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Abstract

We consider Markov processes of DNA sequence evolution in which

the instantaneous rates of substitution at a site are allowed to depend

upon the states at the sites in a neighbourhood of the site at the instant

of the substitution. We characterize the class of Markov process mod-

els of DNA sequence evolution for which the stationary distribution is

a Gibbs measure, and give a procedure for calculating the normalizing

constant of the measure. We develop an MCMC method for estimat-

ing the transition probability between sequences under models of this

type. Finally, we analyze an alignment of two HIV{1 gene sequences

using the developed theory and methodology.
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1 Introduction

In light of the tremendous e�ort currently invested in the extraction of molec-
ular sequence data, e.g. in the numerous genome projects, the development
of statistical tools for the analysis of this type of data is of great importance.
Although within the last 20 years major advances have been made in pro-
viding sound statistical footing to the analysis (e.g. Felsenstein 1981 and
Goldman 1993) the �eld is still relatively unexplored.

DNA sequences are strings of consecutive nucleotides of which there are
four types: Adenosine (A), Guanine (G), Cytosine (C) and Thymine (T).
Certain regions of the sequences - the genes - encode proteins, that is, strings
of amino acids. In these regions triplets of nucleotides, called codons, are
translated into amino acids via the genetic code. As there are 64 codons,
with three being stop codons that signal end of translation, and only 20
amino acids, the genetic code is degenerate. Some amino acids are coded for
by many codons (as many as six) whereas others are coded for by fewer (as
few as one).

The statistical analysis of DNA sequences faces a number of diÆculties
due to the nature of the data and the complexity of the evolutionary pro-
cesses shaping the data. Although some advances have been made in si-
multaneously dealing with the processes of insertion of new nucleotides and
deletion of existing nucleotides and the process of substitution of existing
nucleotides by new ones, the general approach taken is to separate the two.
One aligns the sequences, that is, one arranges the nucleotides in columns
so that nucleotides in the same column are believed to have descended from
some common ancestral nucleotide through an evolutionary process that in-
volves substitutions only. Having made this assumption one has reduced the
size of the state space of the sequences considerably, now being of the order
4n, where n is the length of the alignment. Sequences of interest, however,
are generally from a few hundred to several thousands or ten thousands nu-
cleotides long, leaving one with a state space that is still of considerable
size.

The classical statistical approach taken when analyzing aligned DNA se-
quences is to assume that the evolutionary processes in the nucleotide sites
are independent identical reversible Markov processes. The Markov process
operating in a site is described by a rate matrix de�ning the rates of the
di�erent types of nucleotide substitutions (Felsenstein 1981). More recently
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codon-based models designed to describe the evolution of protein coding se-
quences have been developed (Muse and Gaut 1994, Goldman and Yang
1994). These models allow the instantaneous rates of substitution at a site
in a codon to depend upon the nucleotides occupying the other sites of the
codon at the instant of the substitution. The evolutionary processes in the
codons are assumed to be independent identical Markov processes with rates
described by a matrix with 61 � 61 entries. The assumption of identical
processes in di�erent sites has been relaxed to the extent that the overall
rates in the sites have been allowed to di�er. One approach has been to draw
a rate factor for each site independently from a Gamma distribution (Yang
1993), another to let the rates in sites be assigned by a Hidden Markov model
(Felsenstein and Churchill 1996). The independence assumption, however,
of the processes in non-overlapping entities along the sequences (nucleotide
sites, codon sites or other short subsequences) is characteristic of models of
DNA sequence evolution in general (e.g. Felsenstein 1981, Muse and Gaut
1994, Goldman and Yang 1994, Haeseler and Sch�oniger 1998). Having made
this assumption the calculation of the likelihood is a matter of obtaining equi-
librium frequencies and transition probabilities for the rate matrix assumed,
and multiplying the appropriate products of the two along the alignment.

In this study we consider Markov processes of nucleotide substitution in
which the independence assumption has been relaxed. The instantaneous
rate of substitution at any site is allowed to depend upon the states of the
sites in the neighbourhood of the site at the instant of the substitution. In
Section 2 we present a model for the substitution process in Lentiviral genes
which serves as a motivation for the study. We show that under this model
the stationary measure for the codon sequence has a Gibbs form. The Gibbs
form allows the measure to be written as a Markov chain along the sequence
of codons, so that analysis of the stationary measure can be performed in a
simple manner. In Section 3 we study models with context dependent rates
of substitution in general. We arrive at a characterization of the class of
intensities (substitution rates) for which the stationary distribution of the
Markov process is a Gibbs measure, and describe how the Gibbs measure
may be identi�ed from the intensities. In Section 4 we utilize the Marko-
vian nature of the Gibbs measure to derive a procedure for calculating the
normalizing constant of the measure.

In Section 5 we de�ne a codon-based Markov process of nucleotide sub-
stitution in which the only non-zero rates of substitution are those in which
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a codon is changed at one position only. In this model the rates of substi-
tution in the codon positions are allowed to depend upon the states at the
other codon positions as well as on those at the nucleotide sites at either side
of the codon. We show that the stationary distribution of this process is a
Gibbs distribution, and give a simple procedure for calculating the normaliz-
ing constant, using the results derived earlier. In order to make a likelihood
analysis of two sequences we develop an MCMC algorithm in Section 6 for
calculating the transition probability from one sequence to another under a
model of the type discussed in Section 5.

We �nally apply the developed theory and methodology in an analysis of
an alignment of two HIV{1 gene sequences (Section 7).

2 Motivating example

In this section we motivate our study through an example which is an ex-
tension of a model for the substitution process in Lentiviral genes considered
by Pedersen et al. (1998). We consider a model where a change in a codon
sequence consists in a change (substitution) of one nucleotide only. We write
a codon sequence as z1; : : : ; zn, with zi = (z1i ; z

2
i ; z

3
i ), where the upper index

j in zji indicates the position within the codon and zji 2 T = fA;C;G; Tg.
Furthermore, we let zi(j; b) denote the new codon which is identical to zi
except at codon position j where zji has been replaced by b. We allow the
intensity  for such a change to depend upon zi as well as the neighbours
z3i�1 and z

1
i+1:

(zi(j; b); z
3
i�1; zi; z

1
i+1) =M(zi; zi(j; b))�

j
b

��
1CG(z

3
i�1;zi(j;b)

1)�1CG(z
3
i�1;z

1
i )

31 �
1CG(zi(j;b)

1;zi(j;b)2)�1CG(z
1
i ;z

2
i )

12

��
1CG(zi(j;b)

2;zi(j;b)
3)�1CG(z

2
i ;z

3
i )

23 �
1CG(zi(j;b)

3;z1i+1)�1CG(z
3
i ;z

1
i+1)

31 ; (1)

where the function M is given by

M(zi; zi(j; b)) = K1TS(z
j
i
;b)f 1NON�SYN(zi;zi(j;b));

with 1TS an indicator function for a transition, that is the substitution of a
purine (A or G) for a purine or a pyrimidine (C or T) for a pyrimidine, and
with 1NON�SYN an indicator function for a change in the amino acid. We
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restrict the �jb -parameters to sum to 1 for each j, and in the de�nition of the
intensities we only consider those j; b for which zi(j; b) is not a stop codon.
The interpretation of the � parameters is given below.

The gene sequences of Lentiviruses, of which the HIV virus causing AIDS
is an example, share a number of characteristic features. Their genomes have
high contents of the A nucleotide, especially so at third codon positions, and
extremely low contents of the CG dinucleotide. In a study of HIV{1 gene
sequences Pedersen et al. (1998) considered the above model with �31 = 1
and �12 = �23. When �31 = 1 the codons evolve independently and the
stationary frequency for a codon (s1; s2; s3) is(

��2�1s1�
2
s2
�3s3 if (s1; s2) = (CG) or (s2; s3) = (CG)

��1s1�
2
s2
�3s3 otherwise;

(2)

where � = �12 = �23 is the common value and � is a normalizing constant.
As can be seen from the stationary frequencies this model can take into
account di�erent nucleotide compositions in the three codon positions and
low frequencies of CG pairs at codon positions (1,2) and (2,3). However, in
Lentiviral gene sequences low frequencies of CGs are observed across codon
boundaries, that is, at codon positions (3,1), as well as within codons. In one
of the HIV{1 genes examined by Pedersen et al. (1998) one has the following
counts

position one
G non-G

position three
C

non-C
3
155

75
267

:

These numbers clearly invalidate the hypothesis of independence among the
codons. In Pedersen et al. (1998) a �rst attempt to take this into account is
made. They picture a scenario where pentets evolve independently according
to the intensities given in (1). In such a model the stationary frequencies for
pentets (z3i�1; z

1
i ; z

2
i ; z

3
i ; z

1
i+1) are on the form

8><
>:
��4�3s0�

1
s1
�2s2�

3
s3
�1s4 two CGs in ~s

��2�3s0�
1
s1
�2s2�

3
s3
�1s4 one CG in ~s

��3s0�
1
s1
�2s2�

3
s3
�1s4 no CG in ~s;

(3)

where ~s = (s0; s1; s2; s3; s4) is the pentet. They then perform an analysis
in which the observed overlapping pentets in single sequences are treated as
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independent observations and pentet counts are compared to the expected
counts under di�erent versions of the pentet based model (3). The results
obtained through this analysis establish the importance of depression of CGs
between codons. In recognition of the fact that overlapping pentets do not
evolve independently the authors refrain from performing any evolutionary
analysis using the pentet model.

The equilibrium frequencies (3) raise two immediate questions. The �rst
question is what kind of rates (�; �) give stationary frequencies of the form
(3)? Secondly, what is the true dependency among the pentets? More gen-
erally, we want to study the relation between a speci�cation of rates and the
stationary measure for the codon sequence. For several reasons we also want
the stationary measure to have a simple form. As argued in Pedersen et al.
(1998) since two aligned sequences di�er in a few positions only much of the
information in the data concerns the stationary distribution. We may there-
fore want to start the modelling process with the stationary measure and to
make simple tests here. Also, when a full model is analyzed it is useful to get
initial values of the parameters from the stationary distribution (see Section
7).

For the model de�ned in (1) the stationary measure for the codon se-
quence is

�(z) = (4)

1

Z

 
nY
i=1

(�1z1
i
�2z2

i
�3z3

i
)

!
�
2
Pn+1

i=1
1CG(z

3
i�1;z

1
i )

31 �
2
Pn

i=1
1CG(z

1
i ;z

2
i )

12 �
2
Pn

i=1
1CG(z

2
i ;z

3
i )

23 ;

where Z is a normalizing constant. This can be proved from Proposition 4
below, but can also be seen directly by showing that

�(z) (zi(j; b); z
3
i�1; zi; z

1
i+1)

= �(z1; : : : ; zi�1; zi(j; b); zi+1; : : : ; zn) (zi; z
3
i�1; zi(j; b); z

1
i+1):

The stationary measure (4) is of the Gibbs form in (20) below, that is, it is
speci�ed through an interaction function exp(�(�; �)) between z3i�1 and z

1
i :

exp(�(a; b)) = (�231)
1CG(a;b) (5)

that measures the presence of the pair CG across a codon boundary, and a
potential exp(�0(�)) for the codon s = (s1; s2; s3) itself:

exp(�0(s)) = �1s1�
2
s2
�3s3(�

2
12)

1CG(s1;s2)(�223)
1CG(s2;s3): (6)
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The importance of the Gibbs structure is that the stationary measure be-
comes a Markov chain along the codon sequence. This makes it possible to
analyze the stationary measure in a simple way. Since the interaction in (5)
is between z3i�1 and z1i only we have that the conditional distribution of zi
given zi�1 depends on z

3
i�1 only. Note that the Gibbs structure gives imme-

diately from (5) and (6), in the case with �12 = �23 = �31, that conditionally
on z3i�1 and z

1
i+1 the stationary frequencies for the codons are given by (3).

The Markov structure along the codon sequence embodied in (4) can be
written in the form

P (zi = (s1; s2; s3)jz
3
i�1 = a) =

expf�(a; s1) + �0(s)g

qh(a)
h(s3) (7)

for some number q and some function h(�). However, from (5) it follows that
we can take h(A) = h(G) = h(T ) = 1 and h(C) = � , say. Then � and q are
determined from the two equations

q =
X
s2 ~S

exp(�0(s))h(s3) and q� =
X
s2 ~S

(�231)
1G(s1) exp(�0(s))h(s3);

where ~S is the set of non-stop codons. The important aspect of (7) is that
this formula is explicit and that simple tests can be designed to test the
adequacy of the transition probabilities in (7).

If we want to calculate the stationary probabilities of pentets we also
need the invariant distribution of z3i from (7). To this end, de�ne the matrix
V (�; �) by

V (a; s3) =
X

s1;s2:s2~S

exp(�(a; s1) + �0(s)); s = (s1; s2; s3):

Then h is actually a right eigenvector of V with eigenvalue q. Since V (A; �) =
V (G; �) = V (T; �) it is easy to see that a left eigenvector l(�), normalized such
that l(C) = 1, has to be of the form

ql(b) = V (C; b) + V (A; b)�;

where � = l(A) + l(G) + l(T ) is determined by

q = V (C;C) + V (A;C)�:
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The invariant distribution for z3i in the Markov chain from (7) can now be
written as

P (z3i = a) =
l(a)h(a)

� + �
=

1

� + �
(V (C; a) + V (A; a)�)� 1(a=C):

3 Relation between dynamics and stationary

distribution: general case

We will consider a continuous time Markov process on the space of codon
sequences of length n. Typically, we denote the sequence by z = (z1; : : : ; zn)
with zi 2 ~S, the set of non-stop codons. Usually we will imagine that we have
two boundary codons z0 and zn+1 which are �xed. These could be initiation
or stop codons. When the process makes a jump there will only be a change
in one codon. In this section a codon can be changed from any value to any
other value in ~S, corresponding to all intensities being positive. In Section
5 we consider the case where a codon may be changed at one of its three
positions only. The intensity for a change from zi to yi is allowed to depend
on the two neighbouring codons, that is, the intensity is of the form

(yi; zi�1; zi; zi+1): (8)

Note that when 1 < i < n all the codon variables will belong to ~S, whereas
when i = 1 we allow z0 to be a stop codon and similarly with zn+1.

As mentioned in Sections 1 and 2 we want the stationary distribution to
be of a form that allows explicit calculations. This gives us the possibility
of designing tests based on one sequence only and simple estimates can be
obtained for some of the parameters of the model. We have chosen a Gibbs
measure for the stationary distribution, i.e. a measure de�ned through an
interaction function � : ~S � ~S ! R and given by

P (z) =
1

Z
exp

(
�1(z1) +

nX
i=2

�(zi�1; zi) + �n(zn)

)
; (9)

where Z is a normalizing constant. The functions �1 and �n are de�ned on
~S. We show in the next section that the Gibbs form allows us to rewrite
this measure as a Markov chain along the codon sequence, thereby making
the analysis of the measure simple. Here our �rst result describes a suÆcient
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condition on  in order that the stationary distribution is given by (9). Ac-
tually, the suÆcient condition imposed will be derived from a requirement of
time reversibility of the Markov process.

Proposition 1 If

(t; z0; s; r2)

(s; z0; t; r2)
=

expf 1(t; r2)g

expf 1(s; r2)g
;

(t; r1; s; zn+1)

(s; r1; t; zn+1)
=

expf n(t; r1)g

expf n(s; r1)g
; (10)

(t; r1; s; r2)

(s; r1; t; r2)
=

expf (t; r1; r2)g

expf (s; r1; r2)g
; (11)

for all s; t; r1; r2 in ~S, where

 1(s; r2) = �1(s) + �(s; r2);  n(s; r1) = �(r1; s) + �n(s);

 (s; r1; r2) = �(r1; s) + �(s; r2);

then (9) is the stationary distribution for the Markov process with intensities
given in (8).

Proof. For any continuous time Markov process with intensity �(a; b) of
going from state a to state b we have that � is the stationary distribution if

�(a)�(a; b) = �(b)�(b; a) 8 a 6= b:

In our case the intensity is zero unless the codon sequence is changed in one
codon only. Let us consider the case where there is a change at codon j with
1 < j < n. The change is from zj to yj. Let ~z be equal to z except at position
j where ~zj = yj. Then the above equation becomes

1

Z
exp

(
�1(z1) +

nX
i=2

�(zi�1; zi) + �n(zn)

)
(yj; zj�1; zj; zj+1)

=
1

Z
exp

(
�1(~z1) +

nX
i=2

�(~zi�1; ~zi) + �n(~zn)

)
(zj; zj�1; yj; zj+1):

Taking the -terms on one side and the �-terms on the other side we get

(yj; zj�1; zj; zj+1)

(zj; zj�1; yj; zj+1)
=

expf�(zj�1; yj) + �(yj; zj+1)g

expf�(zj�1; zj) + �(zj; zj+1)g
;
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which is of the form stated in the proposition. The cases with j = 1 and
j = n are treated similarly. 2

Next, we consider what class of intensities satis�es the restrictions in Propo-
sition 1.

Proposition 2 The intensities (8) satisfy the relation (11) if and only if we
can write

log((t; r1; s; r2)) = � (s; r1; r2) + l(s; t; r1; r2) (12)

for all s; t; r1; r2 in ~S, where l is symmetric in (s; t). Similar statements
can be made for the restrictions in (10) where  is replaced by  1 and  n,
respectively.

Proof. The `if' statement is trivial. For the `only if' statement we write
f(s; t; r1; r2) = log((t; r1; s; r2)). Then the relation in Proposition 1 can be
written as

f(s; t; r1; r2)� f(t; s; r1; r2) =  (t; r1; r2)�  (s; r1; r2): (13)

If f1 and f2 are solutions to (13) then we �nd that f1 � f2 is a symmetric
function in (s; t). Since also f0(s; t; r1; r2) = � (s; r1; r2) is a solution we
have that all solutions to (13) are on the form

f(s; t; r1; r2) = � (s; r1; r2) + l(s; t; r1; r2);

with l an arbitrary function symmetric in (s; t). 2

The relation (12) can be formulated more symmetrically in s and t. Let
k(s; r1; r2) be an arbitrary function and let ~l(s; t; r1; r2) be an arbitrary func-
tion symmetric in (s; t). Then l(s; t; r1; r2) = ~l(s; t; r1; r2) + k(s; r1; r2) +
k(t; r1; r2) is also symmetric in (s; t), and (12) becomes

f(s; t; r1; r2) = (� (s; r1; r2) + k(s; r1; r2)) + k(t; r1; r2) + ~l(s; t; r1; r2)

= h(s; r1; r2) + k(t; r1; r2) + ~l(s; t; r1; r2): (14)

Thus, the only restriction in (14) is that the functions h and k must satisfy
the relation k(s; r1; r2)� h(s; r1; r2) =  (s; r1; r2).
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Proposition 2 shows that the log intensity splits into a non-symmetrical
part, � (s; r1; r2), that can be determined from the stationary distribution,
and a symmetrical part that does not inuence the stationary distribution.
The latter must be determined from the dynamics of the process.

We next consider the possibility of determining  and � from the log
intensities f(s; t; r1; r2) = log((t; r1; s; r2)).

Proposition 3 Assume that the log intensities can be written as

f(s; t; r1; r2) = �g(s; r1; r2) + l(s; t; r1; r2); s; t; r1; r2 2 ~S; (15)

where l is symmetric in (s; t). Further assume that there exists a function
q(r1; r2) such that

g(s; r1; r2) = g(s; r1; �)� g(�; r1; �) + g(r2; s; �)� g(�; s; �) + q(r1; r2) (16)

for all s; r1; r2 2 ~S, where an asterisk means that we have taken the average
over ~S with respect to that coordinate. Then the stationary distribution is of
the form (9) with

�(r; s) = g(s; r; �)� g(�; r; �): (17)

Proof. Using (17) the formula (16) states that

g(s; r1; r2) = �(r1; s) + �(s; r2) + q(r1; r2):

De�ning  (s; r1; r2) = �(r1; s) + �(s; r2) we then have

g(t; r1; r2)� g(s; r1; r2) =  (t; r1; r2)�  (s; r1; r2);

which proves (11), and from Proposition 1 we obtain that the stationary
distribution is given by (9). 2

The assumption (16) is necessary if the intensities are of the form (15) and
we want (11) to hold as well. This is because we from Proposition 2 have
f = � + ~l, and combining this with (15) we �nd

 (s; r1; r2)� g(s; r1; r2) = ~l(s; t; r1; r2)� l(s; t; r1; r2)

= ~l(t; s; r1; r2)� l(t; s; r1; r2)

=  (t; r1; r2)� g(t; r1; r2);
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which shows that

g(s; r1; r2) =  (s; r1; r2) + ~q(r1; r2);

for some function ~q. Using this one �nds that (16) holds.
The importance of Proposition 3 is that it gives a way of verifying (11)

and at the same time identifying � in the stationary distribution (9).

4 Stationary Gibbs measure as a Markov chain

In this section we consider the Gibbs measure (9) for a codon sequence. The
normalizing constant Z in (9) is not easy to �nd directly. To �nd Z and
properties of the Gibbs measure we will rewrite the measure as a Markov
chain along the sequence of codons. De�ne

Q(a; b) = expf�(a; b)g; a; b 2 ~S;

where ~S is the set of 61 non-stop codons. Let q be the largest eigenvalue of
Q and let r be a right eigenvector corresponding to q,X

b

Q(a; b)r(b) = qr(a); 8 a 2 ~S:

De�ne next

T (a; b) =
Q(a; b)r(b)

qr(a)
; a; b 2 ~S:

This is a transition matrix and clearly

nY
i=2

T (zi�1; zi) =
r(zn)

qn�1r(z1)
exp

(
nX
i=2

�(zi�1; zi)

)
;

and P (z) from (9) becomes

P (z) =
1

Z

qn�1r(z1)

r(zn)
expf�1(z1) + �n(zn)g

nY
i=2

T (zi�1; zi):

This �nally shows that

Z = qn�1
X
a;b2 ~S

r(a)

r(b)
expf�1(a) + �n(b)gT

n�1(a; b); (18)

12



which can be evaluated numerically, allowing P (z) to be calculated. The
calculation of T n�1 requires of the order 612n calculations. An approximation
to Z based on the stationary distribution for T is given below.

Frequencies in the limit n ! 1 can be evaluated with the help of the
stationary distribution for the transition matrix T . Let l be a left eigenvector
for Q with eigenvalue q,X

a

l(a)Q(a; b) = ql(b); 8 b 2 ~S;

and normalize l so that X
a

l(a)r(a) = 1:

Then fl(a)r(a); a 2 Sg is the stationary distribution for T . Thus the fre-
quency of a particular codon c will converge to l(c)r(c) as n ! 1, and the
frequency of a particular neighbouring pair of codons (c1; c2) will converge to
l(c1)r(c1)T (c1; c2) = q�1l(c1) exp(�(c1; c2))r(c2).

Returning to (18) we approximate T n�1(a; b) by the stationary probability
l(b)r(b). This gives the approximation

Z � qn�1
X
a;b2 ~S

r(a) expf�1(a) + �n(b)gl(b)r(b): (19)

5 Restricted dependency

In this section we consider the case where the only allowed jumps in the
Markov process are those where one codon is changed in one position only.
For two codons s; t 2 ~S, s 6= t, we write s � t if they di�er at one position
only, and generally we write s = (s1; s2; s3), sj 2 T , with T being the set
of nucleotides, for the values at the three positions. Also, we will make the
restriction that the intensity for a change at position i depends on (zi�1; zi+1)
through (z3i�1; z

1
i+1) only. We write the intensity for a change from zi to yi as

(yi; z
3
i�1; zi; z

1
i+1); yi � zi; z

3
i�1; z

1
i+1 2 T :

In analogy with (9) we want the stationary distribution of the codon
sequence to be of the following Gibbs form

P (z) =
1

Z
exp

(
n+1X
i=1

�(z3i�1; z
1
i ) +

nX
i=1

�0(zi)

)
; (20)

13



where again Z is a normalizing constant, and z30 ; z
1
n+1 are given. The function

�(�; �) is now de�ned on T �T and �0 is de�ned on ~S. The �(zi�1; zi) function
in (9) corresponds here to �(z3i�1; z

1
i ) + �0(zi). The next proposition gives a

suÆcient condition on the intensities in order that the stationary distribution
is given by (20).

Proposition 4 If

(t; a; s; b)

(s; a; t; b)
=

expf (t; a; b)g

expf (s; a; b)g
8a; b 2 T ; s; t 2 ~S; (21)

where  (s; a; b) = �(a; s1) + �0(s) + �(s3; b), then the stationary distribution
is given by (20). Furthermore, the intensity satis�es (21) if and only if we
can write

log((t; a; s; b)) = � (s; a; b) + l(s; t; a; b); 8a; b 2 T ; s; t 2 ~S; s � t; (22)

where l is symmetric in (s; t), s � t.

Proof. The proof is as for Proposition 1 and Proposition 2. 2

We next turn to a discussion of the possibility of determining the � and �0
functions in (20) from the intensities. From (22) we see that, intuitively, the
question is if we can determine � and �0 from knowing the function  .

Proposition 5 Assume that the log intensities can be written as

log((t; a; s; b)) = �g(s; a; b) + l(s; t; a; b); s; t 2 ~S; t � s; a; b 2 T ; (23)

where l is symmetric in (s; t). De�ne

~g(s1; s3; a; b) = g(s1; �; s3; a; b);

where an asterisk denotes that the average has been taken with respect to s2

over the set with (s1; s2; s3) 2 ~S. Assume further that

(i) There exists a function q(a; b) such that

~g(s1; s3; a; b)� ~g(s1; �; a; b)� ~g(�; s3; a; b)

+~g(s1; �; �; �) + ~g(�; s3; �; �)� ~g(s1; s3; �; �) = q(a; b)

for all a; b; s1; s3 2 T ;

14



(ii) The function

g(s; a; b)� ~g(s1; s3; a; b) + ~g(s1; s3; �; �)

does not depend on (a,b);

(iii) The function

~g(s1; s3; a; b)� ~g(s1; �; a; b)� ~g(s1; s3; �; �) + ~g(s1; �; �; �)

does not depend on (a; s1), the function

~g(s1; s3; a; b)� ~g(�; s3; a; b)� ~g(s1; s3; �; �) + ~g(�; s3; �; �)

does not depend on (s3; b), and the two functions are identical.

We denote the function in (ii) by �0(s) and the common function in (iii) by
�(�; �), that is, �(s3; b) in the �rst case and �(a; s1) in the second case. Then
the stationary distribution is given by (20).

Proof. With the de�nitions from (ii) and (iii) we can write (i) as

g(s; a; b) = �(a; s1) + �0(s) + �(s3; b) + q(a; b):

The assumption (21) is then satis�ed and Proposition 4 shows that (20) is
the stationary distribution. 2

As in the case with Proposition 3 the assumptions (i), (ii) and (iii) are neces-
sary if we want the stationary distribution to be given by (20) and we want
(21) to be satis�ed.

We next turn to a discussion of the stationary distribution given by (20).
De�ne

V (a; b) =
X

s1;s2:(s1;s2;b)2 ~S

expf�(a; s1) + �0(s
1; s2; b)g; (24)

where b here is the value at the third position of the codon, and let q be the
largest eigenvalue with corresponding right eigenvector h and left eigenvector
l, X

b2T

V (a; b)h(b) = qh(a);
X
a2T

V (a; b)l(a) = ql(b):

15



We standardize so that h(A) = 1 and
P

a2T l(a)h(a) = 1. Finally, we de�ne

k(a) =
X

s2;s3:(a;s2;s3)2 ~S

expf�0(a; s
2; s3)gh(s3):

We then have

1

Z
exp

(
n+1X
i=1

�(z3i�1; z
1
i ) +

nX
i=1

�0(zi)

)

=
qn+1h(z30)

Zk(z1n+1)

nY
i=1

n
p1(z

1
i jz

3
i�1)p2(z

2
i ; z

3
i jz

1
i )
o
p1(z

1
n+1jz

3
n);

where

p1(bja) =
expf�(a; b)gk(b)

qh(a)
(25)

is the conditional distribution of z1i given z
3
i�1, and

p2(s
2; s3js1) =

expf�0(s
1; s2; s3)gh(s3)

k(s1)
(26)

is the conditional distribution of (z2i ; z
3
i ) given (z3i�1; z

1
i ) which depends on z1i

only. Finally, fz3i g constitute a Markov chain with transition probabilities

p3(bja) =
V (a; b)h(b)

qh(a)
; (27)

and with stationary distribution

P (z3i = a) = l(a)h(a); a 2 T : (28)

The normalizing constant Z is then

Z = qnh(z30)
X

z3
1
;:::;z3n

( Y
i

p3(z
3
i jz

3
i�1)

!
exp(�(z3n; z

1
n+1))

h(z3n)

)

= qnh(z30)
X
b

(
P (Z3

n = bjz30)
exp(�(b; z1n+1)

h(b)

)
: (29)

In the particular case of (20) where fz3i g constitute a sequence of inde-
pendent variables some of the formulas above are simpli�ed. Since fz3i g is a
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Markov chain with transition probabilities given in (27) we see that we have
independence if and only if there exist functions r and t such that

V (a; b) = r(a)t(b); a; b 2 T : (30)

If we standardize so that r(A) = 1 we �nd that

h = r; q =
X
b

t(b)r(b); and l = t=q:

The formulas (25){(28) can be used to test the adequacy of the model.
They were also used for the formulas given in Section 2 above.

6 Simulation of the transition probability

Let x = (x1; : : : ; xn) and y = (y1; : : : ; yn) be two aligned codon sequences
with gaps removed. Assume that aligned codons in the two sequences have
evolved from some common ancestor codon through an evolutionary process
that involves substitution events only. We want to evaluate the probability
for the transition from x to y from time 0 to time t in a model speci�ed by
a set of intensities (zi(j; b); (z

3
i�1; zi; z

1
i+1)), where an upper index 1,2 or 3

indicates the position within the codon. This is the intensity for a change in
codon i from the present value zi to the codon zi(j; b) obtained by replacing
zji by b, and z

3
i�1 and z

1
i+1 are the present values at positions immediately to

the left and right, respectively, of the codon.
Since the state space of x is enormous there seems to be no possibility of

evaluating the transition probability analytically nor is it possible to evaluate
the probability by a forward simulation of the codon sequence. Instead we
here propose an MCMC simulation technique for evaluating the ratio of two
transition probabilities. The idea of considering a ratio is similar to the
method discussed in Geyer (1996).

A path L starting at the codon sequence x and ending at the codon
sequence y can be written as fr; d1; : : : ; dr; a1; : : : ; ar; u1; : : : ; urg, where r is
the number of jumps, the di's are the positions of the jumps, the ai's are the
new nucleotides (the jump type) and the ui's are the jump times. In order
that the path ends at y and in order that a stop codon is not produced, the
positions and the jump types belong to a subset Kr of (f1; : : : ; ng�f1; 2; 3g�

17



T )r. The set of paths can then be described as

Xt = [1r=r0Kr � [0; t]r;

where r0 =
P

i;j 1(x
j
i 6= yji ), that is, the minimal number of jumps required

for one sequence to evolve into the other. Let X be a `standard' jump space
corresponding to t = 1. We equip both X and the original jump space Xt

with the measure which is Lebesgue measure for the jump times and counting
measure on the other coordinates. We denote the two measures by � and �t
respectively. When we write tL we mean the jump path where all the jump
times have been multiplied by t. Let � parametrize the intensities. For a
path L in Xt we denote the weight of this path with respect to �t by q�(t;L).
We can then write the transition probability as

P�;t(yjx) =
Z
Xt

q�(t;L)d�t

=
Z
Xt

q�(t; r; d1; : : : ; dr; a1; : : : ; ar; u1; : : : ; ur)d�t

=
Z
X
trq�(t; r; d1; : : : ; dr; a1; : : : ; ar; u1t; : : : ; urt)d�

=
Z
X
trq�(t; tL)d�:

Let now P be a measure living on Xt0 with density q(�) with respect to �t0 .
Then

P�;t(yjx) =
Z
X

trq�(t; tL)

tr0q(t0L)
tr0q(t0L)d� =

Z
Xt0

trq�(t;
t
t0
L)

tr0q(L)
dP;

and

P�1;t(yjx)

P�2;t0(yjx)
=

R
Xt0

trq�1(t;
t
t0
L)

tr
0
q(L)

dPR
Xt0

tr
0
q�2 (t0;L)

tr
0
q(L)

dP

= E

0
B@trq�1(t; t

t0
L)

tr0q�2(t0;L)

q�2(t0;L)

q(L)

E
�
q�2 (t0;L)

q(L)

�
1
CA

= ~E

 
trq�1(t;

t
t0
L)

tr0q�2(t0;L)

!
; (31)
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where ~E is the mean under the measure ~P having density

q�2(t0 ;L)

q(L)

E
�
q�2 (t0;L)

q(L)

�
with respect to P . We therefore want to be able to simulate observations
from ~P .

We will use MCMC. The principle behind the Gibbs sampler seems ap-
propiate here: that is, to update a codon path from the conditional distri-
bution given the paths of all the other codons. So, we must investigate the
conditional ~P measure for a path for codon i given the paths of all the other
codons. To make things easy we will assume that P =

Q
i Pi is a product

measure over the codons with corresponding density
Q

i qi(Li), where Li is
the path for the i'th codon. The weight function q�(t;L) represents a product
over all nucleotide sites of the contribution from the events along the path for
this particular site. For the class of intensities we consider the contribution
at site 1 of a codon depends on site three of the previous codon and sites 2
and 3 of the same codon. Similar statements can be made for sites 2 and 3
of a codon and we end up with

q�(t;L) =
Y
i

q�(t;L
1
i jL

3
i�1; L

2
i ; L

3
i )q�(t;L

2
i jL

1
i ; L

3
i )q�(t;L

3
i jL

1
i ; L

2
i ; L

1
i+1); (32)

where Lj
i is the path at position j of codon i, and each term represents the

contribution from the path at the indicated position. The functions here are
calculated explicitly below. The conditional density with respect to Pi for a
path for codon i given the paths at all other codons is therefore

1

Zi

q�2(t0;L
3
i�1jL

1
i�1; L

2
i�1; L

1
i )q�2(t0;L

1
i jL

3
i�1; L

2
i ; L

3
i )

�q�2(t0;L
2
i jL

1
i ; L

3
i )q�2(t0;L

3
i jL

1
i ; L

2
i ; L

1
i+1)q�2(t0;L

1
i+1jL

3
i ; L

2
i+1; L

3
i+1)=qi(Li);

where Zi is a normalizing constant. We denote the density by 1=Zi times
the function �(LijLi�1; Li+1). It is not obvious how to simulate directly from
this conditional distribution. Instead we will take one step in a Markov chain
that has the conditional distribution as its stationary distribution. We do
this by proposing a move to ~Li drawn from Pi. The move is accepted with
probability

�(~Li) = min

(
�(~LijLi�1; Li+1)

�(LijLi�1; Li+1)
; 1

)
:
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The whole process is started by drawing Li, i = 1; : : : ; n from Pi. Next, we
run through i = 1 to n a large number of times making draws from Pi and
accepting these with the probability �.

To impliment the above MCMC algorithm we need to make a choice of Pi.
We will actually construct a measure, which we also denote by Pi, on an
extended path space. The idea is that we �rst suggest a number of jumps,
say k, and then the resulting path will have either r = k or r = k � 1 jumps
and this is described by a variable J 2 f0; 1g. Below we only show the index
i when needed. If we de�ne d0 =

P
j 1(x

j
i 6= yji ) we can describe the extended

path space as

f0g [1r=2 f0; 1g �Ki
r � [0; t0]

r if xi = yi
[1r=d0f0; 1g �Ki

r � [0; t0]
r if xi 6= yi;

(33)

where Ki
r is the subset of (f1; 2; 3g�T )

r corresponding to the path for codon
i ending up at yi. The proposed number of jumps is a random variableK � 0
with distribution

p(k) = P (K = k) =

(
k

k!
e�=(1� e�) xi = yi; k = 0; 2; 3; : : :

k

k!
e�=(1�

Pd0
l=0

l

l!
e�) xi 6= yi; k > d0;

where
 =

X
j;b

(xi(j; b); x
3
i�1; xi; x

1
i+1)

is the intensity of leaving xi. Let x(m) = (x1(m); x2(m); x3(m)) be the codon
after the m'th jump, with x(0) = xi, and let dm =

P
j 1(x

j(m) 6= yji ) be the
number of di�erences between x(m) and yi. If we want the codon xi to evolve
into yi in k jumps, that is, if we want x(k) = yi we must have k �m � dm
for all m. This then de�nes a set of allowable jumps A(k;m) for the m'th
jump, where this set is also restricted in order that x(m) 6= x(m� 1) and in
order that x(m) is not a stop codon. The total intensity among the allowable
jumps is

(k;m) =
X
j

X
b :x(m;j;b)2A(k;m)

(x(m; j; b); x3i�1; x(m� 1); x1i+1);

where x(m; j; b) is the codon with value b at position j and equal to x(m�1)
at the two other positions. We then choose the m'th jump x(m) = x(m; j; b)
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in A(k;m) with probability (x(m; j; b); x3i�1; x(m � 1); x1i+1)=(k;m). If it
happens that dk�1 = 0 we set J = 1 and r = k � 1 and if dk�1 = 1 we set
J = 0 and r = k. The probability of the chosen jump sequence is

!r(J) =

8><
>:
Qr�1

m=1

(x(m);x3i�1 ;x(m�1);x
1
i+1)

(r;m)
if J = 0Qr

m=1

(x(m);x3i�1 ;x(m�1);x
1
i+1)

(r+1;m)
if J = 1;

:

Finally, conditioned on the jumps, we take the r jump times to be uniformly
distributed on the interval [0; t0].

We have now constructed a measure on the extended path space (33).
We now marginalize to get a mesure on the path space. The density of the
marginal measure is

qi(Li) = fp(r)!r(0) + p(r + 1)!r(1)g
r!

tr0
;

where the path Li has r jumps. Finally, we describe the calculation of the
functions appearing in (32). Let the number of jumps in codon i together
with the third position of codon i�1 and the �rst position of codon i+1 be s.
Let u1; : : : ; us be the jump times and let ~z(m) = (z0(m); z(m); z4(m)) with
z(m) = (z1(m); z2(m); z3(m)) be the corresponding nucleotides occupying
the third codon position of codon i � 1, the three positions in codon i and
the �rst position in codon i + 1 after the m'th jump. Then

q�(t;L
j
i j�) =(
sY

m=1

((z(m); ~z(m� 1)))1(z
j(m)6=zj(m�1)) expf�j(�; ~z(m� 1))(um � um�1)g

)

� expf�j(�; ~z(s))(t� us)g;

where u0 = 0 and for j = 1; 2; 3,

j(�; ~z(m� 1)) =
X
b

(z(m; j; b); ~z(m� 1));

with an implicit dependence on i through z(�) and with z(m; j; b) the codon
z(m� 1) with zj(m� 1) replaced by b.
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7 Numerical example

In this section we analyze one of the pairwise alignments of HIV{1 sequences
considered by Pedersen et al. (1998) using the model and MCMC estimation
procedure described in Sections 2 and 6. We use the procedure described in
Section 5 when calculating a normalizing constant of a stationary distribu-
tion. The alignment contains 430 consecutive codons from the single-coding
region of the gag genes. In this region internal structural proteins of the virus
particle are encoded. The aligned sequences di�er at 80 nucleotide positions.

Good initial values of the parameters �ki , i 2 fA;C;G; Tg, k = 1; 2; 3,
to be used in the MCMC procedure may be obtained by �nding the max-
imum likelihood estimates under the stationary distribution for one of the
sequences. As starting values for the remaining parameters we used the es-
timates obtained in Pedersen et al. (1998). We examined the burn-in of the
Gibbs sampler for evaluating the transition probability using the parameter
values mentioned above. Burn-in was detected by displaying the number of
new paths accepted in one updating by the Gibbs sampler, as well as sum-
mary statistics regarding the total number of jumps and di�erent types of
jumps. For the parameter values used, the Gibbs sampler starts out accept-
ing a high number of new paths, but stabilizes immediately hereafter. The
summary statistics con�rmed the almost immediate burn-in for the same pa-
rameter values. Only when extreme values of e.g. the �31 and t-parameters
were used did burn-in seem to be an issue.

We performed a maximum likelihood analysis of the alignment under the
model described in section 2. Since the model is reversible, the likelihood is
the product of the equilibrium frequency of one of the sequences times the
probability of transition from this sequence to the other sequence. A two-
step maximization procedure was used to �nd maximum likelihood estimates:
we started by �nding preliminary maximum likelihood estimates while using
the parameter values above in the simulation measure (31) and 100 Gibbs
samples to estimate each of the transition probabilities. We replaced the
parameter values initially used for the simulation measure by the preliminary
maximum likelihood estimates and then continued to search for points of
higher likelihood by lowering the threshold in the search procedure, now
basing each of the calculations of the transition probability on 10000 Gibbs
samples. To see the eÆciency of the Gibbs sampler we looked at the means
and variances of the logarithm of (31) as a function of the number of Gibbs
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ElogL VarlogL
10 5.96654e-01 1.111134e-03
100 5.96055e-01 2.214717e-04
1000 5.965890e-01 2.000380e-05
10000 5.975188e-01 2.942038e-06

Table 1: The mean and variances of the estimate of the logarithm of (31) as function of

the number of Gibbs samples.

samples used in a calculation. The values of the simulation parameters were
as described above, and the parameters in the q�1 measure were the maximum
likelihood estimates found. The means and variances are given in Table 1.
The variance decreases by a factor of ten as the number of Gibbs samples
used to estimate the logarithm of (31) is increased by a factor of ten. As
can be seen from Table 1 a typical value for the variance is of the order 10�6

when the calculation of the transition probability is based on 10000 Gibbs
samples.

We next investigated the Gibbs samplers dependency upon parameter
values used in the simulations, and on the random seed. We performed a
second run, identical to the �rst run described above, but using a di�erent
random seed. In a third run we used the maximum likelihood estimates of
the parameters obtained in the �rst run as simulation parameters and initial
values in the q�1 measure. Finally, we examined the performance of the
procedure when `naive' values were used in the simulations and as starting
values in the q�1 measure. The simulation and starting values in this run
were �ki = 0:25, i 2 fA;C;G; Tg, k = 1; 2; 3, �12 = �23 = �31 = 1:0, K = 1:0,
f = 1:0 and t = 0:1. In this last run the maximum likelihood estimates found
after the initial maximization were used as simulation parameters in the more
re�ned maximization. Maximum likelihood estimates obtained from the four
runs are given in Table 2.
The outcome of the maximization procedure does not appear to depend upon
the parameter values used in the simulation measure, nor on the random seed.
The maximum likelihood estimates of the parameters found in the four runs
di�er by no more than a few percent. The time required for the maximiza-
tion, however, was considerably longer in the fourth run { approximately 10
times that of the other runs. From a time requirement point of view it is
clearly worthwhile to perform an analysis of the stationary distribution of
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�1A �1C �1G �1T
1: .296 .200 .325 .179
2: .296 .199 .323 .181
3: .296 .199 .324 .181
4: .294 .196 .326 .184

�2A �2C �2G �2T
1: .333 .238 .235 .194
2: .334 .238 .234 .194
3: .334 .238 .234 .194
4: .335 .242 .229 .194

�3A �3C �3G �3T
1: .422 .184 .232 .162
2: .421 .184 .233 .163
3: .421 .184 .232 .163
4: .424 .184 .230 .162
�12 �23 �31 K f t

1: .371 .293 .321 4.382 .295 .0987
2: .374 .293 .322 4.506 .299 .0962
3: .368 .294 .326 4.548 .299 .0960
4: .377 .289 .321 4.374 .286 .1002

Table 2: Maximum likelihood estimates of the parameters under four di�erent runs of

the Gibbs sammpler.

the sequences considered prior to starting the full estimation scheme, and
to use the maximum likelihood values of the parameters thus found, in the
Gibbs sampler.

As the ratio of transition probabilities can be calculated using the MCMC
procedure, likelihood ratio tests can be performed. We performed a test for
the hypothesis that �12 = �23, �31 = 1:0, under the full model, by �nding
maximum likelihood estimates under each of the models, and then evaluating
the log likelihood ratio test statistic

�2 logQ = log(��1(x))� log(��2(x)) + log(
P�1;t(yjx)

P�2;t0
(yjx)

)

using the MCMC procedure for the last term. The -2logQ value for this
test was 34.23 and the restricted model was thus clearly rejected. We then
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di�erent reading frames | a feature that is common for viral genomes. It is
straight forward to extend the model and Gibbs sampler described in section
5 and 6 to allow for the incorporation of functional constraints induced by
multiple overlapping reading frames. Moreover, the technique should prove
useful in the analysis of sequences with (known) secondary and/or tertiary
structures and structure requirements.

The relation between the stationary distribution of a sequence and the
class of intensities that is consistent with it, is an important tool in the
modelling process. Since it is much more easy to analyze a single sequence,
we must be able to incorporate features extracted from single sequences in
the Markov process of DNA sequence evolution. Or reversing the process:
simple tests for the adequacy of some aspects of the model can be made on
single sequences.
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