Vol. 15 no. 2 1999
Pages 122-130

Combining many multiple alignments in one
improved alignment

Klaus Bucka-Lassen’, Ole Caprani? and Jotun Hein3

TObject Oriented Ltd, 6004 Luzern, Switzerland, “Department of Computer Science
and 3Department of Ecology and Genetics, University of Aarhus, 8000 Aarhus C,
Denmark

Received on April 1, 1998; revised on October 20, 1998; accepted on November 2, 1998

Abstract Introduction

Motivation: The fact that the multiple sequence alignmenpaijrwise alignment

problem is of high complexity has led to many different .

heuristic algorithms attempting to find a solution in whatJnder the assumption that the two DNA sequeragasds;
would be considered a reasonable amount of computatig}tve had a common ancestor, there must be a number of
time and space. Very few of these heuristics produce resuifytations (here only substitutions, insertions and deletions

that are guaranteed always to lie within a certain distance di"€ taken into consideration) that transfegmntos; and vice

an optimal solution (given a measure of quality, e.g’€'S@ (Sankoff, 1972). These mutations will here be repre-

parsimony). Most practical heuristics cannot guarantee thissented by an alignment, &Jen matrix, wherelen deter-

but nevertheless perform well for certain cases. An aligrfines the length of the alignment and a dash represents an

ment, obtained with one of these heuristics and with a bdgSertion or deletion. For example:
overall score, is not unusable though, it might contain ACC-GACTT
important information on how substrings should be aligned. —CTTG=-CT-

This paper presents a method that extracts qualitatively good)]
sub-alignments from a set of multiple alignments and Givenacost for each of the possible mutations (the costs used

combines these into a new, often improved alignment. TRE® given in Tablé), the overall cost of an alignment can be
algorithm is implemented as a variant of the traditiona/détérmined by accumulating all column mutation costs. The
dynamic programming technique optimal alignments (there can be more than one) are defined to
Results:An implementation of ComAlign (the algorithm thatP€ those that have the lowest possible cost (parsimony). An opti-
combines multiple alignments) has been run on several séfél alignment can be determined by calculating the cost for all
of artificially generated sequences and a set of 5S RN[}QSSI.ble alignments and choosing the cheapest. This mlght,' de-
sequences. To assess the quality of the alignments obtainBgding on the length of the sequences, take a very long time.
the results have been compared with the output of MSA 2.1

(Guptaet al., Proceedings of the Sixth Annual Symposium gigPle 1. The mutation cost used

Combinatorial Pattern Matching, 1995; Kececioglu et al.,

http://www.techfak.uni-bielefeld.de/bcd/Lectures/kececio- A c G T -
glu.html, 1995). In all cases, ComAlign was able to produce® 0 5 2 5 10
a solution with a score comparable to the solution obtainedc 5 0 5 2 10
by MSA. The results also show that ComAlign actually doeg 2 5 0 5 10
combine parts from different alignments and not just select 5 5 5 0 10
the best of them

10 10 10 10 -

Availability: The C source code (a Smalltalk version is being—
worked on) of ComAlign and the other programs that have
been implemented in this context are free and available onAn alignment can also be illustrated with a weighted directed

WWW {http://www.daimi.au.dkbcaprani} acyclic graph (WDAG), as shown in Figdrevhere each edge
Contact: klaus@bucka-lassen.dk; jotun@pop.bio.au.dk; ocaeorresponds to a mutation (and its weight with the mutations
prani@daimi.au.dk cost) and an alignment to a path from the source to the target.

122 © Oxford University Press

Combining many multiple alignments into one

10 _ target

UL _R1EE

S * ~
g T ’, i
T . B4
N oA
0 & .
C N * ~
C 10 S, Z00 .‘\'
A] 1 A R R J&
G Q, 1\ G . ’.0\
> UMK 4
S e | P A
\' o ‘
T 10 T R
5 . NG S A ()
T Sk <
"o ()
c Y c i, £
10 ' *
source A C c G A c T T //“IK.“'C C G A C T T
Total cost:
Fig. 1. A WDAG that illustrates a possible alignment of the two The two new possible combinations _— ‘3‘2
DNA sequences ACCGACTT and CTTGCT. — w40
. Combination-point (3,3)
L_REER W[s]

The costDko| k1| of an optimal alignment of the two se-

. - . .~ Fig. 2. Two alignments that can be combined into two new and
guencesg ands; can be determined with the recursive function: g 9

different alignments.
Dj;_; + indel

.) The cost of a multiple alignment is here defined to be the
Di-1j-1 + sub(si], s,[j])

accumulated cost of all projected pairwise alignments
(‘Sum-of-pairs’; Gusfield, 1997).
The time complexity of the dynamic programming algo-

wherei andj are non-negative integers amtlel and it that computes an optimal multiple alignment is:
sub(m,h1) specify the mutation cost of an insertion/deletion

and a substitution of the two nucleotidhgsandny, respect-
ively.

By applying dynamic programming (Fillen, 1997; Myers,
1991; Watermaet al, 1991; Charet al, 1992; Waterman, The space required i njm
1995) to this recursive function, each valuéyf will only P q & j=0 Isi-)
be calculated once. Since there are dsly- |s1| different For ease of u_ndersta_ndlng, mostly th_roughout_thls paper,
valuesD;j and the computation of each of them requires Kleas @nd algonthms will be presented in a two-dimensional
constant amount of time, the time complexity will be: case, i.e. for alignments of two sequences.

T[DynAlg(so,s1)] U O (lsol - Isa)

The dynamic programming algorithm is equivalent t0 8\¢q;me that two different alignmenfig andA; of the two
single-source shortest path (Dijkstrg, 1959) qomput_ation BNA sequences, ands; have a common poirib(i1) (com-

the WDAG' Hereafter, an optimal alignment is obtained b}Sination point), such that both align the subsequences
backtracking from the target to the source. S[0..ig] With $1[0..i3] and sofio..Jsol] With s[i1..|si[], where

di.j] determines the substring sihat starts at positidrand

ends with position— 1. One alignment might align the first
part of the sequences qualitatively well, while the other
alignment performs better on the remainder of the sequences.

Do,0=0

j<m

TIDYRAIg(So, Sy, Sn)] € O(@™1) - [18D

Combining alignments

Multiple alignment

Multiple alignment is a generalization of pairwise alignment

For example: A combination of these two superior sub-alignments will
then score at least as good as, but probably even better than,
ACC-GACTT the original alignments did. Figulellustrates how two such
A= B 8 -IC- -é $ é X (T: T_ alignments can be combined into two new alignments (one

of them being better than either of the original alignments).

123

K.Bucka-Lassen, O.CapraniandJ.Hein

This idea is easy generalized to hardl®ultiple align- The actual implementation
ments Ag, A, ..., Ay _1—called base alignments or set) of
m sequencessq, S, ..., Sn—1)-

The available algorithms for aligning two sequences t
optimality perform reasonably well in both time and spac

The algorithm OptiCom is actually implemented a bit differ-
ntly. Instead of marking edges, all nodes that are part of a
ase alignment are marked. The best combination is now de-

so the combination method does not add much value in deté?fmmed as:
mining pairwise alignments. For multiple alignments of a Dyj1 + indel, if nodd,j-1) is marked
certain size, however, there are no practical algorithms for mind Diy; + indel, if nodei-1,j) is marked

determining an optimal alignment (indicated by the time and Dij
space complexity of the dynamic programming algorithm);

various heuristics that produce close-to-optimal solutions A€ance, a combined path can also consist of edges that are not

the best there is. Combining good s_ub-a_lignme_nts can NevBhked, which means that the algorithm does not necessarily
hurt (apart from the extra computation time), since an opt

C ; fieed a combination point to combine two different align-
mal comblnatlon will always score at least as well as the beﬂents; it can also jump’ from one alignment to another if the
base alignment. distance is not too big (here one unmarked edge). The time
complexity will be affected by this, but is still much better

Di_ld._1 + sul(s[i], ;[j]), if nodgi-1,j-1) is marked

Algorithms than the standard dynamic algorithm:
Determining an optimal combination T[OptiCom@A,, A,, ...,A,)] €
The number of different new alignments that can be built by oM - (2" — 1) - jinlﬁl))

combining sub-alignments from a base of two alignments
grows exponentially with the number of combination points. . _ _ _ o
At the same time, one would expect the number of combindhe reasons for th|§ choice of |mp'lemer?tat|on' are thatit gives
tion points to grow with the number of different alignmentgMore combined alignments and is easier to implement.

in the base (the more alignments, the higher the probability

that some of them intersect). So the number of combindterative combination of alignments

e_llignments one has to examine to find the optimal combin% general, it will not be the case that one is given a set of
tion can be expected to grow faster than the number of al'ggl'ignments. More often, the input will be a set of sequences

ments in the b_ase. On(_:e again, d}/nam|c programming Oﬁetﬁat should be multiple aligned ‘as good as possible’. This is

a simple solution to this problem: achieved with the following extension to OptiCom:

Algorithm 1: OptiCom

Input: The base A={fA Ay, ..., Av_1}, a set of
alignments of § ..., Sn—1-

Output: An optimal combination of the base aIignments.Output.

Method: Mark all edges that are part of a base aIignmenMethod.
in the WDAG and run the dynamic algorithm '
only on these edges (see recursive definition
below).

For this dynamic algorithm, the time complexity is as fol-
lows (A| is the number of edges in the alignmat

j=o0

Algorithm 2: ComAlign
Input: 9,9, ..., Sn—1, a set of sequences.
n, the number of iterations.
X, a multiple alignment of,s3, ..., Sn-1
. Generate an alignment A ¢fs, ..., Sn—1.
Mark the nodes, given by A, in the WDAG.
Repeat n times step 1 and 2.
Use OptiCom to determine an optimal
combination X of all generated alignments.
The time it takes to run ComAlign can be split into two
n-1 different components: the time it takes to generate all the
TIOptiCOMA, A,,.....A)] € O IA]) base alignments and the time it takes OptiCom to find an
i=0 optimal combination.
For a given amount of time, this means that one can either

AWDN

€ O(n - max{|Al}) spend the majority of computational time on finding good,
]Lm but presumably not very many, alignments (under the as-

c o(n- (Z Is1) sumption that there is some correlation between the quality
i=o of an alignment and the time it takes to determine this align-

_ ment), or one could generate alignments of a possibly poorer
which is a lot better thao((2™ — 1) - H}E(T Isl), the time quality, but more of them. Heuristics that produce close to
complexity of the dynamic algorithm that determines amptimal multiple alignments are rare, mostly very time con-
optimal multiple alignment. suming and hard to implement (because they tend to be rather

124

Combining many multiple alignments into one

TITATCTTCAGCTGG g# = number of mutations per generation.

(eve)

To generate four related sequences, each bhgucleo-
TTTATATCCAGCGG tides long, use the following set of parameters for DNAgen:

CTTATCTCCAGTTGG

simulate 3 mulatinns/

on cach branch
o 7T, 7, DNAgen —s0 —n4 115 —g3

ATCTC('AGTCGG GTCTTCAGTTCG ATGTGCAGC‘(;G,,l AAATCAGCGCC ’ ’

_ The resultis four simulated sequences written in a format that

Fig. 3. Example of how DNAgen generates four sequences. can be read by both MSA and ComAlign:

>Avrtificial generated sequence 1

complex). Progressive alignment (or ‘Alignment along a STTATCTCCAGTCGG

Tree’) (Feng and Doolittle, 1987; Fullen, 1997), on the other

hand, is a heuristic that is easy to implement and produces>Artificial enerated sequence 2

results rather quickly, but it does in general not score very CTTGTC'IQTC AGTTCGq

high on the quality scale. Another advantage of using pro-

gressive alignment in this context is that it is quite easy to

produce many different alignments from the same sequences Artificial generated sequence 3

by choosing random phylogenies; reasons enough to choose]\._l__l_ AT GT?S CAGCGG Aq

this heuristic to generate the base alignments for ComAlign.
ProgAlign, our implementation of Progressive Alignment,

is implemented straightforwardly as described in Fillen >Artificial generated sequence 4

(1997) with one little tune-up: we have added a profile repre- TTTAAAT(g:AGCGGG 9

sentation (Chast al, 1992, p. 574) to each mutliple align- |

ment and speeded up the process of aligning multiple align-,

h : . .
ments that way. DNAgen starts by generating a random eve-sequence with

] exactly 15 uniformly distributed nucleotides. Then two new
Results for simulated data sequences are obtained by simulating three mutations on the
e-sequence. Each of these two new sequences is then used
a root, just as the eve-sequence, to generate four se-
pduences, efc. (see FigBe The simulated mutations incor-
dprate transitions, transversions and indels with given fre-
guencies (transitions 0.6, transversions 0.3 and indels 0.1).

A variant of ComAlign, where step 4 is executed after each’
step 2 so that we can observe how the score of an opti
alignment is evolving and how each individual base alig
ment is influencing this, has been implemented and run
various inputs (sets of sequences).

To assess the quality of the multiple alignments that ar
produced by ComAlign, these are compared with the outp%><
from the MSA 2.1 (Guptatal., 1995) program. MSA is run
with the options: *

—c dna = mutation costs defined in file ‘dna’.

ample MMake a multiple alignment with MSA and Com-
ign and compare the results.

Use DNAgen, generate eight simulated sequences with
(b0 nucleotides each. Simulate 20 mutations on each

_ _ generation:
g all gaps cost the same.) CCAAGTGCTAGATCGTTTCTTCCTCTACTAAATATGCGACGCCAG
-b = use sum-of-pairs score function. CTGCGGATACATAACTCGTGGCCGTGCCGAAAATCC M ATGAG
.) e) - . CATGAGATTGACTATTACCCTTAGAGCTAGGACAATGAAAACATGTTAA
The ‘dna’ file was defined in accordance with Table CACTCTAGTCCACAAACGACCTATGGAAACTATGATTAGCAGATGTGAGGCTGA

ComAlign and MSA have been run on a Silicon Graphics TTAAACCAGATACGAATGCACCCGAGCGTGTCTCCTCCACA

SGl Indigo2, 200 MHz IP22 processor with 128 Mb of mem- TCTATCCGCAAGATATTACTCCACAAGACTGCCTATCCATAGT

ory. The sequences that have been used for comparison were TCTACGTAAGTTACTCGCAAGGGTTGTATCTAATGCTTTTGAGACA)
generated artificially with DNAgen e Align these sequences with MSA. The output is as fol-

lows (irrelevant information, in this context, has been

. removed):
DNAgen—a DNA simple sequence generator C--C-AAGTGCTAGA-TCG-TT-TCTT--CCTCTACTA-AATATGCGACGCCAG
C--T-GCGGATAC-A-TAA-CT-CGTGG-CCGTGCCGA-AAATCCT-TTATGAG
; CA-TGAGATTGACTATTACCCT-TAGAG-CTAGGACAA-TGAAAAC-ATGTTAA
DNAgen is a program that generates a random eve-SeqUENCE 1 e CGACCTATOGARACTATGATTAGCAGATGTGAGGCTGA

and simulates evolution based on various parameters. The T-T-AACCAGATA-CGA-AA-TGCA-CC-CGAGCG-TGTCTCC-TGGCACA
T--T-A-GCGCTCTG-CAA-AG-TGAT--CC-TGGAC--CGCTTCC-TGAGAGG

pOSSible parameters for DNAgen are: T--C-T-ATCCGCAA-GAT-AT-TACT--CCACAAGAC-TGCCTAT-CCATAGT
S# = random Seed_ TC-T-ACGTAAGTTA-CTC-GC-AAGGG-TTGTATCTA-ATGCTTT-TGAGACA
n# = number of sequences to be generated. J——
. ignment cost:
1# = approximate length of the sequences. Elapsed tme < 24.054 [5

125

K.Bucka-Lassen, O.CapraniandJ.Hein

Table 2.Output of ComAlign after 100 iterations and 44.27 s (an
optimal combination was found after 87 iterations and 37.00 s)

itera- | current min. max. ComAlign time
tion score score score score %
0 4683 4683 4683 4683 34

1 4560 4560 4683 4560 70

2 5108 4560 5108 4560 103

3 4800 4560 5108 4560 136

4 4490 4490 5108 4485 170
27 5052 4447 5375 4447 1033
28 4813 4447 5375 4430 1070
31 4730 4447 5375 4430 1192
32 4794 4447 5375 4326 1231
45 4653 4447 5375 4326 | 1780
46 4725 4447 5375 4315 | 1822
50 4767 4447 5375 4315 | 1998
51 4538 4447 5375 4285 | 2042
62 4463 4445 5375 4285 | 2533
63 4972 4445 5375 4273 | 2578
86 4996 4445 5452 4273 | 3653
87 4547 4445 5452 4267 | 3700
98 4982 4445 5463 4267 | 4307
99 4742 4445 5463 4267 | 4369
100 4810 4445 5463 4267 | 4427

C--C-AA-GTGCTAGATCGTTTETTC---CTCTACTAAATA-TGCG-ACGCCAG
C--T--G-CGGATACATAACTCGTGG---CCGTGCCGAAAA-TCCT-TTATGAG
CA-T-GAGATTGACTATTACCCTTAGAG-CTAGGACAATGA-AAAC-ATGTTAA
CACTCTAGTCCACAAACGACCTATGGAAACTATGATTAGCAGATGTGAGGCTGA
T--T-AA-ACCAGATACGAAATGCAC---CCGAGCGT-GT--CTCC-TGGCACA
T--T--A-GCGCTCTGCAAAGTGATC---CTG-GACC-GC--TTCC-TGAGAGG
T--C-TA-TCCGCAAGATATTACTCC---ACAAGACT-GC--CTAT-CCATAGT
T--C-TACGTAAGTTACTCGCAAGGG---TTGTATCTAATG-CTTT-TGAGACA

Statistics: Best score: 4267
found after: 87 iterations
Total time elapsed: 4427 1/100 sec.
+ overhead time: 0 1/100 sec.

A comparison of ComAlign and MSA has also been per-
formed with different numbers of sequences and lengths of
these sequences. By default, DNAgen sets the number of muta-
tions to be 10% of the length of the eve-sequence (e.qg. if the
eve-sequence is 400 nucleotides long, 40 mutations are simu-
lated between each two generations). All other parameters were
as in example 1. The results are shown in Table

It seems as if the longer and more sequences there are, the
better ComAlign performs compared to MSA. For several
complex cases, MSA was not able to produce an output be-
cause it ran out of memory.

The space and time consumption by ComAlign has not been
examined systematically. Manual monitoring of the resources
has shown that ComAlign often uses less space than MSA.
For instance, MSA was not able to align seven sequences with
an approximate length of 400 nucleotides because it ran out
of space after allocating 180 Mb (including swap-space).
After 100 iterations, ComAlign had only used 15 Mb on the
same sequences. On a few short sequences, however, the
actual implementation of ComAlign spends more time finding
a solution as good as MSA's alignment. In one particular case,
ComaAlign spent 30 times as much time as MSA did.

Results for biological data

As many as 22 5S RNA sequences from GenBank (Gen-
Bank, 1998) have been chosen to demonstrate the usage of
ComAlign on real biological data. These relatively short se-
guences serve a structural role in the ribosome and are thus
not coding for proteins, but will have structural constraints
on their sequences, especially related to their secondary
structure and interaction with proteins of the ribosome. They
are ubiquitous in cellular organisms and thus their most re-
cent common ancestor dates at least 2—3 billion years back.
For details on the sequences, see the web page mentioned in

. Run ComAlign withn = 100 iterations. The result is the abstract.

shown in Table and Figured.
Observations

The alignment of all 22 sequences is shown in Figure
Concentrating on the alignment positions 75-90, it seems as

e The score of an optimal combined alignment is not jusf sequences 4-8 and 18-22 group together and look a bit

as good as the score of the best base alignment, itdgferent than the remaining 12 sequences. We have aligned
better. This means that there is actually made a combindese 10 sequences with ComAlign and compared the output
tion of at least two different base alignments. This comwith a multiple alignment from MSA. The results are shown
bination scores 4% better than the best base alignmeint.Figurest and Figure§ and Tablel.

Even though the individual base alignments’ overall Atan early stage (iteration 40), ComAlign has obtained an
score is comparably bad, sub-alignments of it might balignment that is slightly better than MSA's solution, but it
of such a high quality that these are used in the conmas also spent more time than MSA has on these short se-
bined alignment. This can, for example, be seen in iteguences. This alignment is clearly a combination of sub-
ations 4, 28, 32, 46, 51, 63 and 87 (see Talded alignments since the best progressive alignment achieved at
Figure4). that point scores worse. At iteration 4597, ProgAlign finds
The multiple alignment that ComAlign producesan alignment that scores as good as ComAlign’s solution
scores a little better than MSA's solution. from iteration 40; no better combination is found hereatfter.

Combining many multiple alignments into one

T T T T
5800 |- Optimal combination]
Worst progressive alignment ------
Current progressive alignment ¢
Best progressive alignment -
5600 _
@ mmmmmmmmmmmemee e e
5400 o ! -
." 4 °
5200 | ! o ° i
| o
2 o ° o
Q ! o o °
) o ° o |
@ 5000 i o N 4 4 °
' o o i o &
! oo o ! o °
4800 H o ? oo ° . ° l 3 o o p
i ! ! i °
: % o ¢ %o : 03 ° %o ¢ o <><> ° 1 o © °
o o i io 4 <O i o < o
4600 I SR i o i 06 o o 4
° P I P ® o 9 ©
4400 |- | ‘\ﬁ | 2 :
—1—> | MSA score b N { | ——
4200 L. A T U N L L
0o 4 20 28 32 40 46 51 60 63 80 87 100
lterations

Fig. 4. Comparison of ComAlign and MSA. The points show the score of the current alignment for each iteration. The top and lsattom dott
lines show the score of the respectively best and worst base alignment so far. The bottom full line shows the scoreabtambjtation

(generated by ComAlign).

To prevent ComAlign from running for a very long time
without any progress, an optional stopping rule (command
line parametec) has been introduced.

This stopping rule makes ComAlign stop as soon as no
improvement in the score of the optimal combination has
been achieved for a given number of iterations.

Discussion

ComaAlign produces the alignments iteratively. This makes
it possible to interact with the program. The user could some-
how ‘guide’ ComAlign while it is running, such as telling it
to concentrate on a certain area of the sequences or even stop
the execution as soon as a solution is found that by any objec-
tive or subjective means is ‘good enough'’.

Furthermore, the quality level can be set to fit the time and
space available by:

. Regulating the quality of the base alignments

By coverage, we mean a measure of how much of the
dynamic programming lattice is covered. The assump-
tion is that ComAlign in general will score better as the
coverage grows. A higher level of coverage can be
achieved by extending the base set with new align-
ments that cover edges that no other base alignment has
covered before. In the examples above, a relatively
high level of coverage has been achieved by assuming
a random phylogenetic tree for each run of ProgAlign.
The number of iterations in ComAlign is, therefore, a
tool to adjust the coverage. Another possibility would
be to change the mutation costs a little after each iter-
ation. Using different heuristics would be another inter-
esting approach. Good local alignments, which often
are easier to determine than similar good global align-
ments, could also serve as a source for ComAlign (the
base alignments do not need to be global).

So an increase in the quality or the coverage of the base is

The assumption is that ComAlign scores better as thgssumed to make ComAlign produce better results, but at the
quality of the base alignments rises. To increase thgyme time, this will probably mean an increase in time and

quality of the base alignments, one could, instead %fpace used to determine the base.

using ProgAlign on random trees, run ProgAlign on a gjnce the probability of alignments crossing each other’s

set of trees that describe a realistic phylogeny of thﬁaths presumably decreases radically for each extra sequence
sequences. that is added to the alignment problem, we expect ComAlign

. Regulating the coverage of the base alignments to be best suited for a medium number of sequences.

127

K.Bucka-Lassen, O.CapraniandJ.Hein

Table 3.ComAlign versus MSA

Number of Sequence- MSA’s ComAlign’s Deviation Deviation in —=%
score score 100
sequences length) msa - com 10000 - (2’5‘23 —-1)
msa com
6 50 961 961 0 0
6 100 2039 2039 0 0
6 150 2977 2977 0 0
6 200 4184 4177 7 17
6 250 5182 5182 0 0
6 300 6098 6098 0 0
6 350 7524 7524 0 0
6 400 8507 8510 -3 -4
6 450 9248 9252 -4 -4
6 500 10166 10162 4 4
7 50 1479 1479 0 0
7 100 3020 3020 4] 0
7 150 4581 4581 0 0
7 200 6263 6248 15 24
7 250 7889 7889 0 0
7 300 9377 9379 -2 -2
7 350 11217 11218 -1 -1
7 400
7 450 to large a dataset for MSA
7 500
8 50 2089 2089 0 0
8 100 4276 4270 6 14
8 150 6373 6394 -21 -33
8 200 8657 8604 53 62
8 250 11372 11369 3 3
8 300 13298 13298 0 0
8 350 15474 15482 -8 -5
8 400 17647 17662 -15 -8
8 450 to large a dataset for MSA
8 500
9 50 2964 2964 0 0
9 100 5783 5773 10 17
9 150 8821 8528 293 344
9 200 11737 11667 70 60
9 250 15020 14998 22 15
9 300 17418 17441 -23 -13
9 350
9 400 to large a dataset for MSA
9 450
9 500
10 50 3845 3845 0 0
10 100 7706 7694 12 16
10 150 10983 10903 80 73
10 200 15622 15588 34 22
10 250 19123 19049 74 39
10 300 22079 22079 0 0
10 350
10 400 to large a dataset for MSA
10 450
10 500

ComAlign has many interesting prospects, one of thersee whether this approach has potential or not. The first re-
being the possibility for the user to interact with the prograrsults have been very encouraging.
at run time. Another strength of ComAlign is the possibility The detailed analysis of one particular randomly chosen
of setting the correlated factors time, space and quality acase showed that ComAlign actually combined different
cording to needs and availability of resources. If the user @ignments from the base set. Especially interesting was the
interested in a ‘quick and dirty’ solution, he can choose eombination of sub-alignments from base alignments that
base with a low coverage and quality. If a better alignmeffiiad a comparably bad global score.
is needed, the user can increase the coverage and quality dfhe general heuristic outlined here could be used in other

the base accordingly. situations where different solutions are obtained by non-opti-
_ mal methods, these solutions can be split up in non-corre-
Conclusion lated sub-solutions, and it is easy to score an actual solution

We have introduced an algorithm to combine sub-alignmen@(aCtly' Combined RNA folding and alignment or multiple
in one new multiple alignment. The goal of this study was to

128

Combining many multiple alignments into one

-AT-CC-ACGGCCATAGGACTCTGAAAGCACTGCATC-~CCGT-CCGATCTGCAAAGTTAACCAGAGTACCGCCCAGTTAGTACCACGGTGGGGGACCACGCGGGAATCCTGGGTGCTG-T-G-GTT-~
-AT-CC-ACGGCCATAGGACACAGAAAACATCGCATC--CCGT-CCGATCTGCGCAATCAAGCTGTGTACCGCCCAGTCAGTACCGGAGTGGGGGACCATCCGGGAATCCTGCCAGGTG-CTGTGGTT-
~AT-CC-ACGGCCATAGGACCCTGAAAGCACCGCATC--CCGT-CCGATCTGCGCAGTTAACCAGGGTGCCGCCTAGTTAGTACCACGGTGGGGGACCACGCGGGAATCCTAGGTGCTG-T-G-GT-T-
TGC-TTGGCGACCATAGCGATTTGGACCCACCTGATCTTCCATTCCGAACTCAGAAGTGAAACGAATTAGCGCC-GA-TGGTAGT-GTG-GGGCTTCCCCATGTGAGAGTAGGACATCG-CCA-GGCTT
-TC-TG-GTGATGATGGCGGAGGGGACACACCCGTTC--CCATACCGAACACGGCCGTTAAGCCCTCCAGCGCC-AA-TGGTACT-TGCTCCGCAGGGAGCCGGGAGAGTAGGACGTCG-CCA-GGC--
-TC-TG-GTGGCGATAGCGAGAAGGTCACACCCGTTC--CCATACCGAACACGGAAGTTAAGCTTCTCAGCGCC-GA-TGGTAGT-TAG-GGGCTGTCCCCTGTGAGAGTAGGACGCTG-CCA-GGC--
TGC-CTGGCGGCCGTAGCGCGGTGGTCCCACCTGACC--CCATGCCGAACTCAGAAGTGAAACGCCGTAGCGCC-GA-TGGTAGT-GTG-GGGTCTCCCCATGCGAGAGTAGGGAACTGCCAG-GCAT-
-TT-TG-GTGGCGATAGCGAAGAGGTCACACCCGTTC--CCATACCGAACACGGAAGTTAAGCTCTTCAGCGCC-GA-TGGTAGTTGGG-GTGTTAGCCCCTGCAAGAGTAGGACGTTG-CCA-GGC-~
-GT-GGTGCGGTCATACCAGCGCTAATGCACCGGATC--CCAT-CAGAACTCCGCAGTTAAGCGCGCTTGGGCCAGAACAGTACTGGGATGGGTGACCTCCCGGGAAGTCCTGGTGCCG-C-A-CCCC-
~GG-GT-GCGATCATACCAGCGTTAATGCACCGGATC--CCAT-CAGAACTCCGCAGTTAAGCGCGCTTGGGTTGGAGTAGTACTAGGATGGGTGACCTCCTGGGAAGTCCTAATATTG-CAC-CCTT-
-GT-GGTGCGGTCATACCAGCGCTAATGCACCGGATC--CCAT-CAGAACTCCGAAGTTAAGCGCGCTTGGGCCAGAACAGTACTGGGATGGGTGACCTCCCGGGAAGTCCTGGTGCTG-CAC-CCTT-
-GG-AT-GCGATACCATCAGCACTAAAGCACCGGAT---CCAT-CAGAACTCCGAAGTTAAGCGTGCTTGGGCGAGAGTAGTACTAGGATGGGTGACCTCCTGGGAAGTCCTCGTGTTG-C-A-TCCT~
-GC-CT-ACGGCCACACCACCCTGAAAGTGCCTGATC--TCGT-CTGATCTCAGAAGCGATACAGGGTCGGGCCTGGTTAGTACCTGGATGGGAGACCGCCTGGGAATACCAGGTGTCG-TAG-GCTT-
-GT-CT-ACGGCCATACCACCCTGAACGCGCCCGATC--TCGT-CTGATCTCGGAAGCTAAGCAGGGTCGGGCCTGGTTAGTACTTGGATGGGAGACCGCCTGGGAATACCGGGTGCTG-TAG-GCTTT
-GC-TT-ACGGCCATACCAGCCTGAATACGCCCGATC--TCGT-CCGATCTCGGAAGCTAAGCAGGGTCGGGCCTGGTTAGTACTTGGATGGGAGACCGCCTGGGAATACCAGGTGCTG-TAA~-GCTT-
=GC-CA-ACGACCATACCACGCTGAATACATCGGTTC--TCGT-CCGATCACCGAAATTAAGCAGCGTCGCGGGCGGTTAGTACTTAGATGGGGGACCGCTTGGGAACACCGCGTGTTG-TTG-GCCT-
=GC-CT-ACGGCCATCCCACCCTGGTAACGCCCGATC--TCGT-CTGATCTCGGAAGCTAAGCAGGGTCGGGCCTGGTTAGTACTTGGATGGGAGACCTCCTGGGAATACCGGGTGCTG-TAG-GCTT-
-TT-CTGGTGTCTCAGGCGTGGAGGAACCACACCAAT-~CCATCCCGAACTTGGTGGTGAAACTCTATTGCGGT-GA~CGATACTGTAG-GGGAAGCCCGATGGAAAAATAGCTCGACG-CCA-GGAT-
TATTCTGGTGTCCCAGGCGTAGAGGAACCACACCGAT--CCATCTCGAACTTGGTGGTGAAACTCTGCCGCGGT-AACCAATACT-CGG-GGGGGGCCCTGCGGAAAAATAGCTCGATG-CCA-GGATA
TATTCTGGTGTCCTAGGCGTAGAGGAACCACACCAAT--CCATCCCGAACTTGGTGGTTAAACTCTACTGCGGT-GA-CGATACTGTAG-GGGAGGTCCTGCGGAAAAATAGCTCGACG-CCA-GGATG
-TT-CTGGTGTCTTAGGCGTAGAGGAACCACACCAAT--CCATCCCGAACTTGGTGGTGAAACTCTATTGCGGT-GA-CAATACTTTAG-GGGAAGCCCTATGGAAAAATAGCTCGACG-CCA-GGAT-
TATTCTGGTGTCCTAGGCGTAGAGGAACCACACCAAT--CCATCCCGAACTTGGTGGTTAAACTCTACTGCGGT-GA-CGATACTGTAG-GGGAGGTCCTGCGGAAAAATAGCTCGACG-CCA-GGAT-

Fig. 5.ComAlign’s multiple alignment of 22 5S RNA sequences. Score = 52 421 (found after 113 min at iteration 974); best atgmnessive
= 55 137 (found at iteration 874); worst progressive alignment = 83 592 (found at iteration 204); total time spent oatibDBO Rein.

TGC-TTGGCGACCATAGCGATTTGGACCCACCTGATCTTCCATTCCGAACTCAGAAGTGAAACGAATTAGCGCCGA-TGGTAGTG-TGGGGCTTCCCCATGTGAGAGTAGGACATCGCCAGGCTT~
T---CTGGTGATGATGGCGGAGGGGACACACCCGTT--CCCATACCGAACACGGCCGTTAAGCCCTCCAGCGCCAA-TGGTACTTGCTCCGCAGGGAGCCGGGAGAGTAGGACGTCGCCAGG--C-
T---CTGGTGGCGATAGCGAGAAGGTCACACCCGTT--CCCATACCGAACACGGAAGTTAAGCTTCTCAGCGCCGA-TGGTAGTT-AGGGGCTGTCCCCTGTGAGAGTAGGACGCTGCCAGG--C-
TGC-CTGGCGGCCGTAGCGCGGTGGTCCCACCTGAC--CCCATGCCGAACTCAGAAGTGAAACGCCGTAGCGCCGA-TGGTAGTG-TGGGGTCTCCCCATGCGAGAGTAGGGAACTGCCAGGCAT~
T---TTGGTGGCGATAGCGAAGAGGTCACACCCGTT--CCCATACCGAACACGGAAGTTAAGCTCTTCAGCGCCGA-TGGTAGTTGGGGTGTTAGCCCCTGCAAGAGTAGGACGTTGCCAGG--C-
T-T-CTGGTGTCTCAGGCGTGGAGGAACCACACCAA--TCCATCCCGAACTTGGTGGTGAAACTCTATTGCGGTGA-CGATACTGTAGGGGAAGCCCGATGGAAAAATAGCTCGACGCCAGG-AT-
TATTCTGGTGTCCCAGGCGTAGAGGAACCACACCGA--TCCATCTCGAACTTGGTGGTGAAACTCTGCCGCGGTAACCAATACTC-GGGGGGGGCCCTGCGGAAAAATAGCTCGATGCCAGG-ATA
TATTCTGGTGTCCTAGGCGTAGAGGAACCACACCAA-~-TCCATCCCGAACTTGGTGGTTAAACTCTACTGCGGTGA-CGATACTGTAGGGGAGGTCCTGCGGAAAAATAGCTCGACGCCAGG-ATG
T-T-CTGGTGTCTTAGGCGTAGAGGAACCACACCAA--TCCATCCCGAACTTGGTGGTGAAACTCTATTGCGGTGA-CAATACTTTAGGGGAAGCCCTATGGAAAAATAGCTCGACGCCAGG-AT-
TATTCTGGTGTCCTAGGCGTAGAGGAACCACACCAA--TCCATCCCGAACTTGGTGGTTAAACTCTACTGCGGTGA-CGATACTGTAGGGGAGGTCCTGCGGAAAAATAGCTCGACGCCAGG-AT-

Fig. 6. MSAs multiple alignment of the 10 selected 5S RNA sequences. Score = 7640. Total time elapsed: 1.7 s.

TGC-TTGGCGACCATAGCGATTTGGACCCACCTGATCTTCCATTCCGAACTCAGAAGTGAAACGAATTAGCGCCGAT-GGTAGTGT-GGGGCTTCCCCATGTGAGAGTAGGACATCGCCAGG-CTT
T---CTGGTGATGATGGCGGAGGGGACACACCCGT--TCCCATACCGAACACGGCCGTTAAGCCCTCCAGCGCCAAT-GGTACTTGCTCCGCAGGGAGCCGGGAGAGTAGGACGTCGCCAGG--C-
T---CTGGTGGCGATAGCGAGAAGGTCACACCCGT-~TCCCATACCGAACACGGAAGTTAAGCTTCTCAGCGCCGAT-GGTAGTTA-GGGGCTGTCCCCTGTGAGAGTAGGACGCTGCCAGG--C-
TGC-CTGGCGGCCGTAGCGCGGTGGTCCCACCTGA--CCCCATGCCGAACTCAGAAGTGAAACGCCGTAGCGCCGAT-GGTAGTGT-GGGGTCTCCCCATGCGAGAGTAGGGAACTGCCAGGCAT-
T---TTGGTGGCGATAGCGAAGAGGTCACACCCGT--TCCCATACCGAACACGGAAGTTAAGCTCTTCAGCGCCGAT-GGTAGTTGGGGTGTTAGCCCCTGCAAGAGTAGGACGTTGCCAGG--C-
T-T-CTGGTGTCTCAGGCGTGGAGGAACCACACCA--ATCCATCCCGAACTTGGTGGTGAAACTCTATTGCGGTGAC-GATACTGTAGGGGAAGCCCGATGGAAAAATAGCTCGACGCCAGG-AT-
TATTCTGGTGTCCCAGGCGTAGAGGAACCACACCG-~ATCCATCTCGAACTTGGTGGTGAAACTCTGCCGCGGTAACCAATACTCG-GGGGGGGCCCTGCGGAAAAATAGCTCGATGCCAGG-ATA
TATTCTGGTGTCCTAGGCGTAGAGGAACCACACCA--ATCCATCCCGAACTTGGTGGTTAAACTCTACTGCGGTGAC-GATACTGTAGGGGAGGTCCTGCGGAAAAATAGCTCGACGCCAGG-ATG
T-T-CTGGTGTCTTAGGCGTAGAGGAACCACACCA--ATCCATCCCGAACTTGGTGGTGAAACTCTATTGCGGTGAC-AATACTTTAGGGGAAGCCCTATGGAAAAATAGCTCGACGCCAGG-AT-
TATTCTGGTGTCCTAGGCGTAGAGGAACCACACCA--ATCCATCCCGAACTTGGTGGTTAAACTCTACTGCGGTGAC-GATACTGTAGGGGAGGTCCTGCGGAAAAATAGCTCGACGCCAGG-AT-

Fig. 7.ComAlign’s multiple alignment of the selected 10 5S RNA sequences. Score = 7620 (found after 32 s at iteration 40)ebsiseprogr
alignment = 7620 (found at iteration 4597); worst progressive alignment = 9818 (found at iteration 3123); total time 8¢} iberations:
(B h.

alignment of protein sequences are problem areas that ilReferences

mediately come to mind. _ _ Chan,S.C., Wong,AK.C. and ChiuD.K.Y. (1992) A survey of
ComAlign might be able to save researchers time as it inmultiple sequence comparison methoBsil. Math. Biol, 54,

many ways mimics the way that people actually combine 563-598.

different proposed solutions into one which is superior. Dijkstra,E.W. (1959) A note on two problems in connexion with
graphsNummer. Math 1, 269-271.

129

K.Bucka-Lassen, O.CapraniandJ.Hein

Table 4.Result of running ComAlign for 10 000 iterations on the Feng,D.F. and Doolittle,R.F. (1987) Progressive sequence alignment
set of 10 5S RNA sequences. The best combination was found as prerequisite to correct phylogenetic treksMol. Evol, 25,
after 40 iterations or 32 s after the program was started. Later, at 351-360.

iteration 4597 [(11.5 h), a profile alignment is generated that scores

i) o= Fillen,G. (1997) A gentle guide to multiple alignment 2.03.
equally well. The actual alignment is shown in Figure 7

http://www.techfak.uni-bielefeld.de/bcd/Curric/MulAli/mula-

itera- | current min. max. ComAlign time li.html.
tion score score score score e GenBank (1998) Genbank. http://www.ncbi.nlm. nih.gov.
0 8316 | 8316 | 8316 3316 78 Gupta,S.K., Kececioglu,J.D. and Schéffer,A.A. (1995) Making the
1 7764 | 7764 | 8316 7764 157 shortest-paths approach to sum-of-pairs multiple sequence align-
2 8254 | 7764 | 8316 7700 237 ment more space efficient in practice (extended abstract). In
3 7830 | 7764 | 8316 7700 316 Proceedings of the Sixth Annual Symposium on Combinatorial
1 8092 | 7764 | 8316 7688 394 Pattern Matching Springer, Berlin.
g ;ggg ;;gj gg}g ;ggg ;gg Gusfield,D. (1997) Algorithms on strings: a dual view from computer
7 8493 | 7764 | 8493 7688 632 science and computational molecular biologyMualtiple String
] 7686 | 7686 | 8493 7632 712 Comparison—The Holy GraiCambridge University Press, Cam-
e bridge, Chapter 13.
39 7867 | 7686 | 9180 7632 3205 Kececioglu,J.Det al (1995) Discussion theme: The MSA algorithm.
40 7892 | 7686 | 9180 7620 3286 http:/Avww.techfak.uni-bielefeld.de/bcd/Lectures/kececioglu.html.
i 8131 | 7686 | 9180 7620 3368 Myers,E.W. (1991An Overview of Sequence Comparison Algorithms
3192 3088 | 7698 | 9624 7620 | 296714 in Molecular Biology Department of Computer Science, The
3123 9818 | 7628 | 9818 7620 296819 University of Arizona, Tucson, TR 91-29.
3124 7712 | 7628 | 9818 7620 | 296922 Sankoff,D. (1972) Matching sequences under deletion-insertion
constraintsProc. Natl AcadSci. USA68, 4-6.
4596 8185 | 7628 | 9818 7620 | 456096 Waterman,M.S. (1993jtroduction to Computational Biology, Maps,
jgg; ;gig ;2;8 32}: ;ggg 322?1); Sequences and Genomes Interdisciplinary Stati€ticapman and
Hall, London, Chapters 1 and 8-10.
9999 8390 | 7620 | 9818 7620 | 1110543 Waterman,M.S., Joyce,J. and Eggert,M. (1991) Computer alignment
10000 8267 | 7620 | 9818 7620 | 1110670 of sequences. In Miyamoto,M.M. and Cracraft,J. (delsyJogene-
tic Analysis of DNA Sequenc&xford University Press, Oxford,
Chapter 4.

130

