
Combining many multiple alignments in one
improved alignment

�(�0. �0�'�5��..!*�� �(! ��,-�*%� �* �+/0* �!%*�

���&!�/ �-%!*/! �/ � ���	 �04!-*� �2%/4!-(�* � ��!,�-/)!*/ +" �+),0/!- ��%!*�!

�* ��!,�-/)!*/ +" ��+(+#3 �* �!*!/%�.� �*%1!-.%/3 +" ��-$0.� ���� ��-$0. ��

�!*)�-'

�������� �� 	���� �� ����� ������� �� ������� ��� ����� ������� ��
������� �� ����

Abstract

Motivation: The fact that the multiple sequence alignment
problem is of high complexity has led to many different
heuristic algorithms attempting to find a solution in what
would be considered a reasonable amount of computation
time and space. Very few of these heuristics produce results
that are guaranteed always to lie within a certain distance of
an optimal solution (given a measure of quality, e.g.
parsimony). Most practical heuristics cannot guarantee this,
but nevertheless perform well for certain cases. An align-
ment, obtained with one of these heuristics and with a bad
overall score, is not unusable though, it might contain
important information on how substrings should be aligned.
This paper presents a method that extracts qualitatively good
sub-alignments from a set of multiple alignments and
combines these into a new, often improved alignment. The
algorithm is implemented as a variant of the traditional
dynamic programming technique.
Results: An implementation of ComAlign (the algorithm that
combines multiple alignments) has been run on several sets
of artificially generated sequences and a set of 5S RNA
sequences. To assess the quality of the alignments obtained,
the results have been compared with the output of MSA 2.1
(Gupta et al., Proceedings of the Sixth Annual Symposium on
Combinatorial Pattern Matching, 1995; Kececioglu et al.,
http://www.techfak.uni-bielefeld.de/bcd/Lectures/kececio-
glu.html, 1995). In all cases, ComAlign was able to produce
a solution with a score comparable to the solution obtained
by MSA. The results also show that ComAlign actually does
combine parts from different alignments and not just select
the best of them.
Availability: The C source code (a Smalltalk version is being
worked on) of ComAlign and the other programs that have
been implemented in this context are free and available on
WWW {http://www.daimi.au.dk/∼ocaprani}.
Contact: klaus@bucka-lassen.dk; jotun@pop.bio.au.dk; oca-
prani@daimi.au.dk

Introduction

Pairwise alignment

Under the assumption that the two DNA sequences s0 and s1
have had a common ancestor, there must be a number of
mutations (here only substitutions, insertions and deletions
are taken into consideration) that transform s0 into s1 and vice
versa (Sankoff, 1972). These mutations will here be repre-
sented by an alignment, a 2 × len matrix, where len deter-
mines the length of the alignment and a dash represents an
insertion or deletion. For example:

A C C – G A C T T
– C T T G – C T –

Given a cost for each of the possible mutations (the costs used
are given in Table 1), the overall cost of an alignment can be
determined by accumulating all column mutation costs. The
optimal alignments (there can be more than one) are defined to
be those that have the lowest possible cost (parsimony). An opti-
mal alignment can be determined by calculating the cost for all
possible alignments and choosing the cheapest. This might, de-
pending on the length of the sequences, take a very long time.

Table 1. The mutation cost used

A C G T –

A 0 5 2 5 10

C 5 0 5 2 10

G 2 5 0 5 10

T 5 2 5 0 10

– 10 10 10 10 –

An alignment can also be illustrated with a weighted directed
acyclic graph (WDAG), as shown in Figure 1, where each edge
corresponds to a mutation (and its weight with the mutations
cost) and an alignment to a path from the source to the target.

�+(� �
 *+� � �

��#!. �������

122 � Oxford University Press

BIOINFORMATICS

Combining many multiple alignments into one

123

Fig. 1. A WDAG that illustrates a possible alignment of the two
DNA sequences ACCGACTT and CTTGCT.

The cost D|s0|,|s1| of an optimal alignment of the two se-
quences s0 and s1 can be determined with the recursive function:

Di,j = min�

�

Di,j�1� indel

Di�1,j � indel

Di�1,j�1� sub(s0[i], s1[j])

D0,0 = 0

where i and j are non-negative integers and indel and
sub(n0,n1) specify the mutation cost of an insertion/deletion
and a substitution of the two nucleotides n0 and n1, respect-
ively.

By applying dynamic programming (Füllen, 1997; Myers,
1991; Waterman et al., 1991; Chan et al., 1992; Waterman,
1995) to this recursive function, each value of Di ,j will only
be calculated once. Since there are only |s0| · |s1| different
values Di ,j and the computation of each of them requires a
constant amount of time, the time complexity will be:

T[DynAlg(s0,s1)] ∈ � (|s0| · |s1|)

The dynamic programming algorithm is equivalent to a
single-source shortest path (Dijkstra, 1959) computation on
the WDAG. Hereafter, an optimal alignment is obtained by
backtracking from the target to the source.

Multiple alignment

Multiple alignment is a generalization of pairwise alignment.
For example:

A� �A�
�

C
C
C

C
T
C

�
T
C

G
G
T

A
�
G

C
C
A

T
T
C

T
�
T
�

Fig. 2. Two alignments that can be combined into two new and
different alignments.

The cost of a multiple alignment is here defined to be the
accumulated cost of all projected pairwise alignments
(‘Sum-of-pairs’; Gusfield, 1997).

The time complexity of the dynamic programming algo-
rithm that computes an optimal multiple alignment is:

T[DynAlg(s0, s1, . . . ,sm–1)] � �((2m–1) �	
j�m

j�o

|sj|)

The space required is �(j�m
j�0

|sj|).
For ease of understanding, mostly throughout this paper,

ideas and algorithms will be presented in a two-dimensional
case, i.e. for alignments of two sequences.

Combining alignments

Assume that two different alignments A0 and A1 of the two
DNA sequences s0 and s1 have a common point (i0,i1) (com-
bination point), such that both align the subsequences
s0[0..i0] with s1[0..i1] and s0[i0..|s0|] with s1[i1..|s1|], where
s[i..j] determines the substring of s that starts at position i and
ends with position j – 1. One alignment might align the first
part of the sequences qualitatively well, while the other
alignment performs better on the remainder of the sequences.
A combination of these two superior sub-alignments will
then score at least as good as, but probably even better than,
the original alignments did. Figure 2 illustrates how two such
alignments can be combined into two new alignments (one
of them being better than either of the original alignments).

K.Bucka-Lassen, O.Caprani and J.Hein

124

This idea is easy generalized to handle n multiple align-
ments (A0, A1, …, An – 1—called base alignments or set) of
m sequences (s0, s1, …, sm – 1).

The available algorithms for aligning two sequences to
optimality perform reasonably well in both time and space,
so the combination method does not add much value in deter-
mining pairwise alignments. For multiple alignments of a
certain size, however, there are no practical algorithms for
determining an optimal alignment (indicated by the time and
space complexity of the dynamic programming algorithm);
various heuristics that produce close-to-optimal solutions are
the best there is. Combining good sub-alignments can never
hurt (apart from the extra computation time), since an opti-
mal combination will always score at least as well as the best
base alignment.

Algorithms

Determining an optimal combination

The number of different new alignments that can be built by
combining sub-alignments from a base of two alignments
grows exponentially with the number of combination points.
At the same time, one would expect the number of combina-
tion points to grow with the number of different alignments
in the base (the more alignments, the higher the probability
that some of them intersect). So the number of combined
alignments one has to examine to find the optimal combina-
tion can be expected to grow faster than the number of align-
ments in the base. Once again, dynamic programming offers
a simple solution to this problem:

Algorithm 1: OptiCom
Input: The base A = {A0, A1, …, An – 1}, a set of

alignments of s0, s1 …, sm – 1.
Output: An optimal combination of the base alignments.
Method: Mark all edges that are part of a base alignment

in the WDAG and run the dynamic algorithm
only on these edges (see recursive definition
below).

For this dynamic algorithm, the time complexity is as fol-
lows (|A| is the number of edges in the alignment A):

T[OptiCom(Ao, A1, . . . ,An–1)] � �(

n–1

j�0

|Aj|)

� �(n�max
�j�n

{|Aj|})

� �(n� (

j�m

j�0

|sj|))

which is a lot better than �((2m� 1)�	j�m
j�0

|sj|), the time
complexity of the dynamic algorithm that determines an
optimal multiple alignment.

The actual implementation

The algorithm OptiCom is actually implemented a bit differ-
ently. Instead of marking edges, all nodes that are part of a
base alignment are marked. The best combination is now de-
termined as:

Di,j � min
�
�

Di,j–1� indel, if node(i, j–1) is marked

Di–1,j � indel, if node(i–1, j) is marked

Di–1,j–1� sub(s0[i], s1[j]), if node(i–1, j–1) is marked

Hence, a combined path can also consist of edges that are not
marked, which means that the algorithm does not necessarily
need a combination point to combine two different align-
ments; it can also ‘jump’ from one alignment to another if the
distance is not too big (here one unmarked edge). The time
complexity will be affected by this, but is still much better
than the standard dynamic algorithm:

T[OptiCom(A0, A1, . . . ,An–1)] �

�(n� (2m� 1)�

j�m

j�o

|sj|))

The reasons for this choice of implementation are that it gives
more combined alignments and is easier to implement.

Iterative combination of alignments

In general, it will not be the case that one is given a set of
alignments. More often, the input will be a set of sequences
that should be multiple aligned ‘as good as possible’. This is
achieved with the following extension to OptiCom:

Algorithm 2: ComAlign
Input: s0, s1, …, sm – 1, a set of sequences.

n, the number of iterations.
Output: X, a multiple alignment of s0, s1, …, sm – 1
Method: 1. Generate an alignment A of s0, s1, …, sm – 1.

2. Mark the nodes, given by A, in the WDAG.
3. Repeat n times step 1 and 2.
4. Use OptiCom to determine an optimal

combination X of all generated alignments.
The time it takes to run ComAlign can be split into two

different components: the time it takes to generate all the
base alignments and the time it takes OptiCom to find an
optimal combination.

For a given amount of time, this means that one can either
spend the majority of computational time on finding good,
but presumably not very many, alignments (under the as-
sumption that there is some correlation between the quality
of an alignment and the time it takes to determine this align-
ment), or one could generate alignments of a possibly poorer
quality, but more of them. Heuristics that produce close to
optimal multiple alignments are rare, mostly very time con-
suming and hard to implement (because they tend to be rather

Combining many multiple alignments into one

125

Fig. 3. Example of how DNAgen generates four sequences.

complex). Progressive alignment (or ‘Alignment along a
Tree’) (Feng and Doolittle, 1987; Füllen, 1997), on the other
hand, is a heuristic that is easy to implement and produces
results rather quickly, but it does in general not score very
high on the quality scale. Another advantage of using pro-
gressive alignment in this context is that it is quite easy to
produce many different alignments from the same sequences
by choosing random phylogenies; reasons enough to choose
this heuristic to generate the base alignments for ComAlign.

ProgAlign, our implementation of Progressive Alignment,
is implemented straightforwardly as described in Füllen
(1997) with one little tune-up: we have added a profile repre-
sentation (Chan et al., 1992, p. 574) to each mutliple align-
ment and speeded up the process of aligning multiple align-
ments that way.

Results for simulated data

A variant of ComAlign, where step 4 is executed after each
step 2 so that we can observe how the score of an optimal
alignment is evolving and how each individual base align-
ment is influencing this, has been implemented and run on
various inputs (sets of sequences).

To assess the quality of the multiple alignments that are
produced by ComAlign, these are compared with the output
from the MSA 2.1 (Gupta et al., 1995) program. MSA is run
with the options:

–c dna = mutation costs defined in file ‘dna’.
–g = all gaps cost the same.
–b = use sum-of-pairs score function.

The ‘dna’ file was defined in accordance with Table 1.
ComAlign and MSA have been run on a Silicon Graphics
SGI Indigo2, 200 MHz IP22 processor with 128 Mb of mem-
ory. The sequences that have been used for comparison were
generated artificially with DNAgen.

DNAgen—a DNA simple sequence generator

DNAgen is a program that generates a random eve-sequence
and simulates evolution based on various parameters. The
possible parameters for DNAgen are:

s# = random seed.
n# = number of sequences to be generated.
1# = approximate length of the sequences.

g# = number of mutations per generation.
To generate four related sequences, each being ∼15 nucleo-

tides long, use the following set of parameters for DNAgen:

DNAgen –s0 –n4 –l15 –g3

The result is four simulated sequences written in a format that
can be read by both MSA and ComAlign:

>Artificial generated sequence 1
CTTATCTCCAGTCGG
*
*
>Artificial generated sequence 2
CTTGTCTTCAGTTCG
*
*
>Artificial generated sequence 3
TTTATGTGCAGCGGA
*
*
>Artificial generated sequence 4
TTTAAATCAGCGGG
*
*
DNAgen starts by generating a random eve-sequence with

exactly 15 uniformly distributed nucleotides. Then two new
sequences are obtained by simulating three mutations on the
eve-sequence. Each of these two new sequences is then used
as a root, just as the eve-sequence, to generate four se-
quences, etc. (see Figure 3). The simulated mutations incor-
porate transitions, transversions and indels with given fre-
quencies (transitions 0.6, transversions 0.3 and indels 0.1).

Example 1 Make a multiple alignment with MSA and Com-
Align and compare the results.
� Use DNAgen, generate eight simulated sequences with

∼50 nucleotides each. Simulate 20 mutations on each
generation:
CCAAGTGCTAGATCGTTTCTTCCTCTACTAAATATGCGACGCCAG
CTGCGGATACATAACTCGTGGCCGTGCCGAAAATCC M ATGAG
CATGAGATTGACTATTACCCTTAGAGCTAGGACAATGAAAACATGTTAA
CACTCTAGTCCACAAACGACCTATGGAAACTATGATTAGCAGATGTGAGGCTGA
TTAAACCAGATACGAAATGCACCCGAGCGTGTCTCCTGGCACA
TTAGCGCTCTGCAAAGTGATCCTGGACCGCTTCCTGAGAGG
TCTATCCGCAAGATATTACTCCACAAGACTGCCTATCCATAGT
TCTACGTAAGTTACTCGCAAGGGTTGTATCTAATGCTTTTGAGACA

� Align these sequences with MSA. The output is as fol-
lows (irrelevant information, in this context, has been
removed):
C--C-AAGTGCTAGA-TCG-TT-TCTT--CCTCTACTA-AATATGCGACGCCAG
C--T-GCGGATAC-A-TAA-CT-CGTGG-CCGTGCCGA-AAATCCT-TTATGAG
CA-TGAGATTGACTATTACCCT-TAGAG-CTAGGACAA-TGAAAAC-ATGTTAA
CACTCTAGTCCACAAACGACCTATGGAAACTATGATTAGCAGATGTGAGGCTGA
T--T-AAACCAGATA-CGA-AA-TGCA--CC-CGAGCG-TGTCTCC-TGGCACA
T--T-A-GCGCTCTG-CAA-AG-TGAT--CC-TGGAC--CGCTTCC-TGAGAGG
T--C-T-ATCCGCAA-GAT-AT-TACT--CCACAAGAC-TGCCTAT-CCATAGT
TC-T-ACGTAAGTTA-CTC-GC-AAGGG-TTGTATCTA-ATGCTTT-TGAGACA

Alignment cost: 4307
Elapsed time = 24.054 [s]

K.Bucka-Lassen, O.Caprani and J.Hein

126

Table 2. Output of ComAlign after 100 iterations and 44.27 s (an
optimal combination was found after 87 iterations and 37.00 s)

� Run ComAlign with n = 100 iterations. The result is
shown in Table 2 and Figure 4.

Observations:
� The score of an optimal combined alignment is not just

as good as the score of the best base alignment, it is
better. This means that there is actually made a combina-
tion of at least two different base alignments. This com-
bination scores 4% better than the best base alignment.

� Even though the individual base alignments’ overall
score is comparably bad, sub-alignments of it might be
of such a high quality that these are used in the com-
bined alignment. This can, for example, be seen in iter-
ations 4, 28, 32, 46, 51, 63 and 87 (see Table 2 and
Figure 4).

� The multiple alignment that ComAlign produces
scores a little better than MSA’s solution.

A comparison of ComAlign and MSA has also been per-
formed with different numbers of sequences and lengths of
these sequences. By default, DNAgen sets the number of muta-
tions to be 10% of the length of the eve-sequence (e.g. if the
eve-sequence is 400 nucleotides long, 40 mutations are simu-
lated between each two generations). All other parameters were
as in example 1. The results are shown in Table 3.

It seems as if the longer and more sequences there are, the
better ComAlign performs compared to MSA. For several
complex cases, MSA was not able to produce an output be-
cause it ran out of memory.

The space and time consumption by ComAlign has not been
examined systematically. Manual monitoring of the resources
has shown that ComAlign often uses less space than MSA.
For instance, MSA was not able to align seven sequences with
an approximate length of 400 nucleotides because it ran out
of space after allocating 180 Mb (including swap-space).
After 100 iterations, ComAlign had only used 15 Mb on the
same sequences. On a few short sequences, however, the
actual implementation of ComAlign spends more time finding
a solution as good as MSA’s alignment. In one particular case,
ComAlign spent 30 times as much time as MSA did.

Results for biological data

As many as 22 5S RNA sequences from GenBank (Gen-
Bank, 1998) have been chosen to demonstrate the usage of
ComAlign on real biological data. These relatively short se-
quences serve a structural role in the ribosome and are thus
not coding for proteins, but will have structural constraints
on their sequences, especially related to their secondary
structure and interaction with proteins of the ribosome. They
are ubiquitous in cellular organisms and thus their most re-
cent common ancestor dates at least 2–3 billion years back.
For details on the sequences, see the web page mentioned in
the abstract.

The alignment of all 22 sequences is shown in Figure 5.
Concentrating on the alignment positions 75–90, it seems as
if sequences 4–8 and 18–22 group together and look a bit
different than the remaining 12 sequences. We have aligned
these 10 sequences with ComAlign and compared the output
with a multiple alignment from MSA. The results are shown
in Figures 6 and Figures 7 and Table 4.

At an early stage (iteration 40), ComAlign has obtained an
alignment that is slightly better than MSA’s solution, but it
has also spent more time than MSA has on these short se-
quences. This alignment is clearly a combination of sub-
alignments since the best progressive alignment achieved at
that point scores worse. At iteration 4597, ProgAlign finds
an alignment that scores as good as ComAlign’s solution
from iteration 40; no better combination is found hereafter.

Combining many multiple alignments into one

127

Fig. 4. Comparison of ComAlign and MSA. The points show the score of the current alignment for each iteration. The top and bottom dotted
lines show the score of the respectively best and worst base alignment so far. The bottom full line shows the score of an optimal combination
(generated by ComAlign).

To prevent ComAlign from running for a very long time
without any progress, an optional stopping rule (command
line parameter c) has been introduced.

This stopping rule makes ComAlign stop as soon as no
improvement in the score of the optimal combination has
been achieved for a given number of iterations.

Discussion

ComAlign produces the alignments iteratively. This makes
it possible to interact with the program. The user could some-
how ‘guide’ ComAlign while it is running, such as telling it
to concentrate on a certain area of the sequences or even stop
the execution as soon as a solution is found that by any objec-
tive or subjective means is ‘good enough’.

Furthermore, the quality level can be set to fit the time and
space available by:

� Regulating the quality of the base alignments

The assumption is that ComAlign scores better as the
quality of the base alignments rises. To increase the
quality of the base alignments, one could, instead of
using ProgAlign on random trees, run ProgAlign on a
set of trees that describe a realistic phylogeny of the
sequences.

� Regulating the coverage of the base alignments

By coverage, we mean a measure of how much of the
dynamic programming lattice is covered. The assump-
tion is that ComAlign in general will score better as the
coverage grows. A higher level of coverage can be
achieved by extending the base set with new align-
ments that cover edges that no other base alignment has
covered before. In the examples above, a relatively
high level of coverage has been achieved by assuming
a random phylogenetic tree for each run of ProgAlign.
The number of iterations in ComAlign is, therefore, a
tool to adjust the coverage. Another possibility would
be to change the mutation costs a little after each iter-
ation. Using different heuristics would be another inter-
esting approach. Good local alignments, which often
are easier to determine than similar good global align-
ments, could also serve as a source for ComAlign (the
base alignments do not need to be global).

So an increase in the quality or the coverage of the base is
assumed to make ComAlign produce better results, but at the
same time, this will probably mean an increase in time and
space used to determine the base.

Since the probability of alignments crossing each other’s
paths presumably decreases radically for each extra sequence
that is added to the alignment problem, we expect ComAlign
to be best suited for a medium number of sequences.

K.Bucka-Lassen, O.Caprani and J.Hein

128

Table 3. ComAlign versus MSA

ComAlign has many interesting prospects, one of them
being the possibility for the user to interact with the program
at run time. Another strength of ComAlign is the possibility
of setting the correlated factors time, space and quality ac-
cording to needs and availability of resources. If the user is
interested in a ‘quick and dirty’ solution, he can choose a
base with a low coverage and quality. If a better alignment
is needed, the user can increase the coverage and quality of
the base accordingly.

Conclusion

We have introduced an algorithm to combine sub-alignments
in one new multiple alignment. The goal of this study was to

see whether this approach has potential or not. The first re-
sults have been very encouraging.

The detailed analysis of one particular randomly chosen
case showed that ComAlign actually combined different
alignments from the base set. Especially interesting was the
combination of sub-alignments from base alignments that
had a comparably bad global score.

The general heuristic outlined here could be used in other
situations where different solutions are obtained by non-opti-
mal methods, these solutions can be split up in non-corre-
lated sub-solutions, and it is easy to score an actual solution
exactly. Combined RNA folding and alignment or multiple

Combining many multiple alignments into one

129

Fig. 5. ComAlign’s multiple alignment of 22 5S RNA sequences. Score = 52 421 (found after 113 min at iteration 974); best progressive alignment
= 55 137 (found at iteration 874); worst progressive alignment = 83 592 (found at iteration 204); total time spent on 1000 iterations: ∼2 h.

Fig. 6. MSA’s multiple alignment of the 10 selected 5S RNA sequences. Score = 7640. Total time elapsed: 1.7 s.

Fig. 7. ComAlign’s multiple alignment of the selected 10 5S RNA sequences. Score = 7620 (found after 32 s at iteration 40); best progressive
alignment = 7620 (found at iteration 4597); worst progressive alignment = 9818 (found at iteration 3123); total time spent on 10 000 iterations:
∼3 h.

alignment of protein sequences are problem areas that im-
mediately come to mind.

ComAlign might be able to save researchers time as it in
many ways mimics the way that people actually combine
different proposed solutions into one which is superior.

References
Chan,S.C., Wong,A.K.C. and Chiu,D.K.Y. (1992) A survey of

multiple sequence comparison methods. Bull. Math. Biol., 54,
563–598.

Dijkstra,E.W. (1959) A note on two problems in connexion with
graphs. Nummer. Math., 1, 269–271.

K.Bucka-Lassen, O.Caprani and J.Hein

130

Table 4. Result of running ComAlign for 10 000 iterations on the
set of 10 5S RNA sequences. The best combination was found
after 40 iterations or 32 s after the program was started. Later, at
iteration 4597 (∼1.5 h), a profile alignment is generated that scores
equally well. The actual alignment is shown in Figure 7

Feng,D.F. and Doolittle,R.F. (1987) Progressive sequence alignment
as prerequisite to correct phylogenetic trees. J. Mol. Evol., 25,
351–360.

Füllen,G. (1997) A gentle guide to multiple alignment 2.03.
http://www.techfak.uni-bielefeld.de/bcd/Curric/MulAli/mula-
li.html.

GenBank (1998) Genbank. http://www.ncbi.nlm. nih.gov.
Gupta,S.K., Kececioglu,J.D. and Schäffer,A.A. (1995) Making the

shortest-paths approach to sum-of-pairs multiple sequence align-
ment more space efficient in practice (extended abstract). In
Proceedings of the Sixth Annual Symposium on Combinatorial
Pattern Matching. Springer, Berlin.

Gusfield,D. (1997) Algorithms on strings: a dual view from computer
science and computational molecular biology. In Multiple String
Comparison—The Holy Grail. Cambridge University Press, Cam-
bridge, Chapter 13.

Kececioglu,J.D. et al. (1995) Discussion theme: The MSA algorithm.
http://www.techfak.uni-bielefeld.de/bcd/Lectures/kececioglu.html.

Myers,E.W. (1991) An Overview of Sequence Comparison Algorithms
in Molecular Biology. Department of Computer Science, The
University of Arizona, Tucson, TR 91-29.

Sankoff,D. (1972) Matching sequences under deletion-insertion
constraints. Proc. Natl Acad. Sci. USA, 68, 4–6.

Waterman,M.S. (1995) Introduction to Computational Biology, Maps,
Sequences and Genomes Interdisciplinary Statistics. Chapman and
Hall, London, Chapters 1 and 8–10.

Waterman,M.S., Joyce,J. and Eggert,M. (1991) Computer alignment
of sequences. In Miyamoto,M.M. and Cracraft,J. (eds), Phylogene-
tic Analysis of DNA Sequences. Oxford University Press, Oxford,
Chapter 4.

