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The model of insertions and deletions in biological sequences, ®rst formu-
lated by Thorne, Kishino, and Felsenstein in 1991 (the TKF91 model),
provides a basis for performing alignment within a statistical framework.
Here we investigate this model.

Firstly, we show how to accelerate the statistical alignment algorithms
several orders of magnitude. The main innovations are to con®ne likeli-
hood calculations to a band close to the similarity based alignment, to
get good initial guesses of the evolutionary parameters and to apply an
ef®cient numerical optimisation algorithm for ®nding the maximum like-
lihood estimate. In addition, the recursions originally presented by
Thorne, Kishino and Felsenstein can be simpli®ed. Two proteins, about
1500 amino acids long, can be analysed with this method in less than
®ve seconds on a fast desktop computer, which makes this method prac-
tical for actual data analysis.

Secondly, we propose a new homology test based on this model,
where homology means that an ancestor to a sequence pair can be found
®nitely far back in time. This test has statistical advantages relative to the
traditional shuf¯e test for proteins.

Finally, we describe a goodness-of-®t test, that allows testing the pro-
posed insertion-deletion (indel) process inherent to this model and ®nd
that real sequences (here globins) probably experience indels longer than
one, contrary to what is assumed by the model.
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Introduction

Statistically well founded methods have become
increasingly used over the last decade in the anal-
ysis of biological sequences. This has not been the
case in the alignment of sequences, partly because
of the general conception that the statistical
approach to alignment is computationally too slow
and partly due to the lack of user-friendly pro-
grams. Often, the sequences are aligned using par-
simony or similarity based methods (optimisation
alignments). The alignment is subsequently treated
as a series of columns that are independent realiz-
ations of a substitution process on a phylogeny
that is to be estimated. It is an inconsistent
approach to ®rst use parsimony/similarity and
then halfway in the analysis switch to a statistical
approach. In addition, the alignment created by
parsimony/similarity can create unknown biases
in the estimation of substitutional parameters, as
ing author:
these procedures will align to create as much iden-
tity within each column as possible.

The ®rst attempt to do statistical alignment was
done by Bishop & Thompson (1986), with approxi-
mate likelihood calculations. Thorne et al. (1991)
introduced an exact method (TKF91). In this frame-
work, there will not be one alignment, but all poss-
ible alignments will contribute to the likelihood of
the two observed sequences. Should one alignment
be highlighted, it could be the alignment that con-
tributed the most to the likelihood. Alignments can
have runs of gap signs, which in a parsimony/
similarity setting would be interpreted as a longer
insertion/deletion (indel), but here it would be the
consequence of several neighbouring indels of
single nucleotides. Most optimisation alignment
methods interpret runs of gap signs as a single
event, even when they may be the result of mul-
tiple independent insertions and deletions. Never-
theless, indels longer than one nucleotide or amino
acid must occur biologically and the TKF91 model
does not allow for that. Thorne et al. (1992) tried to
incorporate this in the model by letting insertions
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266 Statistical Alignment
and deletions involve fragments that each had a
geometrical distribution. For computational
reasons each fragment would have to be treated as
an unbreakable unit, which is not a biologically
well founded assumption.

An alternative approach to statistical alignment
has been taken by Allison & Wallace (1994), Zhu
et al. (1998), and Mitchison (1999). These are Baye-
sian approaches and also differ from the TKF91
model in not being based on an evolutionary pro-
cess, but on a probability measure on alignments
directly.

Pairwise sequence alignment, homology testing
and multiple alignment has great importance in
sequence analysis and there is an increasing aware-
ness of the advantages of statistical approaches
within the bioinformatics community. Therefore,
statistical alignment and its rami®cations deserve
to be pursued with much greater intensity.

Theory

The TKF91 statistical model of DNA evolution is
a continuous time model with a state space consist-
ing of all sequences over an alphabet of nucleotides
(yielding DNA sequences) or amino acids (yielding
proteins) that includes the empty sequence. If we,
for any possible sequence, can de®ne the waiting
time to the ®rst event (insertion, deletion or change
of single element) to occur and the probability of
all the possible events, the model has been charac-
terised.

Modelling substitutions

Since the novelty of the TKF91 model is in the
modelling of the indel process, the substitution
process will receive little attention here. Almost all
substitution models are continuous time Markov
models on the state space of nucleotides or amino
acids. To de®ne such a model, the rate matrix, Q,
must be speci®ed. This matrix is 4 by 4 for nucleo-
tides and 20 by 20 for amino acids. Off diagonal
elements are non-negative and the sum of each
row is zero. This matrix describes the intensity of
different substitution events over an in®nitesimal
time period. The transition probabilities over a
longer time interval, t, can be obtained by:

P�t� � etQ �
X
k50

�tQ�k
k!
�

Pi,j(t) refers to the probability that i has changed to
j after a time t. Normally, it is also assumed that
the process is time reversible, i.e. that
piPi,j(t) � pjPj,i(t), where the pi terms are the equili-
brium frequencies of the nucleotides/amino acids
in the process. In this case, the evolutionary pro-
cess can be viewed from any time perspective, the
total probabilities involved will be the same. This
has computational advantages, since the evolution-
ary history can be rooted anywhere.
Since the time, t, and the rate matrix, Q, always
appear together as a product in these calculations,
it is not possible to estimate them individually. It is
often convenient to scale them, so one event is
expected per unit time per position in the equili-
brium process. This is equivalent to placing the
restriction �ipiQii � ÿ 1 on the rate matrix.

The main difference between substitution pro-
cesses on nucleotides and on amino acids, stems
from the larger set of amino acids. In principle a 20
by 20 rate matrix with many parameters could be
inferred, but there are not such clear distinctions as
the transversion/transition bias in the case of
nucleotides. This means that more crude ways of
choosing a Q matrix, than maximum likelihood
estimates of individual entries are used, since there
are too many parameters to be estimated. Dayhoff
et al. (1978) pioneered the use of Q-matrices
obtained from counting mutations in comparisons
of similar protein sequences. Due to the inability to
distinguish where A has mutated to B or vice versa,
such matrices will be symmetric and give rise to
equilibrium distributions where all the amino acids
are equally likely. This is in con¯ict with the fre-
quencies that can be observed in real sequences.
Fortunately, it is possible to modify a symmetric
matrix, so it will give rise to the observed frequen-
cies of the 20 amino acids. In addition, the result-
ing matrix will yield a mutation process that is
time reversible. The rate matrix used here was
obtained from Ziheng Yang (personal communi-
cation).

The TKF91 model of the indel process

The basic model

The statistical model of sequence evolution
incorporating insertions and deletions can be
viewed as a Markov model with all sequences as
possible states. The indel part of this model can be
illustrated by the use of links connecting the letters
(nucleotides or amino acids) of the sequences. Each
letter has a mortal link associated to it, on its right.
The left end of the sequence has an immortal link.
Consider an example, the DNA sequence AGG:

� A ? G ? G ?

Mortal links are symbolised by $, while immortal
links are symbolised by .. Links can give birth to
new links to their right. Along with the birth of
such a link, comes a letter drawn from the equili-
brium distribution. The mortal links can, as the
name suggests, also die. When a link dies, it takes
its letter (to the left) with it. The transition in the
Markov model, when the mortal link between the
two G residues gives birth to a new link and a C,
is shown here:

� A ? G ? G ?! � A ? G ? C ? G ?

The new link is the one to the right of the C. If the
®rst mortal link dies, it looks like this:
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� A ? G ? G ?! � G ? G ?

This process can be visualised in the following
way:

� A ? G ? G ?
I0 S1 I1=D1 S2 I2=D2 S3 I3=D3

I, D and S terms are all independent processes that
describe insertions, deletions and substitutions,
respectively. For each of these, there will be an
exponential waiting time for an event to occur.
Whichever ®res ®rst, determines the next event.

Ii has intensity parameter l. When I ®res ®rst, a
nucleotide will be inserted, according to the equili-
brium frequency of the substitutional process, with
a mortal link on its left side. The newborn nucleo-
tide and associated mortal link will be inserted to
the right of the I, that ®red.

Di has intensity parameter m. When a D ®res
®rst, the link and its nucleotide (to the left) will be
removed. The immortal link will never be deleted,
since it is not associated with a deletion process.
The deletion rate has to be bigger than the inser-
tion rate (m > l), otherwise the sequence length
would grow towards in®nity. This process will
have a stationary distribution on sequences:

P�s� � glp
#A
A p#C

C p#G
G p#T

T ;

where, for l 5 0:

gl � 1ÿ l
m

� �
l
m

� �l

:

l is the length of the sequence and #A (#C, #G, #T)
indicates the number of A residues (C, G, T resi-
dues) in the sequence. This indel process is time
reversible, thus, if the substitution process is also
time reversible, the process on full length
sequences is reversible. This is not a pure birth-
death process because of the immortal link,
but can be viewed as a birth-death process with
immigration.
Evolution over a time period

Above, it was described how a sequence would
evolve in an in®nitesimal time interval. Thorne et al.
(1991) also described the transition probabilities for
a ®xed time interval (Figure 1). Due to the inde-
pendence between links, it is suf®cient to describe
what happens to a single link. There is an insertion
process associated with the immortal link, with the
transition probability pn

00(t), the probability that the
immortal link has left itself and n ÿ 1 mortal des-
cendants after time t. There is an indel process
associated with the mortal links, with two sets of
transition probabilities, depending on whether the
link has survived or not. The probability is pn(t) if
the link has survived and left n (mortal) descen-
dants, including itself. If the link has not survived,
the probability is pn

0(t), again with n being equal to
the number if descendants. This last distinction
between survival and non-survival is necessary,
since only in the ®rst case will a nucleotide exist
both at time zero and time t and the probability of
going from one nucleotide to n nucleotides will
involve a substitutional probability. The surviving
children of a nucleotide will be to the right of the
parent nucleotide. In the following, the evolution-
ary process parameters, including t, will often be
suppressed.

The functions pk, pk
0 and pk

00 are modi®ed geo-
metric distributions. The function describing
immortal link (pk

00) is the geometric function shifted
so that it starts in one instead of zero. The function
describing the case where a mortal link survives
(pk) is again shifted to start in one and every pos-
ition has been multiplied with the probability of
survival (eÿmt). The probability of the nucleotide
not surviving is 1 ÿ eÿmt. In this case, there will be
a probability for having zero surviving offspring
(mb(t)), with:

b�t� � 1ÿ e�lÿm�t

mÿ le�lÿm�t

and the remaining distribution (no survival but
surviving descendants) has again the same geo-
Figure 1. The probability distri-
butions of different link con®gur-
ations after a period t. The fate of a
mortal link has to be split into two
cases to accommodate the possi-
bility of substitutional evolution.
Since l < m, b(t) is always smaller
than one.



268 Statistical Alignment
metric tail, but with total mass adjusted to give
total probability of one to all possible fates of a
mortal link.

These transition probabilities of substitutions
and of the fates of mortal and immortal links,
allow a dynamic programming algorithm calculat-
ing P(s(1), s(2)) to be formulated, where s(1) and s(2)

are the two complete sequences.
The probability of the sequences and one speci®c

alignment is easily described in terms of the substi-
tution probabilities and p functions. Regard the fol-
lowing example:

� A ? T ? ÿ
� C ? T ? G ?

Here, P(s(1), s(2), alignment) � (p001)(pAp1PAC)
(pTPTTp2pG). Each parenthesis describes the prob-
ability of a link, the associated nucleotide (in the
case of mortal links) and their fates. The ®rst par-
enthesis is the probability that the immortal link
survives with one descendant Ð itself. The last
parenthesis says that a T was chosen, the T
evolved into a T, the link associated to the T had
two descendants including itself and the extra des-
cendant is G. To calculate the probability of two
sequences without conditioning on the alignment,
it is necessary to sum over all alignments weighted
with their probabilities according to the TKF91
process.

A simpler recursion

In the following, s(1)
i is the pre®x of length i in

s(1) and s(2)
j is the pre®x of length j in s(2). s(k) [i]

refers to the ith nucleotide in the kth sequence.
ps(k)[i:j] is the probability of the elements from i to j
in sequence k in the equilibrium distribution of the
substitution process. The probability of the com-
plete sequences, P(s(1), s(2)), can be written as
P(s(1))P(s(2)js(1)). The ®rst factor is straightforward
to calculate and we will focus on calculating the
second only. The reformulation of the algorithm
below represents a simpli®cation and acceleration
relative to the original TKF91 formulation. Firstly,
we only make a recursion for P(s(2)js(1)), while they
incorporated the probability P(s(1)). Secondly, we
only need one or two quantities per entry (i,j)
while they needed three quantities. The resulting
recursion (5) is as simple as the most basic optimis-
ation alignment algorithm. The basic recursions are
summarised in Table 1.

It is possible to decompose the probability
P(s(2)

j js(1)
i ) by partitioning the conversion of s(1)

i to
s(2)

j , into the fate of s(1)
i ÿ 1 and the fate of s(1)[i], since

these fates are independent (Figure 2).
This example illustrates why it is necessary to

distinguish whether a nucleotide survives or not.
Only in the former case has substitutional evol-
ution been observed. If the ®rst sequence is empty,
i is zero and the immortal link must have evolved
into s(2)

j , which has probability p00jps(2)[1:j].
The above illustration can be summarised in fol-
lowing recursion:

P�s�2�j js�1�i � � p00P�s�2�j js�1�iÿ1� �
X

14k4j

P�s�2�jÿkjs�1�iÿ1�

� �pkPs�2��i�;s�2��jÿk�1�ps�2��jÿk�2:j�

� p0kps�2��jÿk�1:j�� �1�

P�s�2�j js�1�0 � � p00j ps�2��1:j� �2�

This recursion allows an O(l3) (l denoting average
sequence length) algorithm to be formulated for
calculating P(s(1), s(2)).

Due to the geometric tails of the p functions, this
formulation can be changed, resulting in an O(l2)
algorithm. The trick applied here is highly remin-
iscent of the method used by Gotoh (1982) in
reducing the computational complexity of
an optimisation alignment algorithm from O(l3)
to O(l2).

De®ne Ri,j � P(s(2)
j , s(2)[j] is a descendant of

s(1)[i]js(1)
i ). This will be the sum on the right side of

(1). The ®rst recursion above can now be written
as:

Ri;j ��p1Ps�1��i�;s�2��j� � p01ps�2� �j��P�s�2�jÿ1js�1�iÿ1�

� lbps�2��j�Ri;jÿ1 �3�

P�s�2�j js�2�i � � Ri;j � p00P�s�2�j js�1�iÿ1� �4�

The functions p1Ps(1)[i],s
(2)
[j] � p1

0ps(2)[j] and lbps(2)[j] are
functions in two sequence elements that can be
tabulated. Equation (4) asserts that either s(2)[j] is a
descendant of s(1)[i] or it is not. Recursion (3) can
be veri®ed using the recursive relationships
p0 1 � lbp0k, pk � 1 � lbpk, for k 5 1, and
ps(n)[i:j] � ps(n)[i:j ÿ 1]ps(n)[j]. Ri,j is subject to the initial
condition Ri,j � 0 if i or j is zero.

Insertion of (4) into (3) and simpli®cation yields:

P�s�2�j js�1�i � �P00P�s�2�j js�1�iÿ1� � lbps�2��j�P�s�2�jÿ1js�2�i �

� �p1Ps�1��i�;s�2��j� � p01ps�2��j�

ÿ lbps�2��j�p
0
0�P�s�2�jÿ1js�1�iÿ1� �5�

Again p1Ps(1)[i],s
(2)
[j] � p1

0ps(2)[j] ÿ lbps(2)[j] p0
0 and lbps(2)[j]

can be tabulated, simplifying and accelerating the
recursion.

Recursion (5) allows an ef®cient summation over
all alignments of s(1) with s(2). In this context there
are two additional quantities of interest, as follows
below. To cope with these, it is advantageous to
continue with recursions (3) and (4).

First, it is of interest to ®nd the alignment that
contributes the most to P(s(2)js(1)), and which, given
a set of parameters, will be the most probable.
Secondly, it is of interest to generate alignments in



Figure 2. The independence of
the indel process and the substi-
tution process allows the two to be
combined easily. (a) The possible
fates of s(1)[i] in s(2)

j , given that it
survives. (b) The possible fates of
s(1)[i] in s(2)

j , given that it dies.
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proportion to their probability. Methods for this
are shown in an Appendix I.
Results

The method is illustrated on human a globin
and b globin, that are 141 and 146 amino acids
long, respectively (Figure 3). The expected length
of a sequence in the equilibrium process is
143.5024, very close to the average length of the
two proteins. The asymptotic variances and covari-
ances of the parameters can be obtained from the
inverse of the matrix of second derivatives of the
likelihood with respect to the parameters (not
shown) (Edwards, 1972).

The expected number of events in the evolution
from a globin to b globin is dif®cult to compute, as
computation of the expected number of events for
any small alignment block is dif®cult. Take for
example an amino acid aligned with another. The
expected number of events would involve sum-
ming over cases where amino acids were inserted,
experienced mutations and were then deleted.

However, the analogous quantity for a randomly
chosen sequence in the equilibrium distribution for
the estimated parameters can be calculated. Let pi
and Qij have the same meanings as in the section
on substitutional models, except that the i and j
terms refer to entire sequences instead of nucleo-
tides and amino acids. For estimated time and
rates, the expected number of events is ÿt �i 2 S

piQii. The summation is here over the complete
sequence space, and pi is the probability of i in the
stationary distribution on the complete sequences,
not single elements. ÿQii is the rate of events leav-
ing i. The sum is equal to:

m
mÿ l

l� �m� s� l
mÿ l

� �2m� s� l
mÿ l

:

This is identi®ed as the expected number of I terms
times their intensity parameters, plus the expected
number of D terms times their intensity par-
ameters, plus the expected number of S terms
times their intensity parameters. It is intuitively
reasonable that the expected number of insertions
must equal the expected number of deletions. For
the maximum likelihood parameters of this
example, the expected number of insertions and
deletions in the equilibrium process is 10.74. The
expected number of substitution events (in the
equilibrium process) is 131.59, slightly less than
one event per position. The maximally contributing



Table 1. Summary of recursions

Elementary parsimony algorithm:

Di;j � min
Diÿ1;j � g
Diÿ1;jÿ1 � d�s�1��i�; s�2��j��
Di;jÿ1 � g

8<:
Original TKF91 recursion:

L0�s�1�i ; s�2�j � �
l
m
ps�1� �i�p

0
0

X2
k�0

Lk�s�1�iÿ1; s�2�j �

L1�s�1�i ; s�2�j � �
l
m
ps�1� �i��Ps�1� �i�;s�2� �j�p1 � ps�2� �j�p

0
1�
X2
k�0

Lk�s�1�iÿ1; s�2�jÿ1�

L2�s�1�i ; s�2�j � � ps�2� �j�lb
X2
k�0

Lk�s�1�i ; s�2�jÿ1�

Simpler recursion:

P�s�2�j js�1�i � � p00P�s�2�j js�1�iÿ1� � lbps�2� �j�P�s�2�jÿ1js�1�i � � g�s�1��i�; s�j��P�s�2�jÿ1js�1�iÿ1�
with

g�i; j� � p1Ps�1� �i�;s�2� �j���p0
1
ÿlb�p

s�2� �j�

The ®rst recursion is the simplest parsimony algorithm. Di,j is the distance between s(1)
i and s(2)

j , d( , ) is a distance function on
single elements and g is the gap penalty for a single element. All the involved quantities are integers. The second set of recursions
are from the original TKF91 paper. The last recursions are from the present paper.
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alignment has nine gap signs, 104 mismatches and
37 matches. Just inspecting this alignment for
events would probably underestimate the number
of these events in the true history of the sequences.
Obviously, indels are much rarer than substi-
tutions.
It is now possible to evaluate whether the length
of sequence s(2), has evolved more or less than
expected. The TKF91 model assumes that insertion
and deletion rates are independent of sequence
length. Figure 4 illustrates this distribution and b
globin, for instance, is not extreme. If t goes toward
Figure 3. a Globin and b globin
analysis using the TKF91 model.



Figure 4. The length distribution of a protein that
evolves from a globin with the estimated parameters of
globin evolution (for 20, 200, and 2000 million years).
For derivations see Appendeses. For instance, the length
of the b globin (146) is not very extreme in the distri-
bution of distance lengths, if starting with 141 amino
acids and evolving for 800 million years. This is twice a
resonable guess of the time to the most recent common
ancestor of a and b globin.

Figure 5. The b function plotted with parametersesti-
mated from the a, b globin analysis. At the time when m
b is 0.5, the descendants of the immortal link are
expected to contribute half of the complete sequence.
This time is seen to bearound 20 billion years. The time
taken for it to contribute 5 % is around one billion years.
The effect of the immortal link on realsequences is van-
ishing over realistic time periods.
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in®nity, this distribution will go towards the equili-
brium length distribution for this process, but very
slowly. Speci®cally, the mortals and their descen-
dants will go extinct, while the descendants of the
immortal link will be dominating the complete
sequence. This means that pk

00(t) is a geometric dis-
tribution with parameter bl, when t!1. As
shown in Figure 4, even if the most recent common
ancestor were 2000 million years back in time, the
length is still distributed as a bell around the initial
length. If a sequence is chosen from the equili-
brium distribution and observed for a period of
time, the descendants of the immortal links will be
expected to constitute mb(t) of the complete
sequence. mb(t) is plotted in Figure 5 and it is clear
that it converges very, very slowly to one.

Computational results

Computationally, maximum likelihood align-
ment is inherently more expensive than parsi-
mony/similarity. There are three areas of
importance to the time of performing a likelihood
alignment: the number of entries in the matrix
needing to be calculated, the number of evalu-
ations needed to ®nd the maximum likelihood esti-
mate and the time used in calculating the basic
recursion

Matrix entries necessary

Figure 6 illustrates the alignment path of a glo-
bin and b globin including boundaries de®ned by
suboptimal alignments. (In these investigations
PAM250 was used for similarity alignments and a
gap penalty cost of 4.5 was used per amino acid.)
For a given e, a boundary corresponding to the
suboptimal paths with a score of 1 ÿ e of the opti-
mal score can be found. This de®nes an area of the
matrix. If e is less than zero, the area is empty, if it
is zero, it will be the entries that are on optimal
alignments of the sequences. As e increases, the
de®ned area will converge toward the complete
matrix. Figure 7 shows how much of the likelihood
function is found within the area as a function of e.
The sequences involved were derived from a
sequence of length 1500 amino acids, that experi-
enced evolution corresponding to the difference
between a globin and myoglobin. It can be
observed that the relative underestimation of the
likelihood is less than eÿ13 � 2.3 � 10ÿ6 if an e of
0.01 is used. An e value of 0.01 corresponds to
1.8 � 10ÿ3 of the area of the complete matrix. This
gives rise to a very signi®cant acceleration. This is
a favourable case, but in general the acceleration is
considerable and the area containing all signi®-
cantly contributing paths is very narrow. The
closer related the sequences are, the narrower
the band will typically be.

If e is too small, alignments that contribute sig-
ni®cantly to the alignment will be discarded,
resulting in a bias in the estimated parameter
values. Since a low e value will discard alignments
with many indels, this is expected to create a bias
towards smaller values of m and l, which was also
observed (results not shown).



Figure 6. Illustration of the similarity alignment as a
path in the matrix. The maximally contributing statisti-
cal alignment and the similarity alignment is identical in
this simple case. The area containing nodes that could
be on a suboptimal solution, better than (1 ÿ e) of the
optimal similarity score, is also illustrated for e equal to
0.2 and 0.5. For practical purposes a band much nar-
rower can be used, typically less than 0.005.

Figure 7. A plot of log(1 ÿ Le/L) as a function of e for
simulated globins of length 1500, with evolutionary dis-
tance like myoglobin (153 amino acids) and a globin
(141 amino acids). This maps [0, 1] into [0, ÿ1], and
illustrates how much of the contributions to the likeli-
hood function is within e of the similarity optimum
alignment solution. It is obvious that most contributing
paths to the likelihood functions are within a very
narrow band. This points to an obvious speedup of the
likelihood method.
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The number of evaluations

This will consist of three parts: an initial guess of
parameters, an algorithm searching for the mini-
mum, and a stopping criteria determining whether
the current parameter estimates are suf®ciently
close to the maximum likelihood values. The pro-
blem is illustrated in Figure 8, where the L(m,s)/
Lmax is plotted in an area close to the maximum
likelihood estimate for a globin and myoglobin.
The method used is to make a good guess that is
within the through containing the maximum likeli-
hood point, crawl in few steps to the bottom of the
basin and stop, when iterations does not improve
the estimates signi®cantly.

Initial guess. We only consider the protein model
and the strategy will be to assume that the parsi-
mony/similarity alignment is the correct align-
ment. We calculate how many gap signs, matches,
and mismatches would be expected and choose the
parameters that give these expectations. In the pro-
tein substitution model, the expected number of
mismatches, (1 ÿ �i piPii)nalign, were calculated and
equated to the observed number, giving a guess
for s (nalign is the number of columns without gap
signs in the alignment). l and m was guessed by
®rst observing that the expected length of a
sequence is l/(m ÿ l). This would ®x the ratio of
l/m to:
l
m
� lave

lave � 1

where lave is the average sequence length. In
addition, it is possible, when knowing the length
of one sequence and the p functions, to calculate
the expected number of gap signs in an alignment
to (see Appendices):

#gap � lb
1ÿ lb

� s

�
eÿmt lb
�1ÿ lb�

� mb� �1ÿ eÿmt ÿ mb�2 2ÿ lb
1ÿ lb

�
Using this, a guess of m � 0.0316 and s � 0.9500 is
obtained from the a globin versus b globin simi-
larity alignment. A slightly inferior guess of m can
be obtained by assuming that the observed gap
signs are the events that actually have happened in
the evolutionary history. This gives 2mL � #gap
and will give a lower estimate than using the p
functions. Using this method m is estimated to
0.0311. This difference is probably larger for more
distantly related sequences. The maximum likeli-
hood results are shown in Figure 3.

Optimisation. Several numerical optimisation
methods were tried (e.g. simplex and Powell), but
given a good initial guess, the best was BFGS
(Broyden-Fletcher-Goldfarb-Shanno) (Press et al.,
1992). An example of the search for the maximum
likelihood estimate is illustrated in Figure 8, for
simulated sequences approximately of length 1500,



Figure 8. Likelihood surface for
human a globin aligned with
human myoglobin. Only two par-
ameters are allowed to vary, since
the ratio of l/m has been ®xed to
lave/(lave � 1). lave is the average
length of the two proteins. The
numerical optimisation part of the
statistical alignment problems is to
®nd an initial point within this val-
ley, as close as possible to the bot-
tom, and then through a series of
iterations get close to the mini-
mum. In the ¯oor of the diagram
the search for the minimum is
shown. (s, m)0 is the initial guess
obtained from analysing the simi-
larity alignment. After three iter-
ations the improvements in the
likelihood was negligible. BFGS
(see the text) had then used 28
evaluations of the likelihood func-
tion. Each iteration needs several

evaluations to determine ®rst and second derivatives of the likelihood function (in our implementation derivatives
were found numerically, but could in principle be found by dynamical programming).
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with an evolutionary distance like a globin and
myoglobin. In this case, four iterations and 28 like-
lihood evaluations were needed. Each iteration
needs a series of likelihood evaluations to deter-
mine ®rst and second derivatives of the likelihood
function. The total number of likelihood evalu-
ations is typically less than 50.

Stopping condition. When an iteration produced
changes in the likelihood estimates, that was less
than 10ÿ3, the iterations stopped. Figure 9 shows
Ltot(k) as function of iteration number, k. It can be
seen that major improvements are obtained in the
®rst few jumps. After three to four iterations Ltot(k)
is very close to the likelihood function taken in the
maximum likelihood estimate.

The basic recursion

The likelihood recursions (three to four) of
TKF91 are a bit more complicated than the recur-
sion in the optimisation alignment algorithm (par-
simony/similarity). Comparison between the two
indicated that the likelihood recursion was 50-70
times slower than the optimisation recursion. The
main reason for this large difference is that multi-
plication of reals is slower than addition of integers
on most computers.

Summary

The above improvements yield a method that is
signi®cantly faster than the one described by
Thorne et al. (1991). It seems probable that a
further increase in speed can be obtained from
focusing on the last two factors. In absolute terms,
two proteins of length 1500, can be analysed in less
than ®ve seconds on a fast desktop computer
(Silicon Graphics Octane with a 300 MHz R12000
processor), which makes statistical alignment a
fully practical method for two sequences.

Homology test

Consider the a globin and myoglobin. Are they
homologous? Homology must here be the answer
to the question, whether the value of t is ®nite or
in®nite. A value of in®nity implies that they could
both have been drawn independently from the
stationary distribution of the evolutionary process.
Statistical alignment can contribute considerably to
this question.

Parsimony/similarity alignment based test

Most tests in a parsimony/similarity alignment
setting presuppose an alignment and regard the
matched positions as independent realizations of
the same distribution.

Most homology tests are based on a similarity
scoring function, for each position in the align-
ment, of the form: Wi,j � ln(piP

2.5
i,j /(pipj)) (Altschul,

1993). In this expression, P2.5
i,j is the transition prob-

abilities, when 2.5 units of time has passed. This
amounts to choosing among the competing
hypothesis that two sequences are 2.5 events apart
versus in®nitely far apart. It only handles substi-
tutions ``correctly''. The rationale for indel cost is
more arbitrary.

In a frequently used test, the shuf¯e test, the two
sequences are aligned and a score is obtained
(Doolittle, 1986). The signi®cance of this score is



Figure 9. This Figure shows the likelihood values in
different iterations. After three to four steps, a guess
very close to the maximum likelihood has been
achieved.

Figure 10. Top: shuf¯e testing of the homology
between myoglobin and a globin. The arrow to the right
is the score of the real sequences. Bottom: testing the
homology between myoglobin and a globin, using stat-
istical alignment. The arrow to the right is the score of
the real sequences.
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evaluated by permuting the order of the amino
acids and aligning the permuted proteins:

Real Random

s(1) � ATWYFCAK-AC s(1) � ATWYFC-AKAC
s(2) � ETWYKCALLAD s(2) � LTAYKADCWLE

*** ** * **

This is done many times and the real score is
compared to the score of the permuted proteins.
This amounts to sampling in the observed amino
acid distributions without replacement. If the score
for the real sequences are much better (high for
similarity alignment or low for parsimony align-
ment), the proteins are assumed homologous. An
illustration of this test for a globin and myoglobin
is shown in Figure 10 (top).

This approach has several drawbacks. Firstly, it
is dependent on having the correct alignment,
which is unlikely for distant sequences. Secondly,
it must ®x a time back to a common ancestor that
is unknown, since any substitution matrix assumes
a distance between sequences. Thirdly, it is hard to
introduce more realistic models of sequence evol-
ution in this test. Statistical alignment has the
potential of solving these problems.

Statistical alignment based test

In testing homology we are asking if two
sequences have a common ancestor ®nitely far
back in time. Here we try to distinguish two
competing hypotheses. Are they independent
sequences from the equilibrium distribution on the
set of sequences? Or are they related by a tree with
a root ®nitely far back in time? The test will be
parametric bootstrap as described by Cox (1962).

(1) All parameters, (lreal, mreal, sreal), are estimated
by maximum likelihood for the given sequences.
(2) Pairs of independent sequences, (s(1), s(2))i, are
simulated using these parameters.

(3) These simulated sequences are analysed
using statistical alignment and parameters are
reestimated, (li, mi, si).

The following statistic, U, is calculated for the
real sequences and for the simulated sequences:

U � ÿ2 ln
P�s�1�; s�2��

P�s�1��P�s�2��
Now, the value for the real sequences can be com-
pared to the distribution of the values for the simu-
lated sequences. If the value for the real sequences
is extreme for the distribution, the sequences are
homologous.

An illustration of this test for a globin and myo-
globin is shown in Figure 10 (bottom). This
approach has solid potential, but at present it has a
number of drawbacks that prevent it from broad
use. Firstly, it is much slower than database scan-
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ning programs. Secondly, the TKF91 process is not
a realistic model for sequence evolution. Especially,
the geometric equilibrium distribution of sequence
lengths is not believable and should be improved.

A method for homology testing, that also sums
over all alignments, but without an evolutionary
model has been made by Bucher & Hofmann
(1996).

Goodness of fit-testing the TKF process

It is obviously of importance to test the proposed
model when using it to analyse real data. Tests
have been developed (especially due to Goldman
(1993)) for testing substitution models, when an
alignment is given. Since the new aspect of the
TKF91 process is the indel process, we will focus
on testing whether this aspect of sequence evol-
ution is well modelled. The TKF91 model assumes
that insertions and deletions occur in steps of one.

Many optimisation alignment methods put
much emphasis on having the correct gap penalty
function and assume that indels can involve longer
segments. The alignments obtained by the TKF91
method can also have consecutive runs of gaps
signs, but they would all have been inserted or
deleted individually. If longer indels occur, it
should nonetheless be re¯ected in longer runs of
gap signs in the alignments proposed by the
TKF91 method. It is therefore very natural to com-
pare the p functions with the corresponding con-
®gurations of survival and number of descendant
obtained from the TKF91 method.

Again, consider human a globin and b globin. If
their true alignment could be observed, the fate of
141 amino acids and one immortal link had been
Table 2. Results from the goodness of ®t test for the indel m

A. Expected according to model and length of a globin
No. of descendants 0 1 2
Immortal link - 0.9642 0.034
Mortal links - survived - 130.95 4.693
Mortal links - died 5.0891 0.0890 0.003

B. Observed in optimal alignment
No. of descendants 0 1 2
Immortal link - 1 0
Mortal links - survived - 135 2
Mortal links - died 2 0 0

C. Expected according to model and sequences
No. of descendants 0 1 2
Immortal Link - 0.95 0.05
Mortal links - survived - 132.77 4.14
Mortal links - died 2.68 0.12 0.01

D. X2 difference between A and C
No. of descendants 0 1 2
Immortal Link - 0.0004 0.006
Mortal links - survived - 0.0253 0.065
Mortal links - died 1.1404 0.0108 0.014

Maximum likelihood parameter estimates were obtained from ana
section (A to D) tabulates the quantities relating to the three p func
mortal links, these expectations are 141pk (survived) and 141pk

0 (died
B. The result, if the optimal alignment (Figure 3) were used in ®llin
tion to their probability using equation (11). D. Contributions to the
observed. Table 2B shows which numbers would
be obtained if the alignment in Figure 3 were used.
Given the maximum likelihood parameters and the
two sequences, Table 2C can be ®lled by a
dynamic programming algorithm, using recursion
(1-2) to assign probabilities of the fate of s(1)[i] in
s(2) given that {s(1)

i ! s(2)
j }. We chose to sample

alignments (100) according to their probability,
using the stochastic backtracking procedure, since
this was easier to program. This is not an align-
ment chosen uniformly among all possible align-
ments, but chosen randomly in proportion to how
much they contribute to the likelihood function in
the maximum likelihood point.

The difference between Table 2A and C is
measured by the X2 � (obs ÿ exp)2/exp statistic.
This is 532.17 in this case. The cells contributing to
this are shown in Table 2D. It is obvious from
alignments of real sequences, that longer runs of
gap signs occur, that are not in accordance with
the model.

It is possible to get longer series of gap signs in
alignments of real sequences, that contribute mas-
sively to the X2

real statistic. If this contribution is
statistically signi®cant, a natural interpretation
would be that longer indels had occurred. None-
theless, alternative explanation cannot be ruled
out. For instance, the indel rate could be unevenly
distributed along the sequence, so many single
indels occurring next to each other were actually
quite probable.

To assess signi®cance between Table 2A and C,
100 sequences (si terms) were simulated starting
from a globin and evolving according to the esti-
mated evolutionary parameters. The X2 statistics
were calculated from these by making analogues
odel in the evolution of a globin to b globin

3 4 5 6
6 0.0012 0.0000 0.0000 0.0000
7 0.1682 0.0060 0.0002 0.0000
2 0.0004 0.0000 0.0000 0.0000

3 4 5 6
0 0 0 0
1 1 0 0
0 0 0 0

3 4 5 6
0.00 0.00 0.00 0.00
0.67 0.35 0.21 0.05
0.00 0.00 0.00 0.00

3 4 5 6
9 0.0012 0.0000 0.0000 0.0000
3 1.496 19.62 203.62 311.04
5 0.0001 0.0000 0.0000 0.0000

lysis of a globin and b globin and then regarded as ®xed. Each
tions. A. The expectation from the different p functions. For the
). For the immortal link it is simply pk

00, since there is only one.
g out the Table. C. Sampling 100 random alignments in propor-
X2 statistic form the difference between A and C.



Figure 11. Goodness of ®t testing indel lengths in the
TKF model. The X2 value of the real data (marked by
an arrow) is very extreme in the distribution of the
simulated X2 values.
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to Table 2A and C. If X2
real is extreme in this distri-

bution, the indel process does not ®t well with the
real sequences. The distribution of X2 is shown in
Figure 11 together with X2

real. Obviously, the
TKF91 needs modi®cation to be a satisfactory
model.

Discussion

This article has highlighted some of the advan-
tages of a more statistical approach to alignment,
the main ones being:

(1) It is explicitly founded on a description of
molecular evolution.

(2) Parameters are estimated and biologically
meaningful.

(3) Different evolutionary events can be assigned
probabilities.

However, the present model is unrealistic, thus,
many generalisations and improvements are of
immediate practical interest.

Since it is clear that indels longer than one
nucleotide or amino acid do occur, incorporating
this into a model would be a signi®cant step
towards biological realism. However, it is not
straightforward to do this. Allowing for longer
insertions is simple and such a longer insertion
could be associated to a single link, as in the
TKF91 process. Longer deletions remove intervals
of sequences, and should be modelled so that the
whole process is time reversible, since this has
computational advantages. There is no biological
reason for believing that the insertion process
should be the time-reversed image of the deletion
process. It remains to be explored how seriously
this assumption is violated in real data.

A second extension would be to generalise the
TKF91 dynamic programming algorithm, calculat-
ing the likelihood for a set of homologous
sequences. Steel & Hein (2000) have done this for k
sequences, related by a star-shaped tree. J.H.
(unpublished results), has generalised this further
to k sequences, related by a binary tree, in an algor-
ithm that has O(lk) running time in the sequence
length. This is analogous to the parsimony algor-
ithm relating k sequences devised by Sankoff
(1975). However, an implementation of the likeli-
hood method would be much slower than the par-
simony/similarity method, due to its more
complicated algorithm, parameter optimisation,
etc. To yield a practical statistical multiple align-
ment method, other methods than the dynamic
programming algorithm would have to be used,
e.g. Markov chain Monte Carlo methods.

Modelling substitutions and indels that are
unevenly distributed along the sequences could
also be improved. Real sequences will have differ-
ent probabilities of insertion/deletion for different
regions. For proteins, it is well known that inser-
tion/deletions are more frequent in loop regions
than in sheets and helices, and it would give a
more realistic model to take advantage of this
knowledge. Incorporating the hidden Markov
model for different structural categories as done by
Goldman et al. (1996) seems especially relevant.
Using hidden Markov models will pose a problem,
since the indel process would make the Markov
model longer and shorter at stochastic times.

The TKF91 model is simple and tractable, but it
would be of interest to explore alternatives. The
view of a sequence being tagged by an immortal
link does not conform to biological intuition. A
possibility would be to let a sequence be born from
a given equilibrium distribution and to be killed
according to some process. Whether this could
lead to a tractable process remains to be explored,
but it would conform better to biological intuition
and could give a better equilibrium distribution of
sequence lengths than the geometric distribution of
the TKF91 model. In this context, it would also be
of interest to formulate how subsequences can be
homologous to subsequences. The tests described
here were solely addressed in terms of global com-
parisons and to devise a practical competitive test,
it would be necessary to formulate an analogue of
local alignment for statistical alignment.

More realistic models of sequence evolution and
methods for aligning more sequences would auto-
matically lead to better homology tests. In this con-
text, it should be noted that when molecular
biologists perform homology tests (or database
searches), their prime objective is not homology,
but rather inferences about function. It might be
advantageous to model this explicitly, i.e. to model
not only the sequence but also the probability that
a sequence with one function obtains another func-
tion. The approach taken here might also unify the
contending approaches of Dayhoff et al. (1978)
versus Henikoff & Henikoff (1992), in making score
matrices. Dayhoff constructs matrices from closely
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related sequences that will de®ne log-odd scores
for distantly related sequences. Henikoff & Henik-
off use conserved blocks in distantly related
sequences to de®ne log-odd scores directly. These
two approaches seem to focus on quickly and
slowly evolving positions, respectively. A statistical
alignment model directly incorporating quickly
and slowly evolving positions would unify the two
approaches.

The concept of homology in sequence compari-
son is not crystal clear. Since the earliest organism
probably contained very few sequences (possibly
only one), maybe all sequences are homologous in
the strict sense. There have been assertions about
the number of different protein families appearing
in life on earth (Chothia, 1992).

Statistical approaches to alignment have many
advantages relative to parsimony/similarity
approaches, but the latter methods have a large
lead in software developments. Even if statistical
approaches were developed to a stage where it
was better at the conceptual and good at the algo-
rithmic level, there would still be a huge software
gap for many years to come.

Comment

The programs and tests developed in this
paper can all be accessed at the web-site:
www.brics.dk/ � compbio. The program contains
the following parameters to be set of the user: the
narrowness of the band where dynamical pro-
gramming is performed and the level of precision
in parameters, when iterations are to be stopped.
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Appendix I: Finding Alignments

The most probable alignment for a given set of
parameters, can be found. Since the number of
alignments is large, this probability will be small
relative to P(s(2)js(1)). The reasoning behind
equations (3)-(4) can be applied again. Let
s(1)! s(2) denote all evolutionary paths from s(1) to
s(2). Instead of keeping track of the set
{x 2 s(1)

i ! s(2)
j } and {x 2 s(1)

i ! s(2)
j js(2)[j] is a descen-

dant of s(1)[i] in x} with many alignments in them,
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only keep the most probable alignment in these
sets (indicated with a { }max):

Rmax
i;j �maxfp1Ps�1��i�;s�2� �j�P�fs�1�iÿ1 ! s�2�jÿ1gmax�;

p01ps�2��j�P�fs�1�iÿ1 ! s�2�jÿ1gmax�; lbps�2��j�R
max
i;jÿ1g �6�

P�fs�1�i ! s�2�j gmax�

� maxfRmax
i;j ; p00P�fs�1�iÿ1 ! s�2�j gmax�g �7�

Using backtracking, the most probable alignment
can be found. This alignment is of little interest
and is mainly calculated to be able to generate one
alignment for illustration. As shown by Thorne
et al. (1991), this alignment is not representative of
the actual history of s(1) and s(2), but without it, this
method would be an alignment method that did
not produce any alignment.

Alignments can be generated in proportion to
their probability. This can be done by the following
procedure starting in (l1, l2) (the lengths of the two
sequences) and going down to (0, 0):
Step Probability Alignment block

Ri;j ! P�s�2�jÿ1js�1�iÿ1� p1Ps�1��i�;s�2��j�P�s�2�jÿ1js�1�i �=Ri;j
s�1��i�
s�2��j�

Ri;j ! P�s�2�jÿ1js�1�iÿ1� p01ps�2��j�P�s�2�jÿ1js�1�i �=Ri;j
s�1��i�
ÿ

ÿ
s�2��j�

Ri;j ! Ri;jÿ1 lbps�2��j�P�s�2�jÿ1js�1�i �=Ri;j
ÿ

s�2��j�
P�s�2�j js�1�i � ! Ri;j Ri;j=P�s�2�j js�1�i � Nothing

P�s�2�j js�1�i � ! P�s�2�j js�1�iÿ1� p00=P�s�2�j js�1�iÿ1�=P�s�2�j js�1�i �
s�1��i�
ÿ

with:
It is also possible to sample random align-
ments, using an analogue to equation (5), but it
seems dif®cult to formulate a maximum ana-
logue to equation (5) in the style of equations
(6) and (7).
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Appendix II: Calculating Length
Distributions

Take a sequence of length n. Letting this
sequence evolve over time, makes the length
change according to the l and m parameters of the
model. It is possible to calculate the distribution of
lengths for any given time t that passes.

For low values of t, the length distribution will
be very narrow around n. For larger values of t,
the distribution becomes a skewed bell shape
around n. With very large t values the distribution
will become geometric as dictated by the l and m
parameters.

The generating functions (GFs) can be found for
the number of children of mortal and immortal
links. Multiplying an appropriate number of these
can give the GF for the entire length of a sequence.
Thus, given an initial length and an amount of
time, the length distribution can be calculated as
(Pm being the probability of having length m at
time t, starting at length n):
Pm �
Xmin�m:n�

i�0

n�mÿ i

mÿ i nÿ i i

� �
�ÿa�nÿidnÿicibÿnÿm�iÿ1
a � a�t� � ÿ l
mÿ l

g�t�

b � b�t� � 1ÿ a�t� � 1� l
mÿ l

g�t�

c � c�t� � 1ÿ l
mÿ l

g�t�

d � d�t� � 1ÿ c�t� � l
mÿ l

g�t�

g�t� � 1ÿ e�lÿm�t
The average and variance of the length distribution
is:
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E�St� � n� l
mÿ l

ÿ n

� �
g�t�

Var�St� � nc�1ÿ c� ÿ �n� 1�a�1ÿ a�

Appendix III: Expected Number of
Gaps

The expected number of gaps produced by a
mortal link in time t, times its probability of survi-
val is:

g�t� �
X1
n�1

pn�t��nÿ 1�

since n ÿ 1 gaps are produced when a mortal link
has n children and it survives. This can be written
as:
g�t� � eÿmt�1ÿ lb�
X1
n�0

n�lb�n � eÿmt lb
�1ÿ lb� :

The same calculations can be done for mortal links
that die and for immortal links. The total expected
number of gaps is the sum of an appropriate num-
ber of each of these g functions:

#gap � lb
1ÿ lb

� s e0mt lb
�1ÿ lb�

�

� mb� �1ÿ eÿmt ÿ mb� 2ÿ lb
1ÿ lb

�

b � 1ÿ e�lÿm�t

mÿ le�lÿm�t

mt

lt
� s� 1

s
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