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Definition

Three Key Algorithms

•    Summing over Unknown States

•    Most Probable Unknown States

•    Marginalizing Unknown States

Key Bioinformatic Applications
•     Pedigree Analysis
•     Isochores in Genomes  (CG-rich regions)
•     Profile HMM Alignment
•     Fast/Slowly Evolving States
•     Secondary Structure Elements in Proteins
•     Gene Finding
•     Statistical Alignment



Hidden Markov Models
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(O1,H1), (O2,H2),……. (On,Hn) is a sequence of stochastic variables with 2
components - one that is observed (Oi) and one that is hidden (Hi).

The marginal discribution of the Hi’s are described by a Homogenous Markov Chain:

•Let pi,j = P(Hk=i,Hk+1=j)

•Let πi =P{H1=i) - often πi is the equilibrium distribution of the Markov Chain.

•Conditional on Hk (all k), the Ok are independent.

•The distribution of Ok only depends on the value of Hi and is called the emit function
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e(i, j) = P{Ok = i Hk = j)



What is the probability of the data?
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be hard to calculate.  However, these calculations can be considerably
accelerated.   Let             the probability of the observations (O1,..Ok)
conditional on Hk=j.    Following recursion will be obeyed:
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i.   POk = i
Hk = j = P(Ok = i Hk = j) POk−1

Hk−1 = j

Hk−1 = j
∑ p j,i
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ii.   PO1 = i
H1 = j = P(O1 = i H1 = j)π j   (initial condition)
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What is the most probable ”hidden” configuration?
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Let      be the sequences of hidden states that maximizes the observed
sequence O ie ArgMaxH[               ].  Let      probability of the most
probability of the most probable path up to k ending in hidden state j.

Again recursions can be found
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The actual sequence of hidden states          can be found recursively by
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What is the probability of specific ”hidden” state?
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Let       be the probability of the observations from j+1 to n given Hk=j.
These will also obey recursions:
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The probability of the observations and a specific hidden state can
found as:

And of a specific hidden state can found as:



Fast/Slowly Evolving States
Felsenstein & Churchill, 1996
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• πr - equilibrium distribution of hidden states (rates) at first position

•pi,j - transition probabilities between hidden states

•L(j,r) - likelihood for j’th column given rate r.

•L(j,r) - likelihood for first j columns given j’th column has rate r.
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L(j,f) = (L(j-1,f)pf , f + L(j-1,s)ps, f )L( j , f )
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L(j,s) = (L(j-1,f)pf ,s + L(j-1,s)ps,s)L( j,s)
Likelihood Recursions:

Likelihood Initialisations:
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L(1,s) = π sL(1,s)
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L(1,f) = π f L(1, f )



        -             #                 #                   E
        #             #                 -                   E
*
*       λβ                       λ/µ (1− λβ)e-µ                   λ/µ (1− λβ)(1− e-µ)                (1− λ/µ) (1− λβ)

-
#       λβ                      λ/µ (1− λβ)e-µ                   λ/µ (1− λβ)(1− e-µ)                (1− λ/µ) (1− λβ)

_
#       λβ                    λ/µ (1− λβ)e-µ                     λ/µ (1− λβ)(1− e-µ)                 (1− λ/µ) (1− λβ)

#
-                                                                                         λβ

€ 

1− λβe−µ

1−e−µ

€ 

λβe−µ

1− e−µ

€ 

(µ − λ)β
1− e−µ

An HMM Generating Alignments

Statistical Alignment
Steel and Hein,2000 + Holmes and Bruno,2000
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Emit functions:
e(##)= π(N1)f(N1,N2)
e(#-)= π(N1), e(-#)= π(N2)

π(N1) - equilibrium prob. of N
f(N1,N2) - prob. that N1
evolves into N2



Probability of Data given a pedigree.
Elston-Stewart (1971) -Temporal Peeling Algorithm:

Lander-Green (1987) - Genotype Scanning Algorithm:

Mother Father

Condition on parental states

Recombination and mutation are Markovian

Mother Father

Condition on paternal/maternal inheritance

Recombination and mutation are Markovian

Comment: Obvious parallel to Wiuf-Hein99 reformulation of Hudson’s 1983 algorithm



Further Examples I

Simple Prokaryotic Simple EukaryoticGene Finding:
Burge and Karlin, 1996

Isochore:
Churchill,1989,92
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L(j,p) = (Lj−1,p pp,p + L(j-1,s)ps, f )Pp (S[ j]),   L(j,r) = (L(j-1,r)pp,r + L(j-1,r)pr,r)Pr (S[ j])Likelihood Recursions:

Likelihood Initialisations:
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L(1,p) = π pPp (S[1]),  L(1,r) = π rPr (S[1])

poor
richHMM: Lp(C)=Lp(G)=0.1, Lp(A)=Lp(T)=0.4,

Lr(C)=Lr(G)=0.4,  Lr(A)=Lr(T)=0.1



Further Examples IISecondary Structure Elements:
Goldman, 1996

Profile HMM
Alignment:
Krogh et al.,1994
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HMM for SSEs:

Adding Evolution: SSE Prediction:
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Definition
Three Key Algorithms
•    Summing over Unknown States
•    Most Probable Unknown States
•    Marginalizing Unknown States
Key Bioinformatic Applications
•     Pedigree Analysis
•     Isochores in Genomes  (CG-rich regions)
•     Profile HMM Alignment
•     Fast/Slowly Evolving States
•     Secondary Structure Elements in Proteins
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