Contents

0.1 Preface ... 8
0.1.1 Chapter outline 8
0.1.2 Acknowledgments 9

1 The Basic Coalescent 11
1.1 Introduction 11
1.2 A Y-chromosome data set 15
1.3 Data and Theory 20
1.4 The Wright-Fisher Model 22
 1.4.1 Assumptions of the Wright-Fisher Model ... 24
 1.4.2 The number of descendants of a gene in one generation 25
 1.4.3 An Example 26
1.5 The geometric distribution 28
1.6 The exponential distribution 30
1.7 The Discrete-Time Coalescent 32
 1.7.1 Coalescence of a sample of two genes 32
 1.7.2 Coalescence of a sample of n genes 33
 1.7.3 Example: Effect of Approximations 34
1.8 The continuous time coalescent 34
1.9 Calculating Simple Quantities on the Coalescent Tree 36
 1.9.1 The Height of the Tree 36
 1.9.2 The Total Branch Length of the Tree 38
 1.9.3 The Effect of Sampling More Sequences 39
1.10 The Effective Population Size 39
1.11 The Moran model 41
1.12 Robustness of the Coalescent 42
1.13 Recommended readings 43

2 From genealogies to sequences 45
2.1 Mathematical models of alleles 46
 2.1.1 The infinite alleles model 46
 2.1.2 The infinite sites model 47
 2.1.3 Finite sites model 50
2.2 The Wright-Fisher Model with mutation 52

3 Trees and Topologies 81
3.1 Some terminology 81
 3.1.1 The jump process and the waiting time process 81
 3.1.2 The coalescent and phylogenetic trees 81
3.2 Counting trees and topologies 85
3.3 Gene Trees 88
 3.3.1 How to build a gene tree 89
3.4 Nested sub-samples 91
3.5 Hanging sub-trees 93
3.6 A Single Lineage 95
3.7 Disjoint Subsamples 98
 3.7.1 Examples 101
3.8 A sample partitioned by a mutation 102
 3.8.1 Unknown ancestral state 104
 3.8.2 The Age of the MRCA for two sequences 105
3.9 The probability of going from n ancestors to k ancestors 105

4 Extensions to the basic coalescent 109
4.1 Introduction 109
4.2 The coalescent with fluctuating population size .. 110
 4.2.1 Stochastic and systematic changes 110
4.3 Exponential growth 113
 4.3.1 The genealogy under exponential growth 113
4.4 Population bottlenecks 119
 4.4.1 Genealogical effect of bottlenecks 119
4.5 Effective population size revisited 121
5 The Coalescent with Recombination

5.1 Introduction .. 143
5.2 Data example with recombination 144
5.3 Modelling recombination .. 147
5.3.1 Hudson's model of recombination 147
5.3.2 Biological features of recombination 149
5.4 The Wright-Fisher Model with Recombination 154
5.5 Algorithms .. 157
5.5.1 The Ancestral Recombination Graph 157
5.5.2 Sampling ARGs: not back in time, but along sequences.162
5.5.3 Efficiency of different algorithms 164
5.6 The effect of a single recombination event 167
5.7 The number of recombination events 170
5.8 The probability of a data set 172
5.9 The number of segregating sites 174
5.10 The coalescent with gene conversion 174
5.11 Gene Trees with Recombination - from incompatibilities to
minimal ARGs ... 176
5.11.1 Recombination as subtree transfer 177
5.11.2 Recombination Inferred from Haplotypes 184
5.11.3 From local to global bounds 185
5.11.4 Minimal ARGs ... 186
5.11.5 Topologies, Recombination and Compatibility 187
5.12 Recommended reading ... 190

6 Getting Parameters from Data 193

6.1 Introduction ... 193
6.2 Estimators of θ .. 194
6.2.1 Watterson's Estimator 195
6.2.2 Tajima's Estimator ... 196
6.2.3 Fu's Two Estimators ... 197

7 LD mapping and the coalescent 215

7.1 The potential of LD mapping 215
7.1.1 Complex disease aetiology 216
7.2 Linkage versus LD mapping 218
7.3 Simulation of genealogies and LD mapping 222
7.4 Genealogical trees around a disease mutation 222
7.4.1 Different types of trees 224
7.4.2 An example ... 224
7.4.3 Quantifying genealogical tree differences 225
7.5 The genealogical process reflected in data 232
7.5.1 Linkage disequilibrium 234
7.5.2 Measures of LD .. 234
7.5.3 Which measure of LD to use? 237
7.5.4 Testing LD ... 238
7.5.5 Accounting for population admixture 241
7.5.6 Differences between human populations 241
7.6 Measuring association of single markers 242
7.7 Haplotype LD mapping ... 243
7.7.1 Haplotype blocks and the HapMap project 244
7.8 Bayesian multipoint LD mapping 247
7.8.1 Star shaped genealogy 249
7.8.2 Coalescent based genealogy 249
7.9 HapMap or Multipoint LD? 252

8 Human Evolution .. 255

8.1 Our phylogenetic position and ancestral population genetics. 256
8.1.1 The number of genetic ancestors to a genome 259
8.2 Human migrations and population structure 265
8.2.1 Our relationship to the Neanderthaler 266
8.2.2 Population Growth .. 269
8.2.3 Structure within global modern human populations... 270
8.2.4 Specific histories .. 271
8.2.5 Empirical pedigrees and The Coalescent 272
8.2.6 Other Genealogical Issues 276
8.2.7 Tracing genetic material within the parent genealogy.279
0.1 Preface

Coalescent Theory has gone from an obscure corner of population genetics to a central concept for anybody that studies variation at the sequence level.

Besides filling the obvious need for such a book, it is also our wish to present this theory in a straightforward and elementary manner that could dispel the misconception that Coalescent Theory is inherently very difficult and needs a strong mathematical background to understand. The key issues needed for data analysis only needs basic combinatorics. Despite the present prominence of Coalescent Theory, it also belongs to the future. From an application point of view, human evolution and association mapping/fine scale mapping are two areas that are bound to grow enormously in the next few years. And to make optimal use of the coming flood of data, theoretical advances will be needed. There are areas, where present theory fails (or is impractically slow) in presence of real data and if empirical researcher are to use Coalescent based method, there are plenty of challenges for the theoretician both in modelling and in improvement of simulation algorithms.

The present book is definitely not exhaustive, but is only meant to provide a good basis for further study.

0.1.1 Chapter outline

The book consists of eight Chapters:

Chapter 1 provides the basics for understanding the assumptions behind and derivation of the basic coalescent model, and some simple properties of the resulting genealogies.

Chapter 2 introduces the models of alleles and sequences and associated mutation processes. Prominent models are: Infinite alleles, infinite sites and finite sites models. When these models and mutation processes are combined with genealogies, data can either be simulated or the probability of data can be evaluated.

Chapter 3 gives some more examples of statistics that can be calculated on coalescent genealogies and mutations on such genealogies.

Chapter 4 relaxes some of the assumptions of the basic coalescent model by introducing extensions necessary in the analysis of real data. These include population size changes, population subdivision, bottlenecks, balancing selection, and directional selection.

Chapter 5 extends the coalescent model to include genetic exchange in the form of recombination and gene conversion. An introduction to the biological features of the process, the model and algorithms used and