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ABSTRACT
Motivation: It is well known that neighbouring nucleotides in
DNA sequences do not mutate independently of each other.
In this paper, we introduce a context-dependent substitution
model and derive an algorithm to calculate the likelihood of
sequences evolving under this model. We use this algorithm
to estimate neighbour-dependent substitution rates, as well as
rates for dinucleotide substitutions, using a Bayesian sampling
procedure. The model is irreversible, giving an arrow to
time, and allowing the position of the root between a pair of
sequences to be inferred without using out-groups.
Results: We applied the model upon aligned human–
mouse non-coding data. Clear neighbour dependencies were
observed, including 17–18-fold increased CpG to TpG/CpA

rates compared with other substitutions. Root inference posi-
tioned the root halfway the mouse and human tips, suggesting
an approximately clock-like behaviour of the irreversible part
of the subsitution process.
Contact: lunter@stats.ox.ac.uk

INTRODUCTION
Most current stochastic models for the evolutionary nucle-
otide substitution process in DNA sequences assume that
neighbouring sites evolve independently. This considerably
simplifies calculations, since under this assumption, the like-
lihood is the product of individual site likelihoods. However,
there is ample evidence that independence is violated (Karlin
and Burge, 1995), e.g. by the well-known methylation-
induced rate increase of C to T (and G to A) substitutions in
vertebrate CpG dinucleotides. The importance of neighbour
dependencies in the substitution process has long been recog-
nized, and several ways of modelling these dependencies have
been proposed. For example, Siepel and Haussler (2003) show
that a Markov chain along a pair of sequences fits sequence
data substantially better than a series of independent pairwise
nucleotide distributions (a ‘zeroth-order’ Markov chain) do.

A natural model for context-dependent substitutions is
the one that assigns rates to all possible dinucleotide-
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to-dinucleotide substitution, which then apply to all
overlapping neighbouring nucleotide pairs in a sequence.
This model, referred to as the ‘dinucleotide model’, is argu-
ably the simplest possible general evolutionary model that
takes neighbour dependencies into account, and captures
(neighbour-independent) dinucleotide substitutions as well.
One of its essential features is that long-range dependencies
between sites immediately arise, due to the possibility of over-
lapping hits. Because of this ‘contagious dependence’, this
model is harder to analyse than independent-site models. Pre-
vious studies by Jensen and Pedersen (2000) and Arndt et al.
(2003) used similar explicit evolutionary models, both in the
nucleotide and codon contexts, and focussed primarily on the
relation between the rate matrix and the equilibrium sequence
distribution. As the equilibrium distribution contains only par-
tial information on the substitution rates, this can be used only
for estimation of sparsely parameterized models. For richer
models, it is necessary to have a method for calculating the
likelihood of observing a pair of homologous sequences. Ped-
ersen and Jensen (2001) developed a Markov chain Monte
Carlo (MCMC) approach for a codon model with neigh-
bour dependencies to estimate this likelihood. Their method
involves no approximations, but does require potentially long
sampling runs for reliable likelihood estimates, making it less
suitable for parameter inference. Another method was intro-
duced by Whelan and Goldman (submitted for publication),
who use a ‘mean field’ approach to recover site independ-
ence, and use this to infer dinucleotide substitution rates in
a codon model. von Haeseler and Schöninger (1998) use
a reversible model based on observed nucleotide (or amino
acid) doublet frequencies, and estimate the expected num-
ber of mutations as a function of Hamming distance using
MCMC. The recent paper by Siepel and Haussler (2004) is
perhaps closest in its aims to the present paper. They use a
Markov model on a phylogenetic tree, parameterized by a
dinucleotide rate matrix and an independent-site equilibrium
sequence distribution, and estimate substitution parameters
using an expectation maximization (EM) procedure.

In this paper we present a fast, analytic method for cal-
culating the joint likelihood of observing two homologous
sequences evolving under the dinucleotide model. This makes
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it possible to infer parameter, either by maximum likelihood
or in a Bayesian fashion. Our approach has the advantage of
using an explicit evolutionary (‘process-based’) model, and
takes into account the equilibrium sequence distribution as a
function of the substitution rate parameters. We demonstrate
the method by estimating substitution rates and confidence
intervals on non-coding human–mouse data. The algorithms
involve some approximations, and we show by experiments on
synthetic data that mutation rates can be faithfully recovered,
using a Bayesian MCMC sampling approach, in the parameter
range corresponding to human–mouse data.

In contrast to most stochastic models used in evolution-
ary biology, the proposed model is naturally irreversible.
Reversible models enjoy technical advantages, for instance,
they have approximately half as many parameters as irrevers-
ible models, and have symmetry properties that are helpful
for deriving properties of such models, and in practical
computations. For example, Felsenstein (1981) coined the
Pulley Principle, which states that the likelihood of sequences
evolving according to a reversible substitution model on a
phylogenetic tree is independent of the position of the root,
so that root placement is only possible using an outgroup as
reference. However, there is no a priori reason to assume
reversibility, since many biological processes have a distinct
direction in time, and this is certainly true for evolutionary
processes. The possibility of rooting trees under irreversible
models of substitution was noted before, see e.g. Yang (1994),
but for single nucleotide models the signal seems to be weak,
especially in non-coding DNA (data not shown). The proposed
dinucleotide model incorporates the profoundly directional
CpG effect, making the model strongly irreversible, and we
show that it is possible to infer root positions, even for just
two sequences.

The paper is organized as follows. First, we introduce
the model and discuss some of its properties. We then use
Bayesian MCMC sampling to infer the model parameters.
Next, the method is validated by inferring parameters from
synthetic data. The same procedure is then used on two sets
of 100 kb non-coding human–mouse aligned sequence data
from human chromosomes 21 and 10. The Discussion section
concludes the paper. Finally in the Appendix, we formally
define the proposed model and derive the algorithms for com-
puting the equilibrium distribution, the sequence-to-sequence
likelihood, and the likelihood that two sequences have evolved
from an unknown common ancestor.

THE DINUCLEOTIDE SUBSTITUTION MODEL
We now introduce the ‘dinucleotide model’, a continuous-
time Markov model for nucleotide substitutions. The para-
meters of the model are given by a 16 × 16 rate matrix M ,
whose rows and columns are labelled by the 16 possible nuc-
leotide pairs, so that the matrix describes mutation rates from
any nucleotide pair to any other. These rates apply to each of

1

Fig. 1. Illustration of the dinucleotide model. Horizontal bars indic-
ate instantaneous (rate) dependencies, grey areas indicate regions
of finite-time dependencies due to ‘contagious dependence’. The
model is parameterized by a 16×16 matrix, M , specifying mutation
rates upon dinucleotides. The matrix Rk has dimension 4L ×4L, and
corresponds to M acting on nucleotides k and k + 1 only, with no
mutation process acting on any other nucleotides. Formally, it is the
‘matrix concatenation sum’ of the null matrix acting on the leftmost
k − 1 nucleotides, the matrix M , and the null matrix acting on the
remaining L − k − 1 nucleotides (see Appendix). The full model
has rate matrix R = ∑L−1

k=1 Rk , corresponding to the dinucleotide
substitution process acting on all L−1 dinucleotides simultaneously.

the L − 1 pairs of neighbouring nucleotides in a sequence of
length L simultaneously (Fig. 1). The rate matrix of the full
model, denoted by R, specifies rates at which any length-L
sequence mutates into any other. This matrix has dimension
4L × 4L, but is very sparse; in fact Rσ ,τ , the rate at which
sequence σ mutates into τ , vanishes unless σ and τ coincide
apart from at most two consecutive nucleotides.

The dinucleotide substitution model introduces dependen-
cies between neighbouring sites, and the stationary sequence
distribution π(σ) no longer factorizes into a product of single-
nucleotide distributions as in the independent-site model (see
Appendix for an algorithm to compute the stationary distribu-
tion). The relation between the parameters of the model (the
coefficients of M) and the reversibility of R is more complic-
ated than for independent-nucleotide models, as it involves
this equilibrium sequence distribution. Even for a reversible
M (on length-2 sequences), the total matrix R is in general
irreversible. For example, M may specify detailed balance for
CG ↔ TG state transitions if confined to length-2 sequences,
but state transitions of longer sequences that involve mutations
overlapping the C or G residue may disrupt detailed balance
by creating additional CG dinucleotides, leading to cycles in
the equilibrium flow graph (Fig. 2).

The matrix R is far too big to use explicitly. It turns out
that it is possible to compute exp(Rt)σ ,τ , the probability that
sequence σ evolves into τ in time t , without computing the
matrix exponential explicitly, through a dynamic program-
ming recursion that uses the structure of R. Exact results
still involve large matrices, and approximations are neces-
sary. Our approximation consists of ignoring all terms related
to multiple substitutions involving four or more consecutive
nucleotides. Such events comprise at least three independent
‘overlapping’ substitutions, so that the leading error term is
cubic in the divergence time and mutation rate. To validate
the approximation in the parameter range of interest, we do
parameter inference on synthetic data.

i217



G.Lunter and J.Hein

(.00340)

(.00386)

(.00475)

(.00342)

(.00475)

8.11 8.11

(.00384)

2.71

4.513.
63

2.67

(.00160)

1.
79

3.
59

4.48

1.
83

GAGT

GCAT

GCTT

GCCT

GTGT

GGGT

GCGT

Fig. 2. Example of irreversibility in the dinucleotide model.
Depicted is part of the full Markov chain for sequences of length 4.
In this example, rates for the mutation of CG into TG or CA are
both 1.0 mutations per observed pair and time unit, while every
other neighbour-dependent mononucleotide substitution occurs with
a rate of 0.1. The resulting equilibrium probabilities for the length-4
sequences are shown between brackets (see Appendix), and equilib-
rium flows (in units of 10−4 transitions per unit of time) are shown
alongside the arrows, which point in the direction of net flow. Two
rate parameters contribute to each single nucleotide substitution rate,
e.g. both CG → TG and GC → GT contribute to the GCGT → GTGT
transition, so that the net flow at equilibrium along the edge GCGT−
GTGT is 0.00160 × (1.0 + 0.1) − 0.00475 × (0.1 + 0.1) = 0.00081.
This violation of ‘detailed balance’ implies irreversibility; e.g. the
cycle GCGT → GTGT → GGGT → GCGT is more probable to occur
than its reversal, giving a definite direction to time.

EVALUATION AND RESULTS
For the substitution model, we used only a subset of the
240 free parameters in the matrix M . The symmetry of the
substitution process under reverse-complement means that
all mononucleotide substitutions can be described by the
4 × 4 × 3 = 48 right-neighbour rates only. General dinuc-
leotide substitutions would require another 80 parameters, but
since such substitutions are rare, reliable parameter inference
requires much input data, and for this reason we use a single
dinucleotide substitution rate parameter, 49 parameters in all.

Synthetic sequence data were produced by simulating the
dinucleotide substitution model on a 100 kb sequence. We
chose parameters to roughly mimic the parameters expected
for human–mouse data, namely, a mononucleotide substi-
tution rate of 0.075 for all substitutions except CG → TG
(and CA) which occur with a rate of 2.4. Summing over the
implied equilibrium sequence distribution yields a total mono-
nucleotide substitution rate of 0.502 substitutions per site
and unit of time. We chose a total dinucleotide substitution
rate of 0.020 dinucleotide substitutions per site and unit of
time. Since about half as many substitutions have occurred
in humans compared with mice since divergence (Mouse
Genome Sequencing Consortium, 2002), we chose the root
position to be 0.3 time units from the ‘human’ descendant
and 0.7 units from the ‘mouse’ sequence.

Neutrally evolving aligned human–mouse sequence data
was prepared from BlastZ-aligned data (ftp://genome.
ucsc.edu/goldenPath/10april2003/vsMm3/axtBest/). We
applied a simple but stringent syntheny filter to remove any
spurious hits, then removed alignments that overlapped with

genes (including introns and regulatory elements), which
included repeats (both transposons and tandem repeats), or for
which the DUST program (cut-off 16) annotated part of the
alignment as a low entropy region. We further removed CpG
islands (defined as 250 bp windows containing in excess of
7.5% CpGs, including their 125 bp shoulders; this removed
1.0% of sequence). The remaining data were cut into indi-
vidual ungapped alignments. Since there is evidence that
sequences shorter than ∼12 nt cannot always be aligned cor-
rectly (data not shown), we trimmed the alignments by remov-
ing the leading and trailing 12 nt, and subsequently removed
alignments of <10 bases. Finally, we randomly selected
a ∼100 kb subset of the resulting alignments. This proced-
ure was carried out for human chromosomes 21 (101 142 nt)
and 10 (99 563 nt).

RESULTS
Parameter estimation was carried out by Bayesian MCMC
sampling running for 600.000 iterations, using flat priors for
all parameters. Estimated sample sizes were good at 300–500
for the log-likelihood and typically 100 for the various matrix
entries.

The rate estimates from synthetic data are shown in
Figure 3a. The estimated total mono- and dinucleotide rates
are within 1 SD of their true values. This is also true for
>80% of the matrix entries, including the CG → TG rate
parameter, suggesting that the estimation method is unbiased.
The CG → AG and CG → GG rates come out high, probably
due to a combination of crosstalk from the high CG → TG
rate and the three-site approximation we use; with a lower
CG → TG rate no bias was observed (data not shown). The
estimated posterior density for the root position is shown in
Figure 4a. The true root position is within 1 SD of the Bayesian
estimate of 0.33 ± 0.03.

Rate estimates based on human chromosomes 21 (C21) and
10 (C10) data are shown in Figure 3b and c. The estimates
for the two chromosomes are broadly similar. The CG → TG
rates are higher than the average mononucleotide rates by a
factor 18 (C21; CpG abundance 0.93%) and 17 (C10; CpG
abundance 1.06%). The total effective substitution rate for
C21, due to mononucleotide and dinucleotide substitutions,
is 0.469 + 2 × 0.016 = 0.501. Of this, 9.4 ± 0.5% is due to
the CpG effect, and a further 6.4±0.8% is due to dinucleotide
substitutions. For C10, the total rate is 0.487, of which 10.0±
0.5% is due to the CpG effect and 6.2 ± 0.8% to dinucleotide
substitutions.

Root positions for chromosomes 21 and 10 were estimated
at 0.484 ± 0.014 and 0.510 ± 0.016, respectively. Figure 4b
plots the posterior densities for both chromosomes.

Figure 5 gives a re-parameterized view of the rate estim-
ates obtained by separating out the neighbour-independent
and neighbour-dependent substitution rates. For the syn-
thetic data, the latter are theoretically zero, but since rates
are non-negative, they have a non-Gaussian distribution
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Fig. 3. Estimated mononucleotide substitution rates (dependent on unchanged right neighbour (top row); left-neighbour dependent rates are
fixed by strand reversal symmetry), total mononucleotide rate (ρ1) and total dinucleotide rate (ρ2). Superscripts indicate 1 SD in the last
digit(s). (a) Synthetic data; true mononucleotide rates: CG → TG, 2.40; all others, 0.075. (b) Chromosomes 21 and (c) 10.

Fig. 4. Posterior density estimates of the root position. (a) The results for synthetic data. The theoretical posterior (with rate matrix fixed to
correct values) is shown for comparison (dotted line); the smooth curve is the log-likelihood. The sampled posterior is slightly broadened,
due to the co-sampling of rates together with the root position parameter. (b) The results for chromosomes 21 (solid line) and 10 (dotted line).

with non-zero mean. We used this parameterization to test
neighbour-dependence, by using synthetic data to estimate
cut-off values for the neighbour-independent rates relative to
their empirical SD. A cut-off of 2.2 empirical SDs was found
to correspond to a 90% confidence level. As expected, the
hypothesis of neighbour-independence can be rejected for the
CG → TG substitution, and indeed for many more.

DISCUSSION
We have introduced a context-dependent substitution model
that enables direct estimates of neighbour-dependent and
dinucleotide substitution rates. The model is furthermore
time-irreversible, which allows root placement in the absence
of an outgroup.

We found strong CG → TG and CA substitution rates
as expected, 17 and 18 times above the average rate for

other dinucleotides, in agreement with the previous estim-
ates of a 10–20, fold increase (Sved and Bird, 1990). Our
results indicate that the CpG-related substitutions accounts
for about ∼10% of all substitutions, while an estimate by
Subramanian and Kumar (2003) puts the CpG contribution to
point substitutions in primate intergenic DNA to ∼20%. This
2-fold difference may be partly explained by a different bal-
ance of ordinary versus CpG mutations in primates compared
with rodents. In concordance with this hypothesis, we find a
lower incidence of CpGs in our human chromosome 21 data-
set compared with mouse, although in chromosome 10, the
proportions are similar.

The inferred relative contribution of dinucleotide substitu-
tions to the overall per-site substitution rate of ∼6% in pre-
sumably neutrally evolving human–mouse DNA is in broad
agreement to a study by Averof et al. (2000), who reported

i219



G.Lunter and J.Hein

Fig. 5. Testing neighbour dependence of mononucleotide substitutions. The first matrix tabulates the neighbour-independent contribution to
the substitution rates (row, original; column, mutant), the other four tabulate rates depending on the (unchanged) right neighbour (indicated at
top). For each of these rates, the sample average was compared with the estimated SD to indicate the confidence level at which the zero-rate
hypothesis can be rejected (indicated by colours; white corresponds to a 90% level threshold as calibrated on synthetic data). (a) Synthetic
data. Only the CG → TG rate is significantly non-zero, as expected. (b) The results for chromosomes 21 and (c) 10.

a figure equivalent to 4%. However, Smith et al. (2003)
convincingly argued that this estimate could be upwardly
biased by rate variation along the genome, an effect we did
not include, but is known to be important. A partial filtering
for such rate variation resulted in a 2-fold reduction in the
dinucleotide rate estimates (data not shown), suggesting that
the figure of 6% is an overestimate.

The inferred root position is almost halfway the human and
mouse tips. This is surprising since the mouse lineage had
attracted about twice as many point mutations as the human
lineage since divergence (Mouse Genome Sequencing Con-
sortium, 2002). Since the root inference is based solely on the
irreversible signal in the data, one possible explanation is that
the mutation processes in mouse and human are not identical,
even after scaling, but are a combination of an evolutionarily
relatively constant irreversible process and a scaled reversible
process reponsible for the majority of observed mutations.
This hypothesis can be tested by inferring substitution rates
on both lineages independently, using ancestral repeats.

The dinucleotide model will hopefully contribute to more
precise phylogenetic estimates, by the ability of root
inference, and its more accurate modelling of the neutral
substitution process. We also intend to use it for a more
accurate estimate of the proportion of the human genome
under purifying selection, which is currently estimated at 5%
(Mouse Genome Sequencing Consortium, 2002). Finally, it
may find application in the evolutionary modelling of RNA
base stacking, where context dependencies are known to be
important.
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APPENDIX
Formal definition of the model
To describe the model more formally, we introduce some nota-
tion. Let � = {A, C, G, T} be the alphabet and �L the state
space of sequences. The space of probability distributions over
�L is denoted by DL ⊂ R4L

, and a probability distribution
v ∈ DL is a vector assigning a probability to all 4L pos-
sible sequences in �L. We label the coordinates of DL by
sequences, so that if v ∈ DL and σ ∈ �L, vσ is the prob-
ability of observing the sequence σ . Similarly, for a matrix A,
a matrix coefficient is written Aσ ,τ , and is interpreted as the
rate at which sequence σ mutates into τ (for rate matrices), or
the probability that sequence σ mutates into τ (for probability
matrices). We write στ for the concatenation of σ and τ , and
we write σ [i, j ] for the subsequence σiσi+1 · · · σj . For rate
matrices A, B acting on Dk and Dl , respectively, we denote
by A ⊕ B (the matrix concatenation sum of A and B) the
matrix acting on Dk+l that has A acting on the leftmost k

residues of the sequence, so that it neither depends on nor
changes the rightmost l residues, while B independently and
simultaneously acts on the rightmost l residues. In particular,
this operation is not commutative: A ⊕ B �= B ⊕ A, however
it is associative, A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C. Formally,
(A ⊕ B)ps,qt = Ap,qδs,t + Bs,t δp,q , where δσ ,τ = 1 if σ = τ

and 0 otherwise. For example, (A⊕B)ps,qt = 0 for p �= q and
s �= t , since the rate for two independent mutations to occur
simultaneously vanishes. (Note that this matrix concatenation
sum is distinct from the direct sum of matrices, for which the
same symbol ⊕ is commonly used.) Finally, let Ok be the null
matrix on Dk , then the rate matrix for the dinucleotide model

on a sequence of length L is

R := RL =
L−1∑
k=1

Ok−1 ⊕ M ⊕ OL−k−1. (1)

Stationary sequence distribution
The dinucleotide substitution model introduces dependen-
cies between neighbouring sites, and the stationary sequence
distribution π(σ) no longer factorizes into a product of single-
nucleotide distributions as in the independent-site model. For
a certain class of reversible dinucleotide substitution models,
the stationary distribution is of Gibbs form (Pedersen and
Jensen, 2001). It can be shown that this implies a (first order)
Markov structure for the stationary distribution, i.e.

p(σi = α | σ1σ2 · · · σi−1) = p(σi = α | σi−1). (2)

In general, non-reversible case, numerical experiments seem
to indicate that this Markov property breaks down, even
though the rate matrix involves only pairwise interactions.
It is unclear whether this is a result of the irreversibil-
ity of the process, or whether reversibility and having a
Markovian stationary distribution are orthogonal features. At
any rate, there seems to be no simple expression for the sta-
tionary distribution, and we have to resort to a numerical
approximation.

The matrix RK can be built explicitly for small K , and
we can find its stationary distribution numerically by solv-
ing πRK = 0. However, this will not properly approximate
the marginal distribution π(σi · · · σi+K−1) for a length-K
subsequence in a longer sequence of length L, because no
substitutions overlapping the edges are taken into account.
Such edge effects can be taken into account as follows. First,
we note that although (2) is not satisfied exactly, a higher-order
Markov property does hold approximately,

p(σi = α | σ1σ2 · · · σi−1) ≈ p(σi = α | σi−n · · · σi−1), (3)

and the approximation converges exponentially in n. If we
know the exact marginal distribution π of length-K sub-
sequences, we can use (3) to find the approximate conditional
distribution of σK+1,

p(σK+1 | σ1 · · · σK) ≈ p(σK+1 | σ2 · · · σK)

= π(σ2 · · · σK+1)∑
α∈� π(σ2 · · · σKα)

.
(4)

This approximation is known as the ‘K-cluster approxima-
tion’ in the physics literature (Arndt et al., 2003; ben Avraham
and Köhler, 1992). We can now include edge effects by hav-
ing the rate matrix M act on σKσK+1 by supposing that σK+1

is distributed according to (4), and similarly for the left-hand
edge. Formally, we add to RK the rate matrix Re

K , describing
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the substitutions at the edges:

(Re
K)σ ,τ =

[∑
α,β π(ασ1 · · · σK−1)Mασ1,βτ1∑

α π(ασ1 · · · σK−1)
δσ [2,K],τ [2,K]

+
∑

α,β π(σ2 · · · σKα)MσKα,τKβ∑
α π(σ2 · · · σKα)

× δσ [1,K−1],τ [1,K−1]
]

σ ,τ

, (5)

where σ and τ are sequences in �K . From an initial guess for
π , we compute Re

K , and then solve π(RK + Re
K) = 0 for π

to get a better approximation. This procedure is repeated until
convergence, which is rapid. The only approximation is made
in (4), and since the correlation between nucleotides decreases
exponentially fast with their separation, this approximation
can be good even for moderate values of K . In this paper, we
use K = 3.

A recursion for sequence-to-sequence
probabilities
Let v(t) be the probability distribution vector at time t , so that
v(t)σ is the probability of observing sequence σ at time t .
Since the rate at which sequence σ mutates into sequence τ is
Rσ ,τ , the time evolution of v is given by dv(t)/dt = v(t)R.
The solution to this equation is v(t) = v(0) exp(Rt), and
the probability of sequence σ evolving into τ in time t is
exp(Rt)σ ,τ . However, the matrix R is of dimension 4L, too
big for explicit computations. Write Ri := Oi−1 ⊕ M ⊕
OL−i−1, and recall that R = ∑L−1

i=1 Ri . We may expand the
matrix exponential in a Taylor series,

exp(Rt) = I +
(

L−1∑
i=1

Ri

)
t

1! +
(

L−1∑
i=1

Ri

)2
t2

2! + · · · . (6)

Many of the terms in the expression
(∑

Ri

)n
commute;

indeed, RiRj = RjRi unless |i − j | = 1. We say that a
factor Ri1 · · · Rik is overlapping if it cannot be written as the
product of two commuting factors. For instance, R1R3R2 is
overlapping, but R1R4R2R5 is not, since by swapping the
middle two factors (which commute), we get (R1R2)(R4R5),
a product of two commuting factors. In this way, a term can
be written uniquely as a product of commuting factors, which
themselves are overlapping. We define the length of an over-
lapping factor to be the number of sites it affects, e.g. the
length of R1R2 is 3 as it affects sites 1 through 3.

Now if a pair of neighbouring sites has never experienced a
substitution involving both nucleotides simultaneously, the
evolutionary histories of the left and right sequence parts
become independent, and the likelihood factorizes into a
product. If we expand the full likelihood in terms of the
first position (counted from the right) where such a ‘break’
in the dependence structure occurred, we obtain a dynamic
programming recursion.

Mathematically, we factorize the terms of (6) into com-
muting factors. Consider all terms that contain in their
factorization an overlapping factor F = Ri1 · · · Rin of length
k that includes a factor RL−1. The sum of these terms can be
written as GF , and this product commutes by construction;
F only contains terms Ri with i > L − k, whereas G only
contains i < L − k terms. In fact, we have

G = IL−k

tn

n! +
(

L−k−1∑
i=1

Ri

) (
n+1

1

)
tn+1

(n + 1)! + · · ·

= tn

n!
[
IL−k +

(
L−k−1∑

i=1

Ri

)
t

1! +
(

L−k−1∑
i=1

Ri

)2
t2

2! + · · ·
]

= tn

n! exp
[
(RL−k ⊕ Ok)t

]
= tn

n! exp(RL−kt) ⊗ Ik , (7)

where the binomial coefficients (
n+k
k

) count the number of
ways that k factors Ri can be interleaved with the n factors
comprising F in the product

(∑
Ri

)n+k
. Here, we introduced

the matrix concatenation product, ⊗, which is defined by
(A⊗B)ps,qt = Ap,qBs,t , and the symbol Ik denotes the iden-
tity matrix on Dk . Recall that Rk is the rate matrix acting on
Dk as defined in (1). If we denote by Ak the sum of all over-
lapping factors F of length k, including a factor tn/n! each,
then from (7) it follows that

exp(Rnt) = eRn−1t ⊗ A1 + eRn−2t ⊗ A2 + · · · + An. (8)

(Here, we included the identity matrix I1 into A1.) Now,
let Pn be the probability that the length-n prefix of σ

evolves into the same prefix of τ . More formally, Pn =[
exp(Rnt)

]
σ [1,n],τ [1,n] , where we introduced the notation

σ [i, j ] = σiσi+1 · · · σj . Then, we can turn (8) into the
following dynamic programming recursion:

Pn = (A1)σn,τn
Pn−1 + (A2)σ [n−1,n],τ [n−1,n]Pn−2

+(A3)σ [n−2,n],τ [n−2,n]Pn−3 + · · · , (9)

with the initialization P0 = 1. To compute the Ak , we iter-
atively solve for A1, A2, . . . in (8). For n = 1, the equation
reads exp(R1t) = A1, and there is nothing to solve. Note that
R1 = 0 by definition (1), so that A1 = I1. The other factors
are found recursively:

A2 = eR2t − eR1t ⊗ A1, (10)

A3 = eR3t − eR2t ⊗ A1 − eR1t ⊗ A2, (11)

A4 = eR4t − eR3t ⊗ A1 − eR2t ⊗ A2 − eR1t ⊗ A3. (12)
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If these formulas are expanded in terms of the Ak , we get

A2 = eR2t − A1 ⊗ A1, (13)

A3 = eR3t − A2 ⊗ A1 − A1 ⊗ A2 − A1 ⊗ A1 ⊗ A1, (14)

A4 = eR4t − A3 ⊗ A1 − A2 ⊗ A2 − A1 ⊗ A3

− A2 ⊗ A1 ⊗ A1 − A1 ⊗ A2 ⊗ A1

− A1 ⊗ A1 ⊗ A2 − A1 ⊗ A1 ⊗ A1 ⊗ A1. (15)

Collected on the right-hand sides are all possible ways in
which a matrix on Dk can be built from a matrix concatena-
tion product of matrices Ai , i < k. By definition, the terms
occurring in such products are not overlapping. Since the Ai

contain all overlapping terms of length i in the expansion of
exp(Ri t), the terms in Ak are those in exp(Rkt) except terms
that factorize, i.e. all overlapping terms of length-k.

The recursion (9) is exact, but in practise only a few terms
can be included, since the dimension of the matrices Ai

grows exponentially with i. Fortunately, the matrix entries
tend to 0 exponentially fast, and a good approximation can be
obtained with a few terms. In the implementation, we used
the Padé algorithm to compute the matrix exponentials of the
non-symmetric matrices (see Moler and van Loan, 2003).

Evolution from a common ancestor
The algorithm developed above computes the likelihood that
one sequence evolves into another. Most often however, we
are interested in the likelihood Pσ ,τ that two sequences σ and
τ have evolved from a common, unknown ancestral sequence
ρ. To do this, we compute the exponential of the matrix R for
both branches of the tree using ideas of the previous section,
and derive a recursion similar to Felsenstein’s reverse traversal
algorithm to sum over the ancestral nucleotide distribution.
In contrast to Felsenstein’s algorithm we cannot immediately
carry out this summation, since the equilibrium nucleotide
distribution has dependencies along the sequence. Instead, we
compute the likelihood conditional on the last few ancestral
nucleotide positions, and sum over the ancestral distribution
conditional on these. This method can be extended to arbit-
rary trees, but for simplicity we only give the recursion for
the case of a two-leaved tree. Also, we truncate the formulas
for the approximation up to the third term, and we use the
three-cluster approximation for the equilibrium distribution.
These three-site approximations turn out to be sufficient for
our application.

The recursion is, again, conditioned on the shortest
sequence suffix that is independent of its prefix, but we now
require this independence to hold on both branches simultan-
eously. Let P

βα
n be the likelihood of the descendant sequence

prefixes σ [1, n] and τ [1, n] to have evolved from a common
ancestral sequence prefix ρ[1, n] in time t1, t2, respect-
ively, where the unobserved ancestral sequence is distributed

according to the equilibrium distribution, conditional on the
last two nucleotides ρn−1ρn being βα. Analogous to (9) we
then have the following dynamic programming recursion:

P βα
n =

∑
γ

P
γβ

n−1p(γ |βα)Bα
σn,τn

+
∑
δγ

P
δγ

n−2p(γ |βα)p(δ|γβ)B
βα

σ [n−1,n],τ [n−1,n]

+
∑
εδγ

P εδ
n−3p(γ |βα)p(δ|γβ)p(ε|δγ)Bγβα

σ [n−2,n],τ [n−2,n].

(16)

Here, p(γ | βα) = π(γβα)/
∑

δ π(δβα) is the probability
of observing γ conditional on its right neighbours βα. This
recursion can be made more efficient, removing the double
and triple summations, by expressing the stationary distri-
bution in terms of a nucleotide pair further up along the
sequence:

P
βα

n,0 = P
βα

n−1,1B
α
σn,τn

+ P
βα

n−2,2B
βα

σ [n−1,n],τ [n−1,n]

+
∑
γ

P
γβ

n−3,2 p(γ | βα)B
γβα

σ [n−2,n],τ [n−2,n], (17)

P
βα

n,k+1 =
∑
γ

P
γβ

n,k p(γ | βα) (k = 0, 1). (18)

The B-factors represent the probabilities of the events that
yield the required dependencies on the two branches, and
can be computed by a procedure similar to that used for the
sequence-to-sequence case:

Bα
σ1,τ1

= (eR1t1)α,σ1(e
R1t2)α,τ1 ,

Bβα
σ1σ2,τ1τ2

= (eR2t1)βα,σ1σ2(e
R2t2)βα,τ1τ2

− Bβ
σ1,τ1

Bα
σ2,τ2

,

Bγβα
σ1σ2σ3,τ1τ2τ3

= (eR3t1)γβα,σ1σ2σ3(e
R3t2)γβα,τ1τ2τ3

− Bγ
σ1,τ1

Bβα
σ2σ3,τ2τ3

− Bγβ
σ1σ2,τ1τ2

Bα
σ3,τ3

− Bγ
σ1,τ1

Bβ
σ2,τ2

Bα
σ3,τ3

. (19)

To initialize the recursion, we deviate slightly from the model
and assume that the length-L sequence is embedded in an
infinitely long sequence. This ensures that the nucleotides at
the edges are subjected to the same mutation rates as nucle-
otides at other positions. This idea is implemented by setting
P

βα
i = 1 for i < 1, and summing over the unobserved nuc-

leotides σi and τi with i < 1 in (16). At termination, the
recursion (16) is executed for two additional steps, up to
n = L + 2, similarly summing over the unobserved nuc-
leotides σi and τi with i > L. Finally, the likelihood is
Pσ ,τ = ∑

α,β π(βα)P
βα

L+2,0.
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