Hidden Markov Models in Bioinformatics

Definition
Three Key Algorithms

- Summing over Unknown States
- Most Probable Unknown States
- Marginalizing Unknown States

Key Bioinformatic Applications

- Pedigree Analysis
- Isochores in Genomes (CG-rich regions)
- Profile HMM Alignment
- Fast/Slowly Evolving States
- Secondary Structure Elements in Proteins
- Gene Finding
- Statistical Alignment

Hidden Markov Models

$\left(\mathrm{O}_{1}, \mathrm{H}_{1}\right),\left(\mathrm{O}_{2}, \mathrm{H}_{2}\right), \ldots \ldots\left(\mathrm{O}_{\mathrm{n}}, \mathrm{H}_{\mathrm{n}}\right)$ is a sequence of stochastic variables with 2 components - one that is observed $\left(\mathrm{O}_{\mathrm{i}}\right)$ and one that is hidden $\left(\mathrm{H}_{\mathrm{i}}\right)$.

The marginal discribution of the H_{i} 's are described by a Homogenous Markov Chain:
-Let $\mathrm{p}_{\mathrm{i}, \mathrm{j}}=\mathrm{P}\left(\mathrm{H}_{\mathrm{k}}=\mathrm{i}, \mathrm{H}_{\mathrm{k}+1}=\mathrm{j}\right)$
-Let $\pi_{\mathrm{i}}=\mathrm{P}\left\{\mathrm{H}_{1}=\mathrm{i}\right)$ - often π_{i} is the equilibrium distribution of the Markov Chain.
-Conditional on $\mathrm{H}_{\mathrm{k}}($ all k$)$, the O_{k} are independent.
-The distribution of O_{k} only depends on the value of H_{i} and is called the emit function $e(i, j)=P\left\{O_{k}=i \mid H_{k}=j\right)$

What is the probability of the data?

The probability of the observed is $P(\vec{O})=\sum_{\vec{H}} P(\vec{O} \mid \vec{H}) P(\vec{H})$, which can be hard to calculate. However, these calculations can be considerably accelerated. Let $P_{O_{k}=i}^{H_{k}=j}$ the probability of the observations $\left(O_{l}, . . O_{k}\right)$ conditional on $H_{k}=j$. ${ }^{{ }^{k}=i}$ Following recursion will be obeyed:

$$
\text { i. } \quad P_{O_{k}=i}^{H_{k}=j}=P\left(O_{k}=i \mid H_{k}=j\right) \sum_{H_{k-1}=j} P_{O_{k-1}}^{H_{k-1}=j} p_{j, i}
$$

ii. $\quad P_{O_{1}=i}^{H_{1}=j}=P\left(O_{1}=i \mid H_{1}=j\right) \pi_{j}$ (initial condition)
iii. $P(O)=\sum_{H_{n}=j} P_{O_{n}=i}^{H_{n}=j}$

What is the most probable "hidden" configuration?

Let H^{*} be the sequences of hidden states that maximizes the observed sequence O ie $\operatorname{ArgMax}_{\mathrm{H}}\left[P\{O \mid H\}\right.$. Let H_{k}^{j} probability of the most probability of the most probable path up to k ending in hidden state j.

Again recursions can be found

$$
\text { i. } H_{k}^{j}=\max _{i}\left\{H_{k-1}^{i} p_{i, j}\right\} e\left(O_{k}, j\right) \quad \text { ii. } H_{1}^{j}=\pi_{j} e\left(O_{1}, 1\right)
$$

The actual sequence of hidden states H_{k}^{*} can be found recursively by

$$
\text { iii. } \quad H_{k-1}^{*}=\left\{i \mid H_{k-1}^{i} p_{i, j} e\left(O_{k}, j\right)=H_{k}^{H_{k}^{*}}\right\}
$$

$$
\begin{aligned}
H_{6}^{1} & =\max _{j}\left\{H_{6}^{1} * p_{j, 1} * e\left(O_{6}, 1\right)\right\} \\
H_{5}^{*} & =\left\{i \mid H_{5}^{i} * p_{i, 1} * e\left(O_{6}, 1\right)=H_{6}^{1}\right\}
\end{aligned}
$$

What is the probability of specific "hidden" state?

Let Q_{k}^{j} be the probability of the observations from $j+1$ to n given $H_{k}=j$. These will also obey recursions:

$$
Q_{k}^{j}=\sum_{H_{k+1}=i} P\left(O_{k} \mid H_{k+1}=i\right) p_{j, i} Q_{k+1}^{i}
$$

The probability of the observations and a specific hidden state can found as: $P\left\{O, H_{k}=j\right)=P_{k}^{j} Q_{k}^{j}$

And of a specific hidden state can found as: $P\left\{H_{k}=j\right)=P_{k}^{j} Q_{k}^{j} / P(O)$

$$
P\left\{H_{5}=2\right)=P_{5}^{2} Q_{5}^{2} / P(O)
$$

Fast/Slowly Evolving States

positions

HMM:
 slow $-r_{s}$
fast $-r_{f}$

- π_{r} - equilibrium distribution of hidden states (rates) at first position
- $p_{i, j}$ - transition probabilities between hidden states
- $L_{(j, r)}$ - likelihood for j 'th column given rate r .
- $L^{(j, r)}$ - likelihood for first j columns given j 'th column has rate r .

Likelihood Recursions:

$$
L^{(\mathrm{j}, \mathrm{f})}=\left(L^{(\mathrm{j}-1, \mathrm{f})} p_{f, f}+L^{(\mathrm{j}-1, \mathrm{~s})} p_{s, f}\right) L_{(j, f)} \quad L^{(\mathrm{j}, \mathrm{~s})}=\left(L^{(\mathrm{j}-1, \mathrm{f})} p_{f, s}+L^{(\mathrm{j}-1, s)} p_{s, s}\right) L_{(j, s)}
$$

Likelihood Initialisations:

$$
L^{(1, \mathrm{f})}=\pi_{f} L_{(1, f)} \quad L^{(1, \mathrm{~s})}=\pi_{s} L_{(1, s)}
$$

Statistical Alignment

Steel and Hein, 2000 + Holmes and Bruno,2000

Emit functions:

$e(\# \#)=\pi\left(N_{1}\right) £\left(N_{1}, N_{2}\right)$
$e(\#-)=\pi\left(N_{1}\right), e(-\#)=\pi\left(N_{2}\right)$
$\boldsymbol{\pi}\left(N_{1}\right)$ - equilibrium prob. of N $\underline{f}\left(N_{1}, N_{2}\right)$ - prob. that N_{1}
evolves into N_{2}

An HMM Generating Alignments

	-	\#	\#	E
	\#	\#	-	E
*	$\lambda \beta$	$\underline{\lambda / \mu}(1-\lambda \beta) \mathrm{e}^{-\mu}$	$\lambda / \mu(1-\lambda \beta)\left(1-\mathrm{e}^{-\mu}\right)$	$(1-\lambda / \mu)(1-\lambda \beta)$
\#	$\lambda \beta$	$\lambda / \mu(1-\lambda \beta) \mathrm{e}^{-\mu}$	$\lambda / \mu(1-\lambda \beta)\left(1-e^{-\mu}\right)$	$(1-\lambda / \mu)(1-\lambda \beta)$
\#	$\lambda \beta$	$\lambda / \mu(1-\lambda \beta) \mathrm{e}^{-\mu}$	$\lambda / \mu(1-\lambda \beta)\left(1-e^{-\mu}\right)$	$(1-\lambda / \mu)(1-\lambda \beta)$
	$\frac{1-\lambda \beta e^{-\mu}}{1-e^{-\mu}}$	$\lambda \beta e^{-\mu}$		$\frac{(\mu-\lambda) \beta}{1-\mu}$
	$1-e^{-\mu}$	$\overline{1-e^{-\mu}}$	$\lambda \beta$	$1-e^{-\mu}$

Probability of Data given a pedigree.

Elston-Stewart (1971) -Temporal Peeling Algorithm:

Condition on parental states
Recombination and mutation are Markovian

Lander-Green (1987) - Genotype Scanning Algorithm:

Condition on paternal/maternal inheritance
Recombination and mutation are Markovian

Comment: Obvious parallel to Wiuf-Hein99 reformulation of Hudson's 1983 algorithm

Further Examples I

Isochore:

Churchill,1989,92

HMM:

poor

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{p}}(\mathrm{C})=\mathrm{L}_{\mathrm{p}}(\mathrm{G})=0.1, \mathrm{~L}_{\mathrm{p}}(\mathrm{~A})=\mathrm{L}_{\mathrm{p}}(\mathrm{~T})=0.4, \\
& \mathrm{~L}_{\mathrm{r}}(\mathrm{C})=\mathrm{L}_{\mathrm{r}}(\mathrm{G})=0.4, \mathrm{~L}_{\mathrm{r}}(\mathrm{~A})=\mathrm{L}_{\mathrm{r}}(\mathrm{~T})=0.1
\end{aligned}
$$

Likelihood Initialisations: $\quad L^{(1, \mathrm{p})}=\pi_{p} P_{p}(S[1]), L^{(1, \mathrm{r})}=\pi_{r} P_{r}(S[1])$

Gene Finding: Simple Prokaryotic Burge and Karlin, 1996

Simple Eukaryotic

Secondary Structure Elements:

HMM for SSEs:

$\begin{array}{llllllll}\alpha & \mathrm{L} & \alpha & \mathrm{L} & \beta & \mathrm{L} & \beta\end{array}$

Adding Evolution:

	α	β	L
α	.909	.0005	.091
β	.005	.881	.184
L	.062	.086	.852
	.325	.212	.462

SSE Prediction:

Profile HMM Alignment:

Krogh et al., 1994

	0_{1}	0_{2}	0_{3}	0_{4}	0_{5}	0_{6}	0_{7}	0_{8}	0_{9}	0_{10}
	\circ									
H_{1}	\circ	\circ	\circ							
H_{2}	\circ									
H_{3}	\circ									

Definition

Three Key Algorithms

- Summing over Unknown States
- Most Probable Unknown States
- Marginalizing Unknown States

Key Bioinformatic Applications

- Pedigree Analysis
- Isochores in Genomes (CG-rich regions)
- Profile HMM Alignment
- Fast/Slowly Evolving States
- Secondary Structure Elements in Proteins
- Gene Finding
- Statistical Alignment

Recommended Literature

Vineet Bafna and Daniel H. Huson (2000) The Conserved Exon Method for Gene Finding ISMB 2000 pp. 3-12
S.Batzoglou et al.(2000) Human and Mouse Gene Structure: Comparative Analysis and Application to Exon Prediction. Genome Research. 10.950-58.

Blayo, Rouze \& Sagot (2002) "Orphan Gene Finding - An exon assembly approach" J.Comp.Biol.
Delcher, AL et al.(1998) Alignment of Whole Genomes Nuc.Ac.Res. 27.11.2369-76.
Gravely, BR (2001) Alternative Splicing: increasing diversity in the proteomic world. TIGS 17.2.100-
Guigo, R.et al.(2000) An Assesment of Gene Prediction Accuracy in Large DNA Sequences. Genome Research 10.1631-42
Kan, Z. Et al. (2001) Gene Structure Prediction and Alternative Splicing Using Genomically Aligned ESTs Genome Research 11.889-900.
Ian Korf et al.(2001) Integrating genomic homology into gene structure prediction. Bioinformatics vol17.Suppl. 1 pages 140-148
Tejs Scharling (2001) Gene-identification using sequence comparison. Aarhus University
JS Pedersen (2001) Progress Report: Comparative Gene Finding. Aarhus University
Reese,MG et al.(2000) Genome Annotation Assessment in Drosophila melanogaster Genome Research 10.483-501.
Stein,L.(2001) Genome Annotation: From Sequence to Biology. Nature Reviews Genetics 2.493-

