} {6, 7} {5} {8, 9}
(5, 32) {1, 2, 3, 4, 6} {7} {5} {8, 9}
(5, 33) {1, 2, 3, 4} {6, 7} {5} {8, 9}
(5, 34) {1, 2, 3, 4, 6} {7} {5} {8, 9}
(5, 35) {1, 2, 3, 4} {6, 7} {5} {8, 9}
(9, 16) {2, 3, 4} {6, 7} {1} {5, 8, 9}
(9, 17) {2, 3, 6, 7} {4} {1, 8, 9} {5}
(9, 18) {2, 3, 6, 7} {4} {1, 8, 9} {5}
(9, 19) {3, 4, 6, 7} {2} {5, 8, 9} {1}
(9, 20) {3, 4, 6, 7} {2} {5, 8, 9} {1}
(9, 22) {3, 4, 6, 7} {2} {5, 8, 9} {1}
(9, 23) {3, 4, 6, 7} {2} {5, 8, 9} {1}
(9, 24) {3, 4, 6, 7} {2} {5, 8, 9} {1}
(9, 26) {3, 4, 6, 7} {2} {5, 8, 9} {1}
(9, 27) {3, 4, 6, 7} {2} {5, 8, 9} {1}
(9, 28) {3, 4, 6, 7} {2} {5, 8, 9} {1}
(9, 29) {3, 4, 6, 7} {2} {5, 8, 9} {1}
(9, 30) {2, 3, 4, 6} {7} {1, 5} {8, 9}
(9, 31) {2, 3, 4} {6, 7} {1, 5} {8, 9}
(9, 32) {2, 3, 4, 6} {7} {1, 5} {8, 9}
(9, 33) {2, 3, 4} {6, 7} {1, 5} {8, 9}
(9, 34) {2, 3, 4, 6} {7} {1, 5} {8, 9}
(9, 35) {2, 3, 4} {6, 7} {1, 5} {8, 9}
(9, 37) {2, 3, 4} {6, 7} {1} {5, 8, 9}
(11, 17) {1, 2, 3, 6, 7, 9} {4} {8} {5}
(11, 18) {1, 2, 3, 6, 7, 9} {4} {8} {5}
(11, 30) {1, 2, 3, 4, 6} {7, 9} {5} {8}
(11, 31) {1, 2, 3, 4} {6, 7, 9} {5} {8}
(11, 32) {1, 2, 3, 4, 6} {7, 9} {5} {8}
(11, 33) {1, 2, 3, 4} {6, 7, 9} {5} {8}
(11, 34) {1, 2, 3, 4, 6} {7, 9} {5} {8}
(11, 35) {1, 2, 3, 4} {6, 7, 9} {5} {8}
(12, 17) {1, 2, 3, 6, 7, 9} {4} {8} {5}
(12, 18) {1, 2, 3, 6, 7, 9} {4} {8} {5}
(12, 30) {1, 2, 3, 4, 6} {7, 9} {5} {8}
(12, 31) {1, 2, 3, 4} {6, 7, 9} {5} {8}
(12, 32) {1, 2, 3, 4, 6} {7, 9} {5} {8}
(12, 33) {1, 2, 3, 4} {6, 7, 9} {5} {8}
(12, 34) {1, 2, 3, 4, 6} {7, 9} {5} {8}
(12, 35) {1, 2, 3, 4} {6, 7, 9} {5} {8}
(16, 17) {1, 2, 3} {4} {6, 7, 8, 9} {5}
(16, 18) {1, 2, 3} {4} {6, 7, 8, 9} {5}
(16, 36) {1, 2} {3, 4} {5, 7, 8, 9} {6}
(17, 36) {1, 2, 7, 8, 9} {3, 6} {5} {4}
(17, 37) {1, 2, 3} {6, 7, 8, 9} {4} {5}
(18, 36) {1, 2, 7, 8, 9} {3, 6} {5} {4}
(18, 37) {1, 2, 3} {6, 7, 8, 9} {4} {5}
(31, 36) {1, 2, 5} {3, 4} {7, 8, 9} {6}
(33, 36) {1, 2, 5} {3, 4} {7, 8, 9} {6}
(35, 36) {1, 2, 5} {3, 4} {7, 8, 9} {6}
(36, 37) {1, 2} {5, 7, 8, 9} {3, 4} {6}

We now apply our reduction algorithm and demonstrate its usefulness for the pres-
ent example. Essentially incompatible pairs in P are

E0 = {(3, 4), (9, 16), (16, 17), (35, 36), (36, 37)}.

Note that their corresponding open intervals are pair-wise disjoint and hence we
need at least one recombination event for each incompatible pair in E0. So, we
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know that we need at least 5 recombination events. Upon choosing

R3,4 = {5} , R9,16 = {1} , R16,17 = {5} , R35,36 = {6} , R36,37 = {6} ,

we obtain

X 3,4
0 = {(1, 11), (1, 12), (2, 11), (2, 12), (3, 5), (3, 11), (3, 12), (3, 16), (3, 37)} ,

X 9,16
0 = {(3, 19), (3, 20), (3, 22), (3, 23), (3, 24), (3, 26), (3, 27), (3, 28), (3, 29),

(9, 19), (9, 20), (9, 22), (9, 23), (9, 24), (9, 26), (9, 27), (9, 28), (9, 29),

(9, 37)} ,

X 16,17
0 = {(4, 17), (4, 18), (4, 30), (4, 31), (4, 32), (4, 33), (4, 34), (4, 35), (5, 17),

(5, 18), (5, 30), (5, 31), (5, 32), (5, 33), (5, 34), (5, 35), (9, 17), (9, 18),

(11, 17), (11, 18), (11, 30), (11, 31), (11, 32), (11, 33), (11, 34), (11, 35),

(12, 17), (12, 18), (12, 30), (12, 31), (12, 32), (12, 33), (12, 34), (12, 35),

(16, 18)} ,

X 35,36
0 = {(3, 36), (16, 36), (31, 36), (33, 36)} ,

X 36,37
0 = ∅ ,

Furthermore, we have

Y0 = {(9, 30), (9, 31), (9, 32), (9, 33), (9, 34), (9, 35)} ,

since these pairs have Q(10) = {1, 5} = R9,16 ∪ R16,17 and their corresponding
open intervals contain I (9, 16) and I (16, 17). In the next step of recursion, we
have E1 = {(3, 9), (18, 36)}, and upon choosing R3,9 = {1, 5} and R18,36 = {5}
we obtain

X1 = {(17, 36), (17, 37), (18, 37)} , Y1 = ∅ .

Finally, E2 = ∅ and therefore the recursion terminates here. Note that H2 =⋃1
n=0(En ∪ Xn ∪ Yn) = P. To recapitulate, we have

E = E0 ∪ E1 = {(3, 4), (9, 16), (16, 17), (35, 36), (36, 37), (3, 9), (18, 36)} ,

and

R3,4 = {5} , R9,16 = {1} , R16,17 = {5} , R35,36 = {6} , R36,37 = {6} ,

R3,9 = {1, 5} , R18,36 = {5} .

An assignment A that satisfies Properties (P1) and (P2) of §3.1 is

A({1}) = I (8, 9) ∪ I (15, 16) ,

A({5}) = I (3, 4) ∪ I (16, 17) ∪ I (18, 19) ,

A({6}) = I (35, 36) ∪ I (36, 37) ,

A(X) = ∅ for all other X ∈ 2S ,
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from which we obtain
∑

X∈2S

ω̃(X; A; M) = ω̃({1}; A; M) + ω̃({5}; A; M) + ω̃({6}; A; M)

= 2 + 3 + 2 = 7 .

We have checked that there exists no pair (A, M) ∈ A×M which gives
∑

X∈2S ω̃

(X; A; M) less than 7. Hence, our new lower bound is RQ(S) = 7. In fact, it is
possible to construct an explicit graphical representation with only 7 recombination
events.

In comparison, Hudson and Kaplan’s algorithm gives the incompatible pairs in
E0 and therefore yields RHK(S) = |E0| = 5, whereas the algorithm developed by
Myers and Griffiths [MG] gives 6 as a lower bound on the number of recombination
events.

5. Concluding remarks

In this paper we have used set theoretical ideas to study recombination events. We
have seen that the total number of recombination events depends on which subsets
of S undergo recombination. For instance, we have demonstrated in Example 1 that
even a character site which is compatible with all other character sites can affect the
number of recombination events. We have shown that it is important to investigate
under what conditions a particular recombination event can explain more than one
incompatibility in the data. More generally, it is important to understand how a set
of incompatibilities can share common recombination events.

In our approach, counting the number of recombination events can be trans-
lated to counting certain subsets of S with weights. In defining RQ(S) we have
given simple weights to the subsets of S, i.e. the weight of X ∈ 2S is set equal to
the number of times it is assigned an interval of form I (r, r + 1). As indicated in
the proof of Proposition 2, to obtain a more refined lower bound on the number of
recombination events, we need to assign weights which better reflect the number
of necessary recombination events.

A computer implementation of finding RQ(S) can be slow and inefficient when
there are too many incompatibilities. We can, however, obtain local lower bounds
using our definition of RQ(S) and apply Myers & Griffiths’ algorithm [MG] to pro-
duce a global lower bound. Such a combined method should perform quite well.
In a similar vein, as we have discussed in §2, we can also try to use set theoretical
results similar to Proposition 1 to find local lower bounds and then apply Myers &
Griffiths’ algorithm.

We stress that, although the present paper provides lower bounds RQ(S) which
are sharper than previous lower bounds, RQ(S) might still be less than the minimum
Rmin(S) for some cases of S. Constructing an algorithm which finds the minimum
Rmin(S) for arbitrary S still remains an interesting open problem. Also, it would
be interesting to construct an algorithm, however slow, which attempts to find a
minimal evolutionary history – with the minimum number of recombination events
– for a set of DNA sequences. Hein has provided a heuristic algorithm to achieve
that goal, but has introduced restrictions on the problem to make it tractable [H].
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As a consequence his method proposes histories which have internal contradictions
and which therefore cannot not be realised by any set of sequences.

A. Hudson and Kaplan’s algorithm

We here describe the algorithm given in [HK] for obtaining the lower bound RHK(S).
The algorithm begins with a linearly ordered set of pairs of incompatible character
sites and removes from it certain elements which satisfy a set of specified condi-
tions. RHK(S) is defined to be the cardinality of the set obtained after all the required
removals. More precisely, the algorithm can be rephrased as follows:

1. Given a set S of binary sequences, to each pair (i, j) of incompatible character
sites i and j , where i < j , associate an open interval I (i, j) = {x ∈ R i <

x < j}.
2. Order the above pairs of incompatible character sites and define the linearly

ordered set

P = {(i1, j1), (i2, j2), . . . , (ip, jp)},
where p is the total number of distinct pairs of incompatible sites. The ordering
is defined so that i1 ≤ i2 ≤ · · · ≤ ip, and if ia = ib, then ja < jb.

3. Let C = {(i, j) ∈ P I (i, j) � I (k, l) for some (k, l) ∈ P}.
4. Let P0 := P \C and recursively remove certain elements from P0 as described

below.
For n ∈ Z

+, Pn and An are recursively defined as follows:
Let (αn, βn) ∈ Pn−1 be the first element that satisfies

(i) I (αn, βn) ∩ I (i, j) = ∅ for all (i, j) ∈ Pn−1 with i < αn, and
(ii) I (αn, βn) ∩ I (k, l) 	= ∅ for at least one (k, l) ∈ Pn−1 with k > αn.

Then, we define

An := {(i, j) ∈ Pn−1 αn < i < βn}
and Pn := Pn−1 \ An.
The recursion terminates at n = r when I (i, j)∩ I (k, l) = ∅ for every distinct
pair of elements (i, j), (k, l) ∈ Pr .

5. Define RHK(S) := |Pr |.
In effect RHK(S) gives the maximum number of pairs (i, j) of incompatible

sites whose associated open intervals I (i, j) are pair-wise disjoint.

B. Proofs of set theoretical lemmas

In this appendix we provide proofs of the lemmas stated in §2.

Lemma 1. Let i, j, k denote informative character sites, of which (i, j) is an incom-
patible pair, whereas (i, k) and (j, k) are compatible pairs. If either Bk ∩ Bi = ∅

or Bk ∩ Bc
i = ∅, then

Bc
k ∩ Bj 	= ∅ and Bc

k ∩ Bc
j 	= ∅.
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Proof of Lemma 1. Assume that Bk ∩Bi = ∅. If Bc
k ∩Bj = ∅, then it implies that

Bj ⊆ Bk . Since by assumption Bk ∩ Bi = ∅, we then conclude that Bi ∩ Bj =
∅. But, this contradicts the condition that (i, j) is an incompatible pair. Hence,
Bc

k ∩ Bj 	= ∅ if Bk ∩ Bi = ∅. The same argument applies to the remaining cases.

�
Lemma 2. Let i, j, k be defined as in Lemma 1. Then, exactly one of the following
intersections is empty:

Bi ∩ Bk , Bi ∩ Bc
k , Bc

i ∩ Bk , Bc
i ∩ Bc

k . (B.1)

Proof of Lemma 2. Since (i, k) is a compatible pair, by definition at least one of
(B.1) is empty. We need to show that there cannot be more than one empty intersec-
tion.Appropriately name the bipartitions of i and k so that Bi ∩Bk = ∅. Then, since
i and k are informative character sites, we must have Bi ∩Bc

k 	= ∅ and Bc
i ∩Bk 	= ∅.

Now, observe that Bi ∩ Bk = ∅ implies Bk ⊆ Bc
i , while Bc

i ∩ Bc
k = ∅ implies

Bc
k ⊆ Bi . Hence, if we have both Bi ∩ Bk = ∅ and Bc

i ∩ Bc
k = ∅, then Bi = Bc

k

and Bc
i = Bk . But, this contradicts the assumption that (j, i) is an incompatible

pair, whereas (j, k) is a compatible pair. 
�
Lemma 3. Let i, j, k be defined as in Lemma 1. Then, the quadpartition
{Qij

1 , Q
ij
2 , Q

ij
3 , Q

ij
4 } of S contains exactly one Q

ij
a such that either6

(a) Bk ∩ Q
ij
a 	= ∅ and Bk ∩ ( S \ Q

ij
a ) = ∅,

or (b) Bc
k ∩ Q

ij
a 	= ∅ and Bc

k ∩ ( S \ Q
ij
a ) = ∅.

In other words, up to a choice of relabelling, there exists a unique Q
ij
a ∈ {Qij

1 , Q
ij
2 ,

Q
ij
3 , Q

ij
4 } such that either Bk ⊆ Q

ij
a or Bc

k ⊆ Q
ij
a .

Proof of Lemma 3. By Lemma 2, exactly one of the following intersections is
empty:

Bi ∩ Bk , Bi ∩ Bc
k , Bc

i ∩ Bk , Bc
i ∩ Bc

k . (B.2)

Likewise, exactly one of

Bj ∩ Bk , Bj ∩ Bc
k , Bc

j ∩ Bk , Bc
j ∩ Bc

k (B.3)

is empty. Combining these facts with the result in Lemma 1, we conclude that if
either Bk ∩ Bi = ∅ or Bk ∩ Bc

i = ∅, then either Bk ∩ Bj = ∅ or Bk ∩ Bc
j = ∅.

Similarly, if either Bc
k ∩ Bi = ∅ or Bc

k ∩ Bc
i = ∅, then either Bc

k ∩ Bj = ∅ or
Bc

k ∩ Bc
j = ∅.

Now, up to simple change of notation, we can assume that the empty intersec-
tions in (B.2) and (B.3) are Bk ∩ Bc

i = ∅ and Bk ∩ Bc
j = ∅, respectively. Then,

with Q
ij
1 , Q

ij
2 , Q

ij
3 , Q

ij
4 defined as

Q
ij
1 := Bi ∩ Bj , Q

ij
2 := Bi ∩ Bc

j , Q
ij
3 := Bc

i ∩ Bj , Q
ij
4 := Bc

i ∩ Bc
j , (B.4)

6 Let A be a subset of the set X. Then, the notation X \ A denotes the complement of A
relative to X.
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we see that

Bk ∩ Q
ij
2 = ∅ , Bk ∩ Q

ij
3 = ∅ , Bk ∩ Q

ij
4 = ∅ .

Therefore, Bk ⊆ Q
ij
1 = S \(Q

ij
2 ∪Q

ij
3 ∪Q

ij
4 ) and we thus have Bk ∩Q

ij
1 	= ∅. Fur-

thermore, up to simple renaming, the uniqueness of Q
ij
a with the desired properties

follows from the uniqueness of empty intersections in (B.2) and (B.3). 
�
Lemma 4. Let i, j, k, l be informative character sites such that (i, j) and (k, l) are
incompatible pairs, whose corresponding quadpartitions are
{Qij

1 , Q
ij
2 , Q

ij
3 , Q

ij
4 }and {Qkl

1 , Qkl
2 , Qkl

3 , Qkl
4 }, respectively; and (i, k), (i, l), (j, k),

and (j, l) are compatible pairs. Then, there exists a subset Q
ij
a which is unique, up

to a choice of relabelling, such that

S \ Qkl
b ⊆ Q

ij
a

for exactly one index value b ∈ {1, 2, 3, 4}.
Proof of Lemma 4. Suppose Q

ij
a is the unique subset such that Bk ⊆ Q

ij
a after

appropriate relabelling (c.f. Lemma 3). If Bl ∩ Q
ij
a = ∅, then it implies that

Bl ⊆ (Q
ij
a )c, which in turn implies that Bk ∩ Bl = ∅. But, this cannot be since

(k, l) is an incompatible pair. Hence, Bk ⊆ Q
ij
a implies Bl ∩Q

ij
a 	= ∅. In a similar

vein, one obtains that if Bk ⊆ Q
ij
a , then Bc

l ∩ Q
ij
a 	= ∅. One reaches the same

conclusion if Bk is replaced by Bc
k in the above argument. Hence, if either Bk ⊆ Q

ij
a

or Bc
k ⊆ Q

ij
a , then Bl ∩ Q

ij
a 	= ∅ and Bc

l ∩ Q
ij
a 	= ∅. The latter statement means,

according to Lemma 3, that either Bl ⊆ Q
ij
a or Bc

l ⊆ Q
ij
a .

Let {Qij
1 , Q

ij
2 , Q

ij
3 , Q

ij
4 } and {Qkl

1 , Qkl
2 , Qkl

3 , Qkl
4 } be defined as in (B.4). Fur-

thermore, let {Bk, B
c
k } and {Bl, B

c
l } be appropriately named so that Bk ⊆ Q

ij
1 and

Bl ⊆ Q
ij
1 . Then, we immediately conclude that

Qkl
1 ⊂ Q

ij
1 , Qkl

2 ⊂ Q
ij
1 , Qkl

3 ⊂ Q
ij
1 ,

and therefore that S \ Qkl
4 ⊆ Q

ij
1 . Since Qkl

1 , Qkl
2 , Qkl

3 are all non-empty and dis-

joint, they are proper subsets of Q
ij
1 . Up to a choice of notation, the uniqueness of

Q
ij
1 with the desired properties follows from Lemma 3. 
�

Lemma 5. Let i, j, k, l be defined as in Lemma 4. Then, there exist no a, b ∈
{1, 2, 3, 4} such that

Q
ij
a = Qkl

b .

Proof of Lemma 5. Lemma 4 implies that there exists an index value c such that
(S \ Qkl

b ) ⊂ Q
ij
c . Suppose that there exist a and b such that Q

ij
a = Qkl

b . Then, we

must S = Q
ij
a ∪Q

ij
c , from which we conclude that there exists an index value d such

that Q
ij
d = ∅. This contradicts the fact that the quadpartition {Qij

1 , Q
ij
2 , Q

ij
3 , Q

ij
4 }

associated to the incompatible pair (i, j) consists of non-empty pair-wise disjoint
subsets of S. 
�
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Lemma 6. Let i, j, k denote informative character sites. Let (i, j) and (j, k) be
incompatible pairs, and let (i, k) be a compatible pair. Then, there exists a proper
subsetQij

a ∈ {Qij
1 , Q

ij
2 , Q

ij
3 , Q

ij
4 }and a proper subsetQjk

b ∈ {Qjk
1 , Q

jk
2 , Q

jk
3 , Q

jk
4 }

such that

Q
jk
b ⊂ Q

ij
a .

Proof of Lemma 6. Appropriately name the bipartitions {Bi, B
c
i } and {Bk, B

c
k } so

that Bi ∩ Bk = ∅. This is always possible since (i, k) is a compatible pair. If
we define {Qij

1 , Q
ij
2 , Q

ij
3 , Q

ij
4 } and {Qjk

1 , Q
jk
2 , Q

jk
3 , Q

jk
4 } as in (B.4), then from

Bi ∩ Bk = ∅ we conclude that

Q
ij
1 ∩ Q

jk
1 = ∅ , Q

ij
1 ∩ Q

jk
3 = ∅ ,

Q
ij
2 ∩ Q

jk
1 = ∅ , Q

ij
2 ∩ Q

jk
3 = ∅ .

Moreover, we have

Q
ij
4 ∩ Q

jk
1 = ∅ , Q

ij
3 ∩ Q

jk
3 = ∅,

since Bj ∩ Bc
j = ∅. Therefore, Q

jk
1 ⊆ Q

ij
3 = S \ (Q

ij
1 ∪ Q

ij
2 ∪ Q

ij
4 ) and Q

jk
3 ⊆

Q
ij
4 = S \ (Q

ij
1 ∪ Q

ij
2 ∪ Q

ij
3 ). 
�
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