
Recursions for Statistical Multiple Alignment

Jotun Hein

Department of Statistics, Oxford University,

The Peter Medawar Building for Pathogen Research,

South Parks Road, Oxford OX1 3SY, England

Jens Ledet Jensen�

Department of Theoretical Statistics, Institute of Mathematics,

Ny Munkegade, DK-8000 Aarhus C, Denmark.

Phone: +45 89423526 Fax: +45 86131769 Email: jlj@imf.au.dk

Christian N.S. Pedersen

Department of Computer Science, Ny Munkegade,

DK-8000 Aarhus C, Denmark

Keywords: backward recursion, emission probability, forward recursion, hidden markov

chain, states, transition probability



Abstract

Algorithms are presented that allows the calculation of the probability of a set

of sequences related by a binary tree that have evolved according to the Thorne-

Kishino-Felsenstein model for a �xed set of parameters. The recursions are based

on a Markov chain generating sequences and their alignment at nodes in a tree.

Dependent on whether the complete realization of this Markov chain is decomposed

into the �rst transition and the rest of the realization or the last transition and the

�rst part of the realization, two kinds of recursions are obtained that are computa-

tionally similar, but probabilistically di�erent. The running time of the algorithms

are O(
Qd

i=1 Li), where Li is the length of the i'th observed sequence and d is the

number of sequences - leaves at the binary tree. An alternative recursion is also

formulated that only uses a Markov chain involving the internal nodes of a tree.

1



1 Introduction

Proteins and DNA sequences evolve predominantly by substitutions, insertions and dele-

tions of single characters or strings of these elements, where a character is either a nu-

cleotide or an amino acid. During the last two decades, the analysis of the substitution

process has improved considerably, and has increasingly been based on stochastic mod-

els. The process of insertions and deletions have not received the same attention and is

presently being analysed by optimization techniques for instance maximizing a similarity

score as �rst used by Needleman and Wunch (1970).

In 1991 Thorne, Kishino and Felsenstein proposed a well de�ned time reversible

Markov model for insertions and deletions (denoted more briey as the TKF-model) that

allowed a proper statistical analysis for two sequences. Such an analysis can be used to

provide maximum likelihood sequence alignments for pairs of sequences, or to estimate

the evolutionary distance between two sequences. Recently, an algorithm was presented

by Steel and Hein (2000) that allowed statistical alignment of sequences related by a

star shaped tree - a tree with one internal node. Hein (2001) formulated an algorithm

that calculate the probability of observing a set of sequences related by a given tree in

O((
Q

i Li)
2) time, where Li is the length of the i'th sequence. This is also the time re-

quired by the algorithm in Steel and Hein (2000). The present article accelerates, extends

and formalizes the algorithm in Hein (2001). In particular the time requirement for the

algorithm presented here is O(
Q
i Li).

In the TKF-model each character along the sequence develops according to the same

process and independently of the other characters. During the `lifespan' of a character

(also to be denoted an individual below) the character undergoes changes according to a

reversible substitution process (identical to the site substitution process where insertions

and deletions are not allowed). The character is deleted (or dies) after an exponentially

distributed waiting time with mean 1=�. Thus the `death' rate is �. While being alive

a character gives rise to new characters at the rate �. A `newborn' character is placed

immediately to the right of the character from which it is born, and the character is

chosen from the stationary distribution of the substitution process. At the very left of

2



the sequence is a socalled mortal link that never dies and gives rise to new characters at

the rate �. This prevents the process form becoming extinct.

For the TKF-model on a tree the de�ning parameters are the death rate � and the

birth rate � as described above together with a time parameter � for each edge of the

tree. The time parameter � de�nes for how long the process runs along a given edge. A

scaling of the times are needed in that multiplying all the � 's by a constant c and dividing

� and � by c will give the same process. When the process splits into two subprocesses

at an internal node the two subprocesses are independent.

The main probabilistic aspects of the TKF-model are as follows. At equilibrium the

probability that the sequence is l characters long is (1� �
�
)(�

�
)l. Given that the sequence

has length l the equilibrium probability of a speci�c sequence is
Ql

i=1 �(S(i)), where

S(i) is the i'th character in the sequence and �(�) is the equilibrium distribution of the

substitution process. The probability that a character survives over a time span � and

during that time gives rise to N newborns is given by (2) below, and the same probability

when the character does not survive is given in (3). For the immortal link the probability

of N newborns is given by (2) without the exp(���) term. Thus the probability of two

aligned sequences can be written in terms of the stationary probability of sequence 1

together with the product of the appropiate probabilities for the fate of each character

in sequence 1 as seen in sequence 2. The latter involves either (2) or (3), the stationary

probabilities for the characters of the newborns, and the substitution probability in the

case of survival of a character from sequence 1 to sequence 2.

The structure of the probabilities (2) and (3) allow us to write the joint probability of

observed sequences at the leaves of a tree together with the alignment and the unobserved

sequences at internal nodes of the tree as a Markov chain observed until the process reaches

an absorbing state. The process of observed sequences therefore become a hidden Markov

chain. Having obtained this identi�cation we can use traditional methods for obtaining

a recursion for the calculation of the probability of the observed sequences. In particular

we state two recursions, one corresponding to splitting the process according to the �rst

state of the Markov chain and one corresponding to splitting the process according to the

last state of the Markov chain. In section 3.1 a state of the hidden Markov chain describes

3



an element in the alignment for the whole tree, and this gives a recursion of complexity

O(
Q

i Li). In section 3.2 we take a state of the hidden Markov chain to be an element

in the alignment of the tree consisting of internal nodes only. This gives a recursion of

complexity O((
Q

i Li)
2), however, this can be reduced to O(

Q
i Li) and, actually, we obtain

a recursion with slightly fewer terms than the one considered in section 3.1.

We start in section 2 by de�ning the states of our hidden Markov chain and �nding the

transition probabilities of the Markov chain. This section introduces necessary notation

in order to allow for a precise mathematical formulation.

2 Preliminaries

2.1 Notation

We consider a tree with d0 internal nodes and d leaves. The internal nodes are num-

bered from 1 to d0 with 1 being the root and where the ancestor a(i) of i is to found in

f1; 2; : : : ; i�1g. The leaves are numbered from d0+1 to d0+d with the descendants of the

internal node i being numbered before the descendants of the internal node j for j > i.

Thus for a tree with two internal nodes and four leaves the numbering can be seen in

Figure 1 and for a tree with four internal nodes and 6 leaves the numbering can be seen

in Figure 2. The evolutionary time distance from the ancestor of a node z to the node z
Figure 1 and
Figure 2 to
be placed
hereis �(z).

The observed sequences are Sj, for j = d0 + 1; : : : ; d0 + d, where Sj is the observed

sequence at the leaf j. The length of Sj is Lj and the a'th entry of Sj is denoted Sj(a).

We write Sj(a : b) for the entries from a to b with a and b included. We let S denote

the collection of sequences, and for two d-dimensional vectors u; v indexed by j = d0 +

1; : : : ; d0 + d and with integer entries we let S(u : v) be the collection of subsequences

Sj(uj : vj). To compare two d-dimensional vectors u; v we use the notation

u > v if uj > vj 8j; and u
w
> v if uj > vj for some j;

with similar de�nitions for other relations. To shorten the formulae we write for two

4



vectors K; l with l � 0

S[K; l] = S((K � l + 1) : K):

Finally, L is the vector with entries Lj.

We write 1(E) for the function that is 1 when the expression E is true and 0 otherwise.

2.2 States

In this section we introduce the states of the hidden Markov chain. There is always an

initial state I corresponding to the immortal link and an end state E corresponding to

the end of the Markov chain. The set of other states is denoted �.

To facilitate the understanding of the choice of states let us �rst consider a concrete

realization of the TKF-model for the tree in Figure 1 and write this as a sequence of

states. We consider a case with only one individual, or character, at the root 1. The

immortal link gives rise to 1 birth at the leaf 4 and to 1 birth at the internal node 2. The

latter survives in leaf 5, but not in leaf 6, and at leaf 5 there is also the birth of 1 new

individual. The individual at the root 1 survives in node 2, but not in leaf 3 and 4. The

individual at node 2 survives in leaf 6, but not in leaf 5 although giving rise to the birth

of 2 new characters at leaf 5. At leaf 3 there is also the birth of a new character. At node

2 a new individual is born that survives in both leaf 5 and 6 and gives rise to the birth of

a new character at leaf 5. We can depict this realization by columns, where each column

consists of a birth and the survival of this individual along the tree.

node column number

1 2 3 4 5 6 7 8 9

1 #

2 # # #

3 #

4 #

5 # # # # # #

6 # #

(1)

5



We have ordered the columns in such a way that a birth at a node j comes before a birth

at node i < j. A birth at a leaf j has # at node j only, whereas a birth at an internal

node gives rise to a subtree of #'s. In our general de�nition of states we will use the

same ordering. If we have a state with a birth at a leaf j this implies that the possible

births of new individuals at leaves l > j have been completed, or putting it di�erently, we

cannot have a transition from this state to a state with a birth at the leaf l > j. To know

the possible transitions from a particular state we need to know the `circumstances' that

produced this state, as in (1) where we need to know that columns 2 and 3 comes from

the immortal link, that columns 5-7 comes from column 4, and that column 9 comes from

the combination of column 4 and 8. For this reason there will be a `history' attached to

the states.

For the tree in Figure 1 we have 45 states in � illustrated in the columns of Table 1.
Table 1 to be
palced here

In this table ai is either # or �. The last row gives the number of states of the indicated

form, that is, 2k with k the number of a's in the column. The �rst 16 states (column 1)

each represents the birth of the subtree f1; 2g together with the possible survival (ai = #)

or non survival (ai = �) at the leaves. Column 2 represents the possibility that the subtree

of column 1 gives rise to a birth of a new individual at the leaf 6. The symbols enclosed by

parentheses are included to know what transitions are possible from this state. Column

3 represents the possibility that the subtree of column 1 gives rise to a birth of a new

individual at the leaf 5 with the understanding that all births of new individuals at node 6

have been completed. Columns 4 and 5 have similar explanations. Column 6 is the birth

of the subtree f1g together with the possible survival (ai = #) or non survival (ai = �)

at the leaves attached to this subtree. There are no symbols at the leaves 5 and 6 since

this subtree cannot give rise to births of new individuals at these nodes. Columns 7 and 8

have explanations as columns 2-5. Finally, column 9 is the birth of the subtree f2g where

now also is included a `history' for those internal nodes with a number less than the root

of the subtree (in this case this is node 1 and the only history possible is to have # at

node 1). The `history' attached to a state is represented by either # or � enclosed by

parentheses and is used to show what transitions are possible from the state, that is, at

what positions can a new subtree be born. As for the leaves, where births at a node j are

6



completed before births at the leaf i < j are considered, subtrees starting at an internal

node j will be completed before subtrees starting at an internal node i < j are considered.

In the general case we have two kinds of states corresponding either to the birth of

a subtree at a set of internal nodes (columns 1,6 and 9 in the above example) or states

corresponding to the birth of a new individual at a leaf (columns 2,3,4,5,7,8,10, and 11 in

the above example). We �rst describe a state corresponding to the birth of a subtree at

a set of internal nodes. Such a state � has three components depicted in Figure 3:
Figure 3 to
be placed
here

i) A subtree consisting of # at internal nodes t(1; �) < t(2; �) < � � � < t(k1(�); �).

Furthermore, we have the symbol � at the internal nodes d(1; �) < d(2; �) < � � � <

d(k2(�); �) being descendants of t(1; �); : : : ; t(k1(�); �).

ii) The leaves being descendants of the internal nodes t(1; �); : : : ; t(k1(�); �) are o(1; �) <

o(2; �) < � � � < o(k3(�); �) and the value of � is either # or � at these nodes.

iii) A `history' consisting of (#) and (�) at the internal nodes 1 = h(1; �) < h(2; �) <

� � � < h(k4(�); �) < t(1; �) giving the part of the tree, from which � was born, at

nodes less than t(1; �)

For the tree in Figure 2 the states � as described above for the birth of subtrees are

illustrated in Table 2.
Table 2 to be
placed here

To describe the states corresponding to births of new individuals at leaves we can for

each state � described above de�ne a state (r; �), 1 � r � k3(�), with the following

components:

i) A history consisting of the history at h(1; �); : : : ; h(k4(�); �) from � together with

(#) at t(1; �); : : : ; t(k1(�); �) and (�) at d(1; �); : : : ; d(k2(�); �),

ii) a `history' at leaves o(1; �); : : : ; o(r� 1; �) consisting of the value of � surrounded by

parenthesis,

iii) the birth # at o(r; �).

Two states �1 and �2 corresponding to the birth of a subtree of internal nodes can give rise

to the same state (r; �) for a birth at a leaf, but this has no importance when calculating

7



transition probabilities since it is the history attached to (r; �) that is used for this.

This situation will arise when there are internal nodes with none of the descendants being

leaves.

For the tree in Figure 2 the total number of states in � is 271.

2.3 Transition probabilities

In this section we derive the transition probability p(x; y) of going from state x to state y

in our hidden Markov chain. Each transition probability can be written as the product of

probabilities of independent events. As an example consider the transition from column

1 to column 3 in Table 1. This transition consists in saying that there will be no births at

leaf 6 and there will be at least one birth at leaf 5. Similarly, the transition from column

3 to column 9 consists in saying that there will be no more births at leaf 5, no births at

nodes 4 and 3, a birth at the internal node 2, and the possible survival or non-survival at

leaves 5 and 6 as given by a5 and a6. That we actually have a Markov chain comes from

the fact that the probabilities of the events de�ning a transition depend on the present

state only and not on any previous states. This is exactly what we have achieved by

the choice of states. To see that this is true we �rst rewrite the probabilities within the

TKF-model. The probability that a mortal link survives from time zero to time � and

has N newborns is

exp(���)(1� ��)(��)N ; (2)

and the probability that a mortal link does not survive and has N newborns is

(��)1(N=0)
�
(1� exp(���)� ��)(��)N�1

�1(N>0)
; (3)

where

� =
1� exp((�� �)�)

�� � exp((�� �)�)
:

For the immortal link the probability of N newborns is given by (2) without the term

exp(���). Let us write the o�spring of a mortal link as (J;N), where J = 1 if the link

survives and zero otherwise and N � 0 is the number of newborns. Let B1; B2; : : : be an

in�nite sequence of zero-one variables. We then think of N as derived by

N = minfi : Bi = 0g � 1;

8



i.e. N counts the number of Bi's that are 1 until the �rst appearance of a 0. Then

P (J;N = n) = P (J;B1 = � � � = Bn = 1; Bn+1 = 0)

= P (Bn+1 = 0jB1 = � � � = Bn = 1; J)

�P (Bn = 1jB1 = � � � = Bn�1 = 1; J) � � �P (B1 = 1jJ)P (J)

Using (2) and (3) we �nd the Markov structure

P (Bn = 1jB1 = � � � = Bn�1 = 1; J) = ��

for n � 1 if J = 1 and for n � 2 if J = 0; (4)

the remaining probabilities of interest being

P (J = 1) = exp(���); P (B1 = 0jJ = 0) =
��

1� exp(���)
: (5)

For the immortal link the �rst part of (4) holds true.

The probabilities in (4) and (5) de�ne all the probabilities that enter when calculating

the transition probabilities for the states de�ned in the previous subsection. To state the

transition probabilities we write for any node i

b(#;#; i) = ��(i); b(#;�; i) = 1� b(#;#; i);

b(�;#; i) = 1�
��(i)

1� exp(���(i))
; b(�;�; i) = 1� b(�;#; i);

s(#; i) = exp(���(i)); s(�; i) = 1� s(#; i);

where

�(i) =
1� exp((�� �)�(i))

�� � exp((�� �)�(i))
:

Let � be a state corresponding to the birth of a subtree at internal nodes. Then for

1 � r � k3(�)

P (� ! (r; �)) = b(�(o(r; �));#; o(r; �))
k3(�)Y
j=r+1

b(�(o(j; �));�; o(j; �)); (6)

P ((r; �)! (r; �)) = b(#;#; o(r; �));

and for r < s

P ((s; �)! (r; �))b(�(o(r; �));#; o(r; �))b(#;�; o(s; �))
s�1Y

j=r+1

b(�(o(j; �));�; o(j; �)):

(7)

9



We next describe the transition probabilities for entering a state � corresponding to the

birth of a subtree at internal nodes. When coming from � or (r; �) the start position

t(1; �) of the new subtree � has to satisfy

i) t(1; �) 2 ft(1; �); : : : ; t(k1(�); �); d(1; �); : : : ; d(k2(�); �); h(1; �); : : : ; h(k4(�); �)g.

Furthermore the history attached to � must be the one inherited from �:

ii) the history fh(1; �); : : : ; h(k4(�); �)g consists of fijh(i; �) < t(1; �)g [ fijt(i; �) <

t(1; �)g [ fijd(i; �) < t(1; �)g and the value at these nodes are the values of �

surrounded by parentheses.

Let A(�; �) be the set of internal nodes j > t(1; �) at which a new subtree could be born

when coming from the state �. Thus

A(�; �) = fjjj > t(1; �) and j = h(i; �) or j = t(i; �) or j = d(i; �) for some ig:

Then

P (� ! �) =
k3(�)Y
j=1

b(�(o(j; �));�; o(j; �))
Y

j2A(�;�)

b(�(j);�; j)

�b(�(t(1; �));#; t(1; �))1(t(1;�)>1)(�=�)1(t(1;�)=1)

�
k1(�)Y
j=2

s(#; t(j; �))
k2(�)Y
j=1

s(�; d(j; �))
k3(�)Y
j=1

s(�(o(j; �)); o(j; �));

and for 1 � r � k3(�)

P ((r; �)! �) =
rY

j=1

b(�(o(j; �));�; o(j; �))
Y

j2A(�;�)

b(�(j);�; j)

�b(�(t(1; �));#; t(1; �))1(t(1;�)>1)(�=�)1(t(1;�)=1)

�
k1(�)Y
j=2

s(#; t(j; �))
k2(�)Y
j=1

s(�; d(j; �))
k3(�)Y
j=1

s(�(o(j; �)); o(j; �)):

For a transition to the end state E the two terms (8) and (8) are replaced by

rY
j=1

b(�(o(j; �));�; o(j; �))
Y
j2A

b(�(j);�; j)(1� �=�);

where A is de�ned as above with t(1; �) = 1 and r = k3(�) for the replacement of (8).

Finally, the transition probabilities from the immortal state I can be calculated as if

I corresponds to a birth of a subtree at internal nodes with k1(I) = d0, t(j; I) = j, and

with # at all the leaves.

10



3 Algorithms

In this section we present two algorithms for computing the probability of the observed

sequences Sj, for j = d0+1; : : : ; d0+d, being related by the given evolutionary tree. Both

algorithms are based on the hidden Markov chain described in the previous section but

di�er in their choice of states. In the �rst algorithm the states describe the alignment for

both internal nodes and the leaves. The running time is O(
Qd0+d
j=d0+1 Lj) = O(Ld

max), where

Lmax is the maximum length of the observed sequences. In the second algorithm the states

describe the alignment for internal nodes only. The running time is now O(L2d
max), but the

algorithm can be rewritten to obtain an O(Ld
max) running time as in the �rst approach.

3.1 Approach 1: Annotation of internal nodes and leaves

3.1.1 Notation

We consider a Markov process x0; x1; : : : ; xN that starts in the initial state I and stops

at a random time N + 1 in the end state E. Thus x0 = I, xi 2 �, for i = 1; : : : ; N ,

and xN+1 = E. The transition probability going from x to y is p(x; y) as described in

subsection 2.3. A state � 2 � corresponding to the birth of a subtree at internal nodes

emits a letter in those observed sequences Sz for which z = o(j; �) for some j and �(z) = #.

For a state on the form (r; �) the state emits a letter in the sequence So(r;�) only. For

any state x 2 � we let l(x) be a vector indexed by j = d0 + 1; : : : ; d0 + d with

lj(x) =

8><
>:

1 if x emits a letter in sequence Sj

0 otherwise:
(8)

We write li = l(xi) and de�ne

Li =
iX

r=1

lr:

With this notation the state xi emits the letters S(Li�1+1 : Li�1+ li), where Sj(L
i�1
j +1 :

Li�1
j + lij) is the empty set if lij = 0. The probability that a state x emits the vector of

letters s (with the possibility that some of the coordinates of s are equal to the empty

set) is p(sjx).

11



3.1.2 Backward recursion

Summing over the states of the Markov chain we have

P (S(1 : L)jx0 = I) =
1X
n=0

X
x1;:::;xn2�:Ln=L

p(xn; E)
nY
i=1

p(xi�1; xi)p(S[L
i; li]jxi): (9)

We will obtain a recursion by separating out the contribution from the �rst term x1.

De�ne for an arbitrary vector K � 0 and state x0 2 �

F (Kjx0) =
1X
n=0

X
x1;:::;xn2�:K+Ln=L

p(xn; E)
nY
i=1

p(xi�1; xi)p(S[K + Li; li]jxi)

= P (S(K + 1 : L)jx0);

that is, the probability that the sequences S((K + 1) : L) are produced by the states

x1; x2; : : : given that the Markov chain starts in the state x0. The inner sum is zero if

there are no x1; : : : ; xn with K + Ln = L. Clearly, P (S(1 : L)jx0 = I) = F (0jI). When

K
w
< L and K � L the recursion for F (Kjx0) is, with ~Li =

Pn
r=2 l(xi),

F (Kjx0) =
1X
n=1

X
x12�

p(x0; x1)p(S[K + l1; l1]jx1)
X

x2;:::;xn2�:(K+l(x1))+~Ln=L

p(xn; E)

�
nY
i=2

p(xi�1; xi)p(S[K + l1 + ~Li; li]jxi)

=
X
z2�

p(x0; z)p(S[K + l(z); l(z)]jz)F (K + l(z)jz): (10)

When K = L the recursion is

F (Ljx0) = p(x0; E) +
X

z2�:l(z)=0

p(x0; z)F (Ljz): (11)

3.1.3 Forward recursion

In this subsection we obtain a recursion by separating out the contribution from xn in

(9). De�ne for an arbitrary vector K � 0 and state x 2 �

H(K; x) =
1X
n=0

X
x1;:::;xn2�:Ln=K

 
nY
i=1

p(xi�1; xi)p(S[L
i; li]jxi)

!
p(xn; x); (12)

where x0 = I and the inner sum is zero if there are no x1; : : : ; xn with Ln = K. We will

use below

H(K; xjx0) = 0 if Kj

w
< 0:

12



With this de�nition (9) becomes with L � 0 and L
w
> 0

P (S(1 : L)jx0 = I) =
X
x2�

p(x; E)p(S[L; l(x)]jx)H(L� l(x); x); (13)

and splitting the sum in (12) we obtain for K
w
> 0 and K � 0 the recursion

H(K; x) =
1X
n=1

X
x1;:::;xn2�:Ln=K

 
nY
i=1

p(xi�1; xi)p(S[L
i; li]jxi)

!
p(xn; x)

=
1X
n=1

X
xn2�

X
x1;:::;xn�12�:Ln�1=K�l(xn)

 
n�1Y
i=1

p(xi�1; xi)p(S[L
i; li]jxi)

!

�p(xn�1; xn)P (S[K; ln]jxn)p(xn; x)

=
X
z2�

H(K � l(z); z)P (S[K; l(z)]jz)p(z; x): (14)

When K = 0 the recursion becomes

H(0; x) = p(x0; x) +
X

z2�:l(z)=0

H(0; z)p(z; x): (15)

Computationally there is no di�erence between the use of H(K; x) or F (Kjx0). However,

the latter has an interpretation as a probability thereby making it easier to understand

the recursion.

3.1.4 Emission probabilities

For a full description of the TKF- model we need a model for the substitution process. If

a symbol a survives over a period of time � and is being changed to b along the way we

let f(bja; �) be the probability of the substitution of b for a given survival. The stationary

probabilities for this transition matrix are denoted by �.

When a state corresponds to a birth in one of the leaves only, that is, it is of the

form (r; �), the emitted vector s has a letter at the node o(r; �) only, and the emission

probability is simply the stationary probability �(s(o(r; �))). For a state � corresponding

to a birth of a subtree at internal nodes ft(1; �); : : : ; t(k1(�); �)g the emitted vector s has

letters at those nodes z for which z = o(j; �) for some j and �(z) = #, that is, those z

for which lz(�) = 1. If we let a(j) be the ancestor of a node j we can write the emission

probability as

p(sj�) =
X
vt(1;�)

�(vt(1;�))
X

vz :z2ft(2;�);:::;t(k1(�);�)g

Y
z

f(vzjva(z); �(z))

13



�
Y

z:lz(�)=1

f(szjva(z); �(z)):

3.1.5 Implementation and analysis

Let us briey discuss how to implement the recursion given by (10) and (11). There is a

complication in that there will always be terms on the right hand side of the equations for

which K+l(z) = K or l(z) = 0. The states � for which l(�) = 0 are characterized by being

a birth of a subtree � at inner nodes with �(z) = � for all z 2 fo(1; �); : : : ; o(k3(�); �)g.

Let us denote this class of states by C. Imagine that for some K the term F ( ~Kjx) has

been calculated for all ~K
w
> K, ~K � K. For each x 2 C the recursion gives

F (Kjx) =
X
z2C

p(x; z)F (Kjz) + !(x) (16)

with !(x) known. Let Q be the matrix with entries p(z1; z2), z1; z2 2 C. Then since the

entries are nonnegative and the sum along a row is less than 1 the matrix IC �Q, where

IC is the identity matrix, is invertible, and the set of linear equations (16) has a unique

solution. Having solved this system of equations we can next calculate F (Kjx) for x =2 C

directly from (10) or (11) when K = L.

The boundary conditions for the recursion are F (Kjx) = 0 when K
w
> L.

To run the algorithm we need to calculate F (Kjx) for any K � L and for any x 2 �.

The number of steps needed is therefore of the order

N
dY

i=1

Li;

where N is the number of elements in the set �.

3.2 Approach 2: Annotation of internal nodes only

3.2.1 Notation

In section 3.1 a state described a column of the alignment for all of the internal nodes

and leaves, and a state emitted at most one letter in each of the observed sequences. In

this section we will instead let the states describe the internal nodes only which in turn

necessitates the emission of arbitrary long subsequences among the observed sequences.

14



This implies an extra sum in the recursions, thus seemingly making the recursions more

complicated. However, we can rewrite the recursions, ending up with recursions of the

same complexity as before and with less terms than in section 3.1.

More precisely, a state � is a birth of a subtree at internal nodes and is characterized by

the subtree t(1; �); : : : ; t(k1(�); �) with #, the descendants of these d(1; �); : : : ; d(k2(�); �)

among the internal nodes, where � has the value�, and the history at h(1; �); : : : ; h(k4(�); �).

For the tree in Figure 2 the states are now given in the upper part of Table 2. As before

o(1; �); : : : ; o(k3(�); �) are the leaves descending from the subtree t(1; �); : : : ; t(k1(�); �).

Instead of (8) we now use

lj(x) =

8><
>:
� 0 j 2 fo(1; �); : : : ; o(k3(�); �)g

0 otherwise:
(17)

for the length of the emitted subsequence. We again use li = l(xi) and furthermore take

l0 � 0 to be the length of the subsequence emitted by the immortal link, and de�ne

Li =
iX

r=0

lr:

The emission probability p(S(u : v)jx) is now both the probability of emitting subse-

quences of length vj � uj, j = d0 + 1; : : : ; d0 + d, and the probability that the emitted

symbols are Sj(uj : vj). To state this probability we de�ne the two sets

A� = fo(1; �); : : : ; o(k3(�); �)g;

A�(l) = fz 2 A�jlz > 0g;

and use the notation

q(z;#) = exp(���(z))(1� ��(z))

q(z;�) = (1� exp(���(z))� ��(z))(1� ��(z)):

Furthermore, we let u be the subset of the leaves A�(l) for which we have survival from

the ancestral internal node. Then the probability that the state � emits the subsequences

S(m+ 1 : m + l) is

P (S(m+ 1 : m+ l)j�) =

0
@ Y
z2A�nA�(l)

��(z)

1
A X

u�A�(l)

f(m; u; �)

15



�

 Y
z2u

q(z;#)(��(z))lz�1�(Sz(mz + 2 : mz + lz))

!

�

0
@ Y
z2A�(l)nu

q(z;�)(��(z))lz�1�(Sz(mz + 1 : mz + lz))

1
A

where �(Sj(a : b)) =
Qb

i=a �(Sj(i)). The function f(m; u; �) is the probability of the �rst

emitted symbol at the leaves where we have survival from the ancestral internal node. To

calculate this function we let a(z) be the ancestral node for the node z. Then

f(m; u; �) (18)

=
X
vt(1;�)

�(vt(1;�)
X

vz:z2ft(2;�);:::;t(k1(�);�)g

Y
z

f(vzjva(z); �(z))
Y
z2u

f(S(mz + 1)jva(z); �(z)):

Furthermore,

p(S(1 : l)jI) =
Y

d0<z�d0+d

(1� ��(z))(��(z))lz�1�(Sz(1 : lz)):

3.2.2 Backward recursion

Instead of (9) we write

P (S(1 : L)jx0 = I) (19)

=
1X
n=0

X
x1;:::;xn2�

X
l0;l1;:::;ln:Ln=L

P (S(1 : l0)jI)

 
nY
i=1

p(xi�1; xi)p(S[L
i; li]jxi)

!
p(xn; E):

The backward recursion is obtained by de�ning

F (Kjx0) =
1X
n=0

X
x1;:::;xn2�

X
l0;l1;:::;ln:K+Ln=L

P (S(K + 1 : K + l0)jx0)

�

 
nY
i=1

p(xi�1; xi)p(S[K + Li; li]jxi)

!
p(xn; E)

= P (S(K + 1 : L)jx0);

The recursion is

F (Kjx0) (20)

= P (S(K + 1 : L)jx0)p(x0; E) +
X
�2�

X
l(�)

p(x0; �)p(S[K + l(�); l(�)]j�)F (K + l(�)j�)

for K
w
< L and K � L and when K = L the recursion is

F (Ljx0) = p(x0; E) +
X
�2�

p(x0; �)P (l(�) = 0j�)F (Lj�): (21)

16



3.2.3 Forward recursion

To obtain the forward recursion we write instead of (12)

H(K; x) (22)

=
1X
n=0

X
x1;:::;xn2�

X
l0;l1;:::;ln:Ln=K

P (S(1 : l0)jI)

 
nY
i=1

p(xi�1; xi)p(S[L
i; li]jxi)

!
p(xn; x);

and

P (S(1 : L)jx0 = I) (23)

= P (S(1 : L)jI)p(I; E) +
X
x2�

X
l(x)

p(x; E)p(S[L; l(x)]jx)H(L� l(x); x):

The recursion for H(K; x) with K
w
> 0 and K � 0 is

H(K; x) = P (S(1 : K)jI)p(I; x) +
X
z2�

X
l(z)

H(K � l(z); z)P (S[K; l(z)]jz)p(z; x): (24)

When K = 0 the recursion becomes

H(0; x) = p(I; x) +
X
z2�

H(0; z)p(l(z) = 0jz)p(z; x): (25)

The recursion (24) corresponds to the one presented in Hein (2001), where H(K; x)

was erroneously referred to as a probability.

3.2.4 Reduction of complexity

For the recursions described in the previous two subsections we need to calculate either

H(K; x) or F (Kjx) for any value of K � L. This takes of the order O(Ld
max) steps. Each

step here, however, involves the sum over l, see (20) and (24), and therefore requires of the

order O(Ld
max) steps. The complexity of the algorithms are therefore of the order O(L2d

max)

steps. The algorithms are therefore inferior to the algorithms given in Section 3.1. It

turns out, though, that we can rewrite the algorithms in such a way that the resulting

complexity is O(Ld
max) and that the constant factor is actually slightly smaller here than

for the algorithms of Section 3.1.

We start by inserting (18) into the recursion (20),

F (Kjx) = P (S(K + 1 : L)jx)p(x; E) (26)

17



+
X
�2�

p(x; �)
X

lz�0;z2A�;lz=0;z =2A�

0
@ Y
z2A�nA�(l)

��(z)

1
A X

u�A�(l)

f(K; u; �)

�

 Y
z2u

q(z;#)(��(z))lz�1�(Sz(Kz + 2 : Kz + lz))

!

�

0
@ Y
z2A�(l)nu

q(z;�)(��(z))lz�1�(Sz(Kz + 1 : Kz + lz))

1
AF (K + lj�)

where, as before, u is the subset of the leaves A�(l) at which we have survival from the

ancestral internal node. Next, we let w be the subset of the leaves A� n u at which there

is not survival, but the number of newborns is positive. Then (26) becomes

F (Kjx) = P (S(K + 1 : L)jx)p(x; E) (27)

+
X
�2�

p(x; �)
X
u�A�

f(K; u; �)
X

w�A�nu

0
@ Y
z2A�n(u[w)

��(z)

1
A

�
X

lz�1;z2(u[w);lz=0;z =2(u[w)

 Y
z2u

q(z;#)(��(z))lz�1�(Sz(Kz + 2 : Kz + lz))

!

�

 Y
z2w

q(z;�)(��(z))lz�1�(Sz(Kz + 1 : Kz + lz))

!
F (K + lj�)

Finally, we introduce the subset v of u [ w at which lz � 2. This gives

F (Kjx) = P (S(K + 1 : L)jx)p(x; E) (28)

+
X
�2�

p(x; �)
X
u�A�

f(K; u; �)
X

w�A�nu

0
@ Y
z2A�n(u[w)

��(z)

1
A

�
X

v�(u[w)

 Y
z2u

q(z;#)

! Y
z2w

q(z;�)�(Sz(Kz + 1))

!

�
X

lz�2;z2v;lz=1;z2(u[w)nv;lz=0;z =2(u[w)

�

 Y
z2v

(��(z))lz�1�(Sz(Kz + 2 : Kz + lz))

!
F (K + lj�)

= P (S(K + 1 : Ljx)p(x; E)

+
X
�2�

p(x; �)
X
u�A�

f(K; u; �)
X

w�A�nu

0
@ Y
z2A�n(u[w)

��(z)

1
A

�
X

v�(u[w)

 Y
z2u

q(z;#)

! Y
z2w

q(z;�)�(Sz(Kz + 1))

!

�

 Y
z2v

��(z)

! X
~lz�1;z2v;~lz=0;z =2v

18



�

 Y
z2v

(��(z))
~lz�1�(Sz((K + 1(u [ w))z + 1 : (K + 1(u [ w))z + ~lz))

!

�F (K + 1(u [ w) + ~lj�);

where

1(u [ w)z =

8><
>:

1 z 2 (u [ w)

0 z =2 (u [ w)

Let us denote the last sum in the (28) by G, that is,

G(M j�; v) =
X

mz�1;z2v;mz=0;z =2v

F (M +mj�)
Y
z2v

(��(z))mz�1�(Sz(Mz +1 : Mz +mz)): (29)

for a nonempty subset v of A�, and

G(M j�; ;) = F (M j�):

Thus (28) becomes

F (Kjx) = P (S(K + 1 : L)jx)p(x; E) (30)

+
X
�2�

p(x; �)
X
u�A�

f(K; u; �)
X

w�A�nu

0
@ Y
z2A�n(u[w)

��(z)

1
A

�
X

v�(u[w)

 Y
z2u

q(z;#)

! Y
z2w

q(z;�)�(Sz(Kz + 1))

!

�

 Y
z2v

��(z)

!
G(K + 1(u [ w)j�; v):

We can obtain a recursion for G by splitting the sum in (29) into

X
~v�v

X
mz�2;z2~v;mz=1;z2(vn~v);mz=0;z =2v

where ~v can be the empty subset. This gives

G(Kj�; v) (31)

=
Y
z2v

�(Sz(Mz + 1))
X
~v�v

Y
z2~v

(��(z))
X

mz�2;z2~v;mz=1;z2(vn~v);mz=0;z =2v

G(M + 1(v)j�; ~v):

Combining (30) and (31) we have established a recursion involving the functions F (Kj�)

and G(Kj�; v). For the tree in Figure 2 the recursions of section 3 involves 271 terms

whereas the number of terms in this section is 142. For the tree in Figure 1 the numbers

are 45 and 24, respectively.

19



3.2.5 Implementation and analysis

For the recursion in (31) with v 6= ; there is no problem with self reference. For the

recursion in (30) the self reference problem is handled as in subsection 3.1.5. Imagine

that F ( ~Kjx) and G( ~Kjx; v) have been found for all ~K
w
> K, ~K � K, for all x and for all

v. Then (30) takes the form

F (Kjx) =
X
�2�

p(x; �)

0
@ Y
z2A�

��(z)

1
AF (Kj�) + !(x) (32)

where !(x) is known. De�ning Q to be the matrix with entries

p(x1; x2)

0
@ Y
z2Ax2

��(z)

1
A

for x1; x2 2 � we have that I��Q is invertible since the entries of Q are nonnegative and

the sum along a row is less than 1. Thus the set of linear equations (32) has a unique

solution.

The boundary conditions for the recursions are F (Kjx) = 0 and G(Kj�; v) = 0 for

K
w
> L.

20



4 Discussion

This paper presents an algorithm that has the same complexity as the traditional nonsta-

tistical multiple alignment algorithm (Sanko�, 1975). The statistical alignment approach

to sequence analysis di�ers relative to the optimization approach in focusing on obtaining

the probability of the sequences under the given model, not in obtaining an alignment.

Among molecular biologists it is, however, popular to consider the actual alignment and

the one chosen is typically the alignment that contributes the most to the probability

of the observed sequences. The latter can be calculated by simple modi�cations of the

central recursions of this paper, where a summation operator is substituted by a maxi-

mization operator. Several additional problems have to be solved to make the algorithm

of this paper useful in real data analysis. Besides actually implementing the algorithm

it needs to be coupled to a numerical optimization method to �nd maximum likelihood

estimates of the unspeci�ed parameters, such as branch lengths, substitution parameters

and insertion and deletion rates. This method can then be used to analyse up to, say, four

sequence of realistic lengths (hundreds of base pairs/amino acids). Elementary compu-

tational tricks can extend this to six-seven sequences, and beyond this radically di�erent

methods will have to be applied.

From the perspective of a biologist the underlying model for this paper can be criti-

cized. Firstly, the assumption that all insertions-deletions are only one nucleotide/amino

acid long does not conform to the biological reality and should be relaxed. Secondly, the

assumption that all positions in a sequence evolve according to the same rates is also

unrealistic. Formulating models and ways to calculate the relevant probabilities in such

models is a major challenge to the �eld if a statistical approach to alignment is to be of

widespread use.

21



References

Hein, J. (2001). An algorithm for statistical alignment of sequences related by a binary

tree. In Altman, R.B., Dunker, A.K., Hunter, L., Lauderdale, K. and Klein, T.E.

(eds). Paci�c Symposium on Biocomputing. World Scienti�c. Singapore. pp. 179-

190.

Needleman, S.B. and Wunsch, C.D. (1970). A general method applicable to the search

for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443-53.

Sanko�, D. (1975). Minimal mutation trees of sequences. SIAM J. Appl. Math. 78,

35-42.

Steel, M. and Hein, J. (2000). Applying the Thorne-Kishino-Felsenstein model to sequence

evolution of a star tree. Appl. Math. Lett. 14, 679-84.

Thorne, J.L., Kishino, H. and Felsenstein, J. (1991). An evolutionary model for maximum

likelihood alignment of DNA sequences. J. Mol. Evol. 33, 114-124.

22



k3

k4

k1 k2

k5

k6

@
@
@@I

�
�
��	

- �
�
���

@
@
@@R

Figure 1: A rooted tree with six nodes



k6

k7

k5

k2

k1 k3

k8

k4

k9

k10

@
@
@@I

�
�
��	

@
@
@@I

�
�
��	 - �

�
���

@
@
@@R

�
�
���

@
@
@@R

Figure 2: A rooted tree with ten nodes



k7

k8

k6

k2
h(2; �)

(�)

k1
h(1; �)

(#)

k3
t(1; �)

#

k9
o(1; �)

#=�

k4
t(2; �)

#

k10
o(2; �)

#=�

k5
d(1; �)

�

k11

k12

@
@

@@I

�
�

��	

@
@

@@I

�
�

��	 - �
�
���

@
@
@@R

�
�
���

@
@
@@R

�
�
���

@
@
@@R

Figure 3: Notation for a subtree � starting at the internal node number 3 and with a history

at the internal nodes 1 and 2



node column number

1 2 3 4 5 6 7 8 9 10 11

1 # (#) (#) (#) (#) # (#) (#) (#) (#) (#)

2 # (#) (#) (#) (#) � (�) (�) # (#) (#)

3 a3 (a3) (a3) (a3) # a3 (a3) #

4 a4 (a4) (a4) # a4 #

5 a5 (a5) # a5 (a5) #

6 a6 # a6 #

16 8 4 2 1 4 2 1 4 2 1

Table 1: States of the Markov chain for the tree in Figure 1. Any of the variables ai can be

either # of �. The last row gives the number of states of the indicated form.



node

1 # # # # # # (#) (#) (#) (#) (#) (#) (#)

2 � # # # � � (#) (�) (#) (�) (#) (�) #

3 � � # # # # (#) (#) # # # # �

4 � # � # # # � � # #

5 a5 a5 a5 a5 a5 a5

6 a6 a6 a6 a6

7 a7 a7 a7 a7

8 a8 a8 a8 a8 a8 a8 a8 a8

9 a9 a9 a9 a9 a9 a9

10 a10 a10 a10 a10 a10 a10

2 8 16 64 4 16 4 4 2 2 8 8 4

Table 2: States of the Markov chain corresponding to the birth of a subtree for the tree in

Figure 2. Any of the variables ai can be either # of �. The last row gives the number of states

of the indicated form.


