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A Dependent-Rates Model and an MCMC-Based Methodology for the
Maximum-Likelihood Analysis of Sequences with Overlapping Reading
Frames

Anne-Mette Krabbe Pedersen and Jens Ledet Jensen
Department of Theoretical Statistics, Institute of Mathematics, University of Aarhus, Denmark

We present a model and methodology for the maximum-likelihood analysis of pairwise alignments of DNA se-
quences in which two genes are encoded in overlapping reading frames. In the model for the substitution process,
the instantaneous rates of substitution are allowed to depend on the nucleotides occupying the sites in a neighborhood
of the site subject to substitution at the instant of the substitution. By defining the neighborhood of a site to extend
over all sites in the codons in both reading frames to which a site belongs, constraints imposed by the genetic code
in both reading frames can be taken into account. Due to the dependency of the instantaneous rates of substitution
on the states at neighboring sites, the transition probability between sequences does not factorize and therefore
cannot be obtained directly. We present a Markov chain Monte Carlo procedure for obtaining the ratio of two
transition probabilities between two sequences under the model considered, and we describe how maximum-like-
lihood parameter estimation and likelihood ratio tests can be performed using the procedure. We describe how the
expected numbers of different types of substitutions in the shared history of two sequences can be calculated, and
we use the described model and methodology in an analysis of a pairwise alignment of two hepatitis B sequences
in which two genes are encoded in overlapping frames. Finally, we present an extended model, together with a
simpler approximate estimation procedure, and use this to test the adequacy of the former model.

Introduction

In Felsenstein’s maximum-likelihood framework
for inferring evolutionary trees from DNA sequences, a
fundamental assumption is that the substitution process-
es in the single-nucleotide sites are independent (Fel-
senstein 1981). When this is the case, transition proba-
bilities between sequences can feasibly be obtained, be-
cause these probabilities become products of transition
probabilities between nucleotides. If the independent
substitution processes in the sites are assumed to be
identical Markov processes described by a matrix of in-
stantaneous rates Qnuc, the matrix of transition proba-
bilities between nucleotides separated by time t can be
obtained as Pnuc(t) 5 exp(Qnuct).

For many sequences, the assumption of indepen-
dent substitution processes in the nucleotide sites is in
striking contradiction to biological reality. Protein-cod-
ing sequences present an obvious example: the rate of
synonymous substitution is generally higher than that of
nonsynonymous substitution (see Li, Wu, and Luo 1985
and references therein). Whether a substitution in a site
is synonymous or nonsynonymous depends on what nu-
cleotides occupy the other sites of the codon. Substitu-
tion processes in nucleotide sites belonging to the same
codon are thus nonindependent.

Li, Wu, and Luo (1985) were among the first to
describe a method for estimating evolutionary distances
between coding sequences in which constraints imposed
by the structure of the genetic code were taken into ac-
count. Their method relied on a partitioning of sites into
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degeneracy classes. A site was defined to be nondegen-
erate if all possible changes at the site were nonsynon-
ymous, twofold-degenerate if one was synonymous and
the other two were nonsynonymous, and fourfold-de-
generate if all possible changes were synonymous. The
classification of sites into degeneracy classes was based
on one of the observed sequences, and the degeneracy
class of a site was assumed to be constant over time.
Having defined the degeneracy classes of the sites, the
sequences were analyzed under the assumption that the
substitution processes in the nucleotide sites were in-
dependent. This method is approximate: the classifica-
tion of sites into degeneracy classes depends on which
sequence one chooses to base the classification on, and
the degeneracy class of a site is not constant over time,
but changes as substitutions occur.

Goldman and Yang (1994) and Muse and Gaut
(1994) described how the nonindependence introduced
by the structure of the genetic code could be dealt with
in an exact manner. They presented codon-based models
in which the substitution processes in codons, rather
than single-nucleotide sites, were assumed to be inde-
pendent. The substitution processes in the codons were
assumed to be identical, reversible Markov processes,
described by a 61 3 61 matrix of instantaneous rates of
codon substitution, Qcodon. In the matrix, entries corre-
sponding to nonsynonymous substitutions could be
modified relative to synonymous ones by multiplication
of a factor representing the fractional reduction of ami-
no-acid-altering relative to amino-acid-preserving rates.
Due to the assumption of independent substitution pro-
cesses in codons, transition probabilities between se-
quences in codon-based models factorize into a product
of transition probabilities between codons. As in nucle-
otide-based models, these can be obtained by taking the
exponential of the product of the rate matrix and the
time, i.e., Pcodon(t) 5 exp(Qcodont). The basic idea behind
codon-based models has since been utilized in the de-
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velopment of models for substitution processes in RNA
sequences. Schöninger and von Haeseler (1994), Muse
(1995), and Tillier and Collins (1995) have presented
dinucleotide-based models for the analysis of RNA se-
quences that allow dependencies among the substitution
processes in nucleotide sites that participate in base-
pairings to be modeled. The substitution processes in
dinucleotides are assumed to be independent, and the
transition probability between sequences factorizes
into a product of transition probabilities between
dinucleotides.

The substitution processes in sequences in which
more genes are encoded in overlapping reading frames
are subject to constraints imposed by overlapping ge-
netic codes. Due to the overlapping of the constraints,
an assumption of independent substitution processes in
small subsequences is inappropriate. An adequate de-
scription of the substitution process in these sequences
can therefore not be obtained by exploiting the idea be-
hind the codon-based models. A model for the substi-
tution processes in sequences with multiple overlapping
reading frames was suggested by Hein and Støvlbæk
(1995), who extended the notion of the degeneracy class
of a site to that of a combination of degeneracy classes
(one for each reading frame to which a site belongs).
They defined class-specific matrices of instantaneous
rates of substitution, assumed independent Markov pro-
cesses in the sites according to these matrices, and il-
lustrated how a maximum-likelihood analysis of evolu-
tionary trees under the model could be performed. As
in the method of Li, Wu, and Luo (1985), the classifi-
cation of sites was based on one of the observed se-
quences, and the class of a site was assumed to be fixed.
The method thus inherits the shortcomings of Li, Wu,
and Luo’s (1985) method and deals with the constraints
imposed by the overlapping genetic codes in an approx-
imate manner.

In this study, we present a model for the substitu-
tion process in sequences in which two genes are en-
coded in overlapping frames that incorporates the con-
straints imposed by both of the overlapping genetic
codes in an exact manner. This is achieved by allowing
the instantaneous rates of substitution in a site to depend
on what nucleotides occupy the sites in the neighbor-
hood of the site at the instant of the substitution. Thus,
the model does not rely on the degeneracy class notion
and does not assume that the substitution processes in
any subsequences are independent. Rather, the model
contains parameters representing the degrees of selec-
tional constraints operating in the different frames, and
these parameters can be estimated. Due to the nonin-
dependent instantaneous rates of substitution, the tran-
sition probability between two sequences does not fac-
torize into products of transition probabilities between
small subsequences. Rather, transition probabilities be-
tween full-length sequences must be considered. The
model and methodology we describe here were obtained
by generalizing a model and methodology we have pre-
viously presented (Jensen and Pedersen 2000).

In the Methods section, we describe the model for
the substitution process in sequences with overlapping

reading frames. We show that the substitution process is
reversible and derive the stationary distribution of a se-
quence under the model. We further describe a Markov
chain Monte Carlo (MCMC) procedure for estimating
the ratio of two transition probabilities between two se-
quences under the described model. Together, these en-
tities, the stationary distribution of a single sequence and
the ratio of transition probabilities between two se-
quences, comprise the elements needed for a maximum-
likelihood analysis to be performed. In the Results sec-
tion, we analyze an alignment of two homologous hep-
atitis B subsequences in which the polymerase (P) and
the envelope (S) genes are encoded in overlapping
frames using the model and methodology presented in
the preceding section. We obtain maximum-likelihood
estimates of the parameters in the model and perform a
likelihood ratio test of a hypothesis concerning the mode
of substitution in the sequences. We calculate expected
numbers of various types of substitutions. Finally, to
check the adequacy of the model, we present a more
general model, together with a simpler approximate es-
timation procedure.

Methods
The Model

In this section, we present a model for the substi-
tution process in sequences with overlapping reading
frames, in which constraints imposed by the two over-
lapping genetic codes are incorporated.

We consider an alignment of two homologous
DNA sequences in which two genes are encoded in
overlapping reading frames. We assume that the se-
quences have evolved from a common ancestral se-
quence through independent identical evolutionary pro-
cesses that involve substitutions only. We further assume
that the substitution process is a homogeneous Markov
process and that substitutions happen sequentially, so
that within an instant, the sequence may be changed in
one nucleotide position only. We do not allow substi-
tutions that generate stop codons in any of the reading
frames considered, and we assume that no substitutions
occur in the first and last codons of reading frame I in
the alignment. With u short for the set of parameters
specifying the substitution process, the likelihood of ob-
serving the two sequences x and y at the tips of an evo-
lutionary tree with branch lengths tx and ty is given by

L(u, t , t ) 5 p (u)P (u, t )P (u, t ), (1)Ox y s s →x x s →y y0 0 0
s0

where the sum over s0 is over all possible ancestral se-
quences and is the probability under the model ofp (u)s0

the ancestral sequence being s0. The parameters tx and
ty are the time epochs separating sequences x and y re-
spectively, from the ancestral sequence, and (u, tz)Ps →z0

is the transition probability between sequences s0 and z,
z 5 x, y.

We still have to specify the precise form of the
Markov process in the inner parts of the sequences, that
is, in codons 2, . . . , n 2 1, in a way that permits the
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FIG. 1.—Example of a sequence in which two genes are encoded
in overlapping reading frames.

constraints imposed by the two overlapping genetic
codes to be incorporated. For this, consider a sequence
in which two genes are encoded in overlapping reading
frames. The substitution of a nucleotide in the sequence
may lead to the alteration of the amino acid being en-
coded in both of the reading frames, in one of the read-
ing frames only, or in none of the reading frames. As-
sume that the reading frames overlap as illustrated in
figure 1. Whether a nucleotide substitution is synony-
mous or nonsynonymous with respect to one of the read-
ing frames depends on what nucleotides occupy the oth-
er positions of the codon within that reading frame at
the instant of the substitution. Whether a substitution in
the first codon position in reading frame I is synony-
mous or nonsynonymous with respect to reading frame
II depends on what nucleotides occupy the two imme-
diately preceding nucleotide positions, that is, positions
2 and 3 of the preceding reading frame I codon. In order
to determine whether a substitution in codon position 2
or 3 in reading frame I is synonymous or nonsynony-
mous with respect to reading frame II, the nucleotide
immediately following the codon, that is, in position 1
of the next codon in reading frame I, must be known.

In order to incorporate constraints imposed by the
operation of two overlapping reading frames in the mod-
el for the substitution process, we must allow the in-
stantaneous rates of nucleotide substitution to be con-
text-dependent. Numbering the positions by the codon
number in reading frame I, the instantaneous rate of sub-
stitution of one of the three nucleotides in codon i
should depend on the nucleotides occupying positions 2
and 3 of codon i 2 1 and position 1 of codon i 1 1.
Let zi 5 denote the ith codon in reading frame1 2 3(z , z , z )i i i

I of the inner part of a sequence (i 5 2, . . . , n 2 1),
where is the nucleotide in codon position k, k 5 1,kz i

2, 3. Let z̃i be a codon that differs from z̃i in one nucle-
otide position only. In order to allow for unequal nucle-
otide frequencies, we assume that the instantaneous rate
of substitution to codon z̃i is proportional to wherep ,(z̃ )i
(z̃i) is the target nucleotide, that is, the nucleotide oc-
cupying the position in z̃i at which it differs from zi. We
assume that the pk’s, k ∈ {A, C, G, T}, sum to 1. We
further allow for transition/transversion bias by multi-
plying instantaneous rates of transitional substitutions by
the factor K. With respect to these two features, our
model is similar to that of Hasegawa, Kishino, and Yano
(1985). The constraints imposed by the genetic codes
are incorporated by multiplying all instantaneous rates
that alter the amino acid in reading frame I only by fI,
those that alter the amino acid in reading frame II only
by fII, and those that alter the amino acids in both read-
ing frames by fI/II, a procedure related to that used in
the codon-based model for single coding sequences
(Goldman and Yang 1994; Muse and Gaut 1994). We

refer to the f parameters ( fI, fII, and fI/II) as parameters
for selective constraints. An f parameter larger than 1
indicates that amino-acid-altering substitutions in the as-
sociated reading frame are promoted, whereas if f , 1,
synonymous substitutions are favored. When f 5 1,
there are no selective constraints in the corresponding
reading frame. Note that using reading frame I for num-
bering the positions along the sequence has no influence
on the instantaneous rates. Whether a substitution alters
the amino acid in one of the reading frames is not related
to the numbering used.

Let denote the instantaneous rates of2 3 1qz ,z̃ zz ,z ,zi i i21 i21 i11

substitution from a sequence that has zi as the ith codon
in reading frame I to a sequence that is identical to the
sequence except in codon i, in which it holds the codon
z̃i, at an instant when positions 2 and 3 of codon i 2 1
and position 1 of codon i 1 1 are , and ,2 3 1z , z zi21 i21 i11
respectively. The model then states the following form
for the instantaneous rates of substitution:

0 if z and z̃ differ in more than one position,
 2 3 1q 5 qz,z̃ z ,z̃ zz ,z ,zi i i21 i21 i11

if z and z̃ differ at one position in codon i,

where

2 3 1qz ,z̃ zz ,z ,zi i i21 i21 i11

2 3 1 2 3 15 p M((z , z , z , z ), z , z , z̃ , z ))1 (z̃ )(z̃ ) i21 i21 i i11 i21 i21 i i11 C ii

2 3 1 2 3 13 1 (z , z , z̃ )1 (z̃ , z̃ , z ),C i21 i21 i C i i i11 (2)

with

2 3 1 2 3 1M((z , z , z , z ), (z , z , z̃ , z ))i21 i21 i i11 i21 i21 i i11

1 11 1 syn(I),non(II) non(I),non(II)ts non(I),syn(II)5 K f f f .I II I/II

Here, 1ts is 1 for a transition (ts) and 0 for a transversion
(tv), 1non(I),syn(II) is 1 for a substitution that is nonsynon-
ymous in reading frame I and synonymous in reading
frame II and 0 otherwise, and 1syn(I),non(II) and 1non(I),non(II)
are defined similarly. The set C, on which the indicator
functions are 1 in equation (2), consists of the 61 non-
stop codons. Spelled out, we obtain the following rep-
resentation of the instantaneous rates:

2 3 1qz ,z̃ zz ,z ,zi i i21 i21 i11

0, STOP

Kp , no STOP, ts, syn(I), syn(II)(z̃ )i

p , no STOP, tv, syn(I), syn(II)(z̃ )i

f Kp , no STOP, ts, non(I), syn(II)I (z̃ ) i

5 f p , no STOP, tv, non(I), syn(II)I (z̃ )i

f Kp , no STOP, ts, syn(I), non(II)II (z̃ )i

f p , no STOP, tv, syn(I), non(II)II (z̃ )i

f Kp , no STOP, ts, non(I), non(II)I/II (z̃ )i
f p , no STOP, tv, non(I), non(II). I/II (z̃ )i

The instantaneous rate of a substitution which changes
a codon ACA to a codon GCA in reading frame I at
an instant when the codon considered is preceded by
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the nucleotides TC and followed by the nucleotide A
is thus pGKfI, since the substitution is a transition to
a G that changes the amino acid coded for in reading
frame I from a threonine to an alanine and does not
change the amino acid encoded in reading frame II,
since both of the codons TCA and TCG code for ser-
ines. The instantaneous rate of a substitution which
changes a codon GAT in the context CC z . . . z A to
GAA is pAfI/II, since the substitution is a transversion
to an A and the codons ATA and AAA (in reading
frame II) code for different amino acids, as do the
codons GAT and GAA (in reading frame I). Note that
the model can easily be modified to other kinds of
overlapping genes, e.g., genes encoded in opposite di-
rections. The only modification needed is in the trans-
lation via the genetic code.

The Stationary Distribution and Reversibility

We assume that the Markov process has reached
equilibrium and let P(z) denote the equilibrium fre-
quency of a sequence z. In this section, we show that
the model presented above is reversible, identify the sta-
tionary distribution of a sequence under the model, and
give a quick procedure for calculating the normalizing
constant of the stationary distribution.

A Markov process with instantaneous rates qz,z̃ is
reversible and has P as the stationary distribution if

P(z)q 5 P (z̃)q .z,z̃ z̃,z

Under the model described above, the equilibrium fre-
quency of a sequence with a stop codon in any of the
two reading frames is 0, as are instantaneous rates of
substitutions that generate stop codons. The above
equality is thus satisfied for these cases. Moreover, the
equality is trivially satisfied for sequences z and z̃ that
differ in more than one nucleotide position, as in this
case, the instantaneous rates are 0. Therefore, assume
that the two sequences z and z̃ do not contain stop co-
dons in either reading frame and differ at only one co-
don position in codon i, and consider

2 3 1 2 3 1P(z)q 5 P(z̃)q .z ,z̃ zz ,z ,z z̃ ,z zz ,z ,zi i i21 i21 i11 i i i21 i21 i11

Since all factors in the instantaneous rates except ,p(z̃ )i
which depends on the target nucleotide (z̃i), appear sym-
metrically, they cancel out, and we obtain

P(z)p 5 P(z̃)p .(z̃ ) (z )i i

It is easily seen that this equality is satisfied if the equi-
librium distribution of a sequence P(z) is a product over
the pk parameters corresponding to the nucleotide con-
stituents of the sequence. Incorporating the exclusion of
sequences with stop codons in the second reading frame,
we obtain that under the model, the stationary distri-
bution of a sequence z 5 (z2, . . . , zn21) with z1 and zn

fixed is

n211
2 3 1 2 3 11 2 3P(z) 5 p p p 1 (z , z , z ) 1 (z , z , z ),P z z z C i21 i21 i C n21 n21 ni i i1 2Z i52

(3)

if zi ∈ C, ∀i. For all other sequences, the stationary
distribution is 0. Here, Z is a normalizing constant dif-
ferent from 1, because sequences with stops in either
reading frames are excluded. Without this exclusion, Z
would indeed be 1, because the pk’s sum to 1. We have
thus identified the equilibrium distribution and at the
same time shown that the process is reversible. With
reversibility, the likelihood value becomes independent
of the placement of the root, and with this and the as-
sumed equilibrium, the likelihood in equation (1) reduc-
es to

L(u, t) 5 P (u)P (u, t),x x→y (4)

where we write Px(u) for P(x) to stress that in the like-
lihood P(x) is treated as a function of the parameters in
the model, of which only u, and not the branch length(s),
is relevant for the stationary distribution, and t is the
sum of the branch lengths tx and ty.

In order to calculate the likelihood value eq. (4),
we must be able to calculate the value of the normal-
izing constant Z of the stationary distribution eq. (3).
This normalizing constant can be found by summing
up the equilibrium frequencies of all possible se-
quences. By first summing over 2 3(z , z ), i 5i i

, we can derive an explicit form for Z.2, . . . , n 2 1
The details are in appendix A, where we end up with
the formula (A.9)

11 1n22 z n22 zn nZ 5 (c l v 1 c l v ) ,1 1 1 2 2 2
1pzn

where all the terms are defined in appendix A.

Calculation of the Transition Probability Between Two
Sequences

We now specify how the transition probability from
a sequence x to a sequence y under the model described
above can be calculated. Since the instantaneous rates
of substitution under the model depend on the states at
neighboring sites at the instant of the substitution, the
probability of transition between the full sequences does
not reduce to a product of ‘‘marginal’’ transition prob-
abilities, such as a product of transition probabilities be-
tween nucleotides or codons. The substitution processes
in all the sites must be considered simultaneously. As
argued in Jensen and Pedersen (2000), we will have to
resort to simulations in order to calculate the transition
probability. Furthermore, in order to reduce the variance
of the simulated values, we simulate the ratio of two
probabilities Px→y(u1, t1)/Px→y(u2, t2) instead of simulat-
ing a transition probability directly. If the ratio can be
evaluated for two sets of parameter values, likelihood
ratio tests can be obtained, and maximum-likelihood es-
timates of the parameters in the model can be found by
maximizing the ratio

P (x)P (u , t )u x→y 1 11

P (x)P (u , t )u x→y 2 22

as a function of (u1, t1) for fixed (u2, t2). In the following,
we describe a procedure for obtaining the ratio of two
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transition probabilities using an MCMC simulation
technique.

Let xt be the space of paths between sequences x
and y separated by time t, and let L denote a particular
path in xt. A path is a specification of the number of
substitutions, the positions in which the substitutions
occur, what nucleotides replace existing nucleotides in
these substitutions, and the times (∈(0, t)) at which
the substitutions occur. Let mt be the measure on xi

which, for a fixed number of substitutions r and fixed
positions and fixed nucleotides of these substitutions,
corresponds to ordinary integration on the space (0,
t)r for the substitution times. For a positive number s,
we denote by (s/t)L the path in xs obtained by scaling
all the substitution times in L by s/t. Let qu(t; L) be
the contribution from the path L to the transition prob-
ability Px→y(u, t). A detailed description of q is given
in appendix B.

In appendix B, we derive the representation

 t1rt q t ; L 1 u 111 2t 2P (u , t )x→y 1 1 ˜  5 E , (5)
rP (u , t ) t q (t ; L) x→y 2 2 2 u 22

where r is the number of substitutions in the path L, and
Ẽ denotes the mean value under the distribution P̃ on
the space having densityxt2

q (t ; L)u 22 (6)

q (t ; L) dmE u 2 t2 2
xt2

with respect to . We can thus obtain an approximationmt2
of the ratio of the two transition probabilities by cal-
culating for a large num-r r[t q (t ; (t /t )L)]/[t q (t ; L)]1 u 1 1 2 2 u 21 2

ber of paths L drawn from P̃. The farther apart (u1, t1)
and (u2, t2) are, the larger the variance and the more
paths are needed for the ratio to be obtained with rea-
sonable precision. It is thus necessary when maximizing
as a function of (u1, t1) to alter the parameters in the
simulation measure (u2, t2) as (u1, t1) moves away from
(u2, t2).

We now specify how to simulate from equation (6).
We use an MCMC method (Gilks, Richardson, and
Spiegelhalter 1996), that is, we construct a Markov
chain on the path space that has P̃ as its stationaryxt2
distribution. A path L is the collection of paths of thejLi

nucleotides in the jth codon position of codon number i
in reading frame I. We construct the Markov chain by
running through the codons from number 2 to number
n 2 1 while we update the path Li for the ith codon.
The updating of Li is done by proposing a new path

from a distribution Pi with density qi. The new pathL9i
is accepted with probabilityL9i

q̃ (L9 z L , L )/q (L9)u i i21 i11 i i2a 5 min 1, , (7)1 2q̃ (L z L , L )/q (L )u i i21 i11 i i2

where is given in appendix B. From a computational-q̃u2

cost point of view, the important thing here is that q̃u2

depends on Li (or ) and the two neighboring paths Li21L9i

and Li11 only. Having completed a run through the
alignment, we have performed a transition in our Mar-
kov chain on sequence paths. By continuing the proce-
dure many times, we obtain a sample of sequence paths
which contains paths throughout the support of equation
(6) in the correct proportions. In particular, if we pro-
pose a path that gives rise to a stop codon in readingL9i
frame II, then will be zero, and there-q̃ (L9 z L , L )u i i21 i112

fore the path is not accepted.
The choice of an initial path L to start the Markov

chain is not important. We have obtained a start path by
simulating paths Li from Pi, i 5 2, . . . , n 21, and
continuing until a sequence path without stop codons in
reading frame II has been obtained. The exact form of
the path proposal distribution for codon i, qi, is given
by the following three steps:
1. The number of substitutions ki is taken from a mod-

ified Poisson distribution with intensity gi.
2. The substitution times ti(r), r 5 1, . . . , ki, are taken

from a uniform distribution on the interval from 0 to
t2.

3. The nucleotide position and the new nucleotide for
each substitution is chosen from a set of allowed sub-
stitutions Ar.

As for the modification of the Poisson distribution
in step 1, note that if the ith codons in the two sequences
are identical, paths with one substitution are impossible.
If the codons differ at d0 positions, there must be at least
d0 substitutions in the path leading from one codon to
the other. We thus modify the Poisson distributions and
propose a number of substitutions for the path between
the ith codons from

kgi 2g 2gi ie /(1 2 e )
k! x 5 y , k 5 0, 2, 3, . . . ,i i

p (k) 5 P(N 5 k) 5 i i id 210k lg gi i2g 2gi ie 1 2 eO@1 2k! l!l50
ix ± y , k $ d , i i 0

where is the number of codon positions at which theid0
ith codons in the two sequences differ. The intensity gi
is described below.

In both steps 1 and 3 we will use intensities ofiq̃y,w
a change from a codon y to a codon w given by

i 2 3 1q̃ 5 q̃ ,y,w y,w zx ,x ,xi21 i21 i11

where is defined as in equation (2), ex-2 3 1q̃ ,y,w zx ,x ,xi21 i21 i11

cept that we treat substitutions to stop codons in the
second reading frame 2 3 1 2 3 1((x , x , w ) or (w , w , x ))i21 i21 i11
as substitutions to a 21st amino acid, rather than giving
them intensity 0. We have adopted this approach in or-
der to keep the proposal distribution simple; that is, we
are not using the paths Li21 and Li11 during the proposal
step. For the Poisson intensity gi in step 1, we take

ig 5 q̃ t .Oi x ,w 2i1 2w∈C ,w±xi

In step 3, let ki be the number of substitutions from step
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1, and let zi(r), r 5 0, . . . , ki, be the codon after the
rth substitution with zi(0) 5 xi and zi(ki) 5 yi. When
zi(1), . . . , zi(r 2 1) have been chosen, we choose zi(r)
according to the probabilities

iq̃z (r21),ziP(z (r) 5 z) 5 .i iq̃O z (r21),wi
w∈Ar

The set of allowed substitutions for substitution number
r, Ar, can be described as follows: let di(z) be the number
of nucleotide positions at which codon z differs from
codon yi. Then,

A 5 {w ∈ C z w ± z (r 2 1), d (w) # k 2 r, d (w) 5 1r i i i i

if r 5 k 2 1}.i

The following examples illustrate the role of Ar. As-
sume that for a potential path between identical co-
dons (xi 5 yi), the number of substitutions chosen is
two. For the first substitution, we may choose any
combination of position and nucleotide, as long as the
nucleotide chosen is different from the one that oc-
cupies that position at the moment, and as long as we
do not create a stop codon. Irrespective of the choices
for the first substitution, the choices for the second
(and last) substitution are completely fixed, since we
must get to the target codon via this substitution. Sim-
ilarly, in a path containing one substitution between
codons that differ in one position, the choices of po-
sition and nucleotide for the substitution are both
completely fixed. For paths between codons that differ
at one position for which we have chosen a number
of two substitutions, the first must occur in the posi-
tion at which the two codons differ (since otherwise
it would generate an additional difference, making it
impossible to get to the target codon with the remain-
ing one substitution). Furthermore, the first substitu-
tion must not generate the target codon, since if it
does, we have no way of assigning the last substitu-
tion. Note that we may generate a path for which the
set of allowed substitutions for a certain substitution
is empty. This is the case for a path with two substi-
tutions between the codons TCA and TTA: the first
substitution must be in position 2 (as otherwise we
would generate an additional difference), it cannot be
to a T (because then the target codon is reached pre-
maturely), and it cannot be to an A or a G (as rates
to the codons TAA and TGA are 0, since the codons
are stop codons). A path for which an empty set of
allowed substitutions is created will be discarded; that
is, it will never be accepted.

With this procedure for generating paths, the den-
sity of proposing a path Li for codon i is

kk 21 ii q̃ 1z (r21),z (r)i i q (L ) 5 p (k ) k ! .Pi i i i i  1 2tq̃ r51 O 2z (r21),wi
w∈A r

Having obtained expressions for the equilibrium
frequency of a sequence under the model, and here an
approximation of the likelihood ratio of transition prob-

abilities, we have the means for performing maximum-
likelihood estimation and likelihood ratio tests.

Results

Below, we present results from a maximum-likeli-
hood analysis of a pairwise alignment of two hepatitis
B sequences, in which the model and methodology pre-
sented in the Methods section were used. We refer to
the model presented above as ‘‘the full model’’. We give
maximum-likelihood estimates of the parameters in the
full model and perform a likelihood ratio test of a model
of multiplicatively operating selective constraints (re-
ferred to as ‘‘the multiplicative model’’) under the full
model. The multiplicative model is accepted. In the sub-
sequent subsection, we show how the expected numbers
of various types of substitutions may be calculated and
give the values obtained under the multiplicative model.
In the last subsection, we present an extension of the
full model, referred to as the ‘‘extended model,’’ that
we use to check the adequacy of the full model. For the
extended model, we describe and use a simpler, but ap-
proximate, estimation method than that used for the full
and multiplicative models.

Maximum-Likelihood Analysis

The hepatitis B viral genome is circular and par-
tially double-stranded, with the longer strand consisting
of approximately 3,200 nt (Ganem 1996).

Every nucleotide in the genome is within a coding
region, and more than half of the sequence is translated
in more than one reading frame. The genome has four
open reading frames (ORFs): P, C, S, and X. The P ORF
encodes the viral polymerase, the C ORF encodes the
structural protein of the nucleocapsid, the X ORF en-
codes a putative regulatory protein, and the S ORF en-
codes the viral surface glycoproteins. The S ORF is
completely embedded in the P ORF, and the C and X
genes partially overlap with the P ORF and also them-
selves partially overlap (see fig. 2).

Two full genome sequences were obtained from the
GenBank database (http://ncbi.nlm.nih.gov/genbank)
(accession numbers AF151735 [type ayw2] and X75663
[type adw4q]). An alignment of the parts of the sequenc-
es in which the S (surface) and P (polymerase) genes
are encoded in overlapping frames was obtained auto-
matically using GENAL (Hein and Støvlbæk 1994). The
alignment exhibited an insertion of 11 consecutive co-
dons after the first 2 codons in the reading frame of the
S gene. Analysis was restricted to the region following
the insertion, a region spanning 1,152 nt, or 384 codons,
in the P gene reading frame. The paths of the first and
last codons in this region were assumed to be fixed with
no substitutions. In the region analyzed, the sequences
differed at 13% of the nucleotide positions. The 150
differing nucleotide positions were distributed among
119 reading frame I codons, and 78 transitional differ-
ences were exhibited, with the remaining 72 being trans-
versional differences. Among the differing nucleotide
positions, 70 fell in first codon positions in reading
frame I (third codon positions in reading frame II), 32
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FIG. 2.—Schematic representation of the circular genome of hep-
atitis B. Approximate locations of the four open reading frames C, P,
X, and S are shown.

Table 1
Maximum-Likelihood Estimates of the Parameters in the Full Model After each of Three Rounds in Four Different
Runs

Run Rounda
Ap̂ Cp̂ Gp̂ Tp̂ t̂ K̂ f̂P f̂S f̂P/S

No.
Iterb

A. . . . . Start
I
II
III

0.250
0.244
0.237
0.238

0.250
0.267
0.270
0.269

0.250
0.218
0.221
0.221

0.250
0.271
0.272
0.272

0.527
0.478
0.460
0.455

1.200
1.714
1.660
1.620

0.200
0.212
0.214
0.213

0.200
0.151
0.151
0.152

0.050
0.062
0.062
0.061

2
2
2

B. . . . . Start
I
II
III

0.250
0.239
0.242
0.238

0.250
0.274
0.270
0.269

0.250
0.207
0.218
0.221

0.250
0.280
0.270
0.272

0.341
0.442
0.468
0.454

2.000
1.449
1.685
1.618

0.500
0.560
0.244
0.230

0.500
0.406
0.164
0.163

0.500
0.178
0.066
0.066

7
17
9

C. . . . . Start
I
II
III

0.250
0.249
0.238
0.238

0.250
0.267
0.270
0.269

0.250
0.217
0.221
0.221

0.250
0.267
0.271
0.272

0.396
0.471
0.455
0.454

3.000
1.662
1.645
1.632

0.100
0.217
0.215
0.217

0.100
0.150
0.153
0.156

0.100
0.064
0.063
0.063

10
2
3

C*. . . . Start
III

0.238
0.238

0.270
0.269

0.221
0.221

0.271
0.272

0.455
0.456

1.645
1.638

0.215
0.216

0.153
0.154

0.063
0.062 2

a Threshold in the maximization procedure and numbers of samples per transition probability calculation in rounds I, II, and III were 1024 and 10,000, 1025

and 100,000, and 1026 and 100,000, respectively.
b Number of iterations (full parameter vector updatings) in the maximization procedure.

in second codon positions in reading frame I (first codon
positions in reading frame II), and 48 in third codon
positions of reading frame I (second codon positions of
reading frame II).

The MCMC algorithm was implemented in C.
The Markov chain appeared to converge quickly to-
ward its stationary distribution (results not shown). In
the maximization of the likelihood ratio as a function
of (u1, t1), we used a stepwise procedure: we started
with a certain set of initial values for the parameters
for the simulation measure (u2, t2). We performed a
first rough maximization (round I) with high threshold
(1024) in which 10,000 samples were used in each
calculation of the ratio of the two transition probabil-
ities. We used the resulting ‘‘rough’’ maximum-like-

lihood estimates as new values of (u2, t2) in a new
round of maximization (round II) with a lower thresh-
old (1025). In this round, each evaluation of the like-
lihood value was based on 100,000 samples. We then
proceeded to round III, in which we used the obtained
parameter estimates from round II as new values of
(u2, t2), while the number of samples used for evalu-
ation of the ratio of transition probabilities was kept
at 100,000, and the threshold was again lowered
(1026). In each round, the starting values of (u1, t1)
were set equal to those of the simulation measure (u2,
t2).

In order to examine the efficiency and dependen-
cy of the MCMC sampler and maximization scheme
on the starting values of the parameters, we compared
the outcomes of four different runs. Runs A, B, and
C had initial values of pk 5 0.25, k ∈ {A, C, G, T},
but the initial values for the remaining parameters var-
ied. Initial parameter values of run C* were identical
to those of run C:II to the first four decimals, but the
runs were started with different random seeds. Initial
parameter values and maximum-likelihood estimates
obtained after each round in each of the four runs are
given in table 1. Also given are the numbers of iter-
ations (full parameter vector updatings) used in the
maximization procedure (Powell’s method; Press et al.
1992) to reach the given maximum-likelihood esti-
mates. The intensities are scaled so that, at equilibri-
um, the expected number of substitutions out of a co-
don is 1, and thus the parameter t gives the expected
number of substitutions in total per codon between the
two sequences. How this scaling is obtained is de-
scribed in the next section.

The maximum-likelihood estimates obtained in
the four different runs were similar, and the results
did not indicate any dependency of the Gibbs sampler
on the starting values for the procedure (rows A:III,
B:III, and C:III), nor was the result sensitive to the
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random seed (rows C:III and C*:III). After round III,
values obtained for the pk, k ∈ {A, C, G, T}, param-
eters varied by ,1%, those of t and K by ,5%, and
those of the remaining parameters ( fP, fS, and fP/S) by
,8%. In contrast to the similarity of the final param-
eter values, the computational time requirements of
the runs differed markedly. As can be seen from the
number of iterations used in the maximization pro-
cedures of the runs (table 1, last column), the com-
putational effort involved was positively correlated
with the distance between the parameter values in
which the run was started and the ‘‘true’’ values. This
demonstrated the importance of having ‘‘good’’ start-
ing values.

The degrees of variation in the final parameter val-
ues from the four different runs reflect the amount of
information contained in the data concerning the differ-
ent parameters. The variance is expected to be larger on
the purely evolutionary parameters (t, K, fP, fS, and fP/S)
than on the parameters pk, k ∈ {A, C, G, T}, which are
determined mainly by sequence composition (equilibri-
um distribution). Among the purely evolutionary param-
eters, the variance is most likely larger on the fP, fS, and
fP/S than on the t and K parameters, since the former are
related to a finer partitioning of evolutionary events. It
is likely that some of the variation obtained among the
final values of the fP, fS, and fP/S parameters is due to
too few samples in the calculation of the transition prob-
ability. As the likelihood surface is flat in the directions
corresponding to the purely evolutionary parameters, a
relatively high precision in the calculation of the tran-
sition probability is necessary for reliable estimates of
these parameters to be obtained. The precision may be
increased by augmenting the number of samples used.
The pattern of variation among round II and III param-
eter values illustrates this (table 1): reasonable values
for the pk, k ∈ {A, C, G, T}, parameters could be ob-
tained after round I, as these differed only slightly
(,5%) from the final values obtained after round III. As
for the t and K parameters, their values were ill deter-
mined after round I (see run B); however, after round
II, they differed by no more than a few percent. The
values for the remaining parameters ( fP, fS, and fP/S) ob-
tained after round II differed by up to 14% from the
final values.

The maximum-likelihood estimates of the param-
eters showed that in the double coding region analyzed,
selection against amino-acid-altering substitutions was
stronger in the S than in the P reading frame ( fS ø 0.15
vs. fP ø 0.22). A similar finding has been reported by
Yang, Lauder, and Lin (1995). Parameter estimates fur-
ther indicated that selection against substitutions that al-
tered the amino acid encoded in both reading frames was
particularly strong ( fP/S ø 0.06). Under the model
above, with fP and fS varying freely, we performed a log
likelihood ratio test for the null hypothesis that selection
against amino acid substitution in the double coding re-
gion acts multiplicatively; that is, fP/S 5 fP · fS. Parameter
estimates under the null hypothesis were pA 5 0.238,
pC 5 0.270, pG 5 0.219, pT 5 0.273, t 5 0.450, K 5
1.590, fP 5 0.346, and fS 5 0.250. Use of the values

from run A:III for the parameters under the model with
fP and fS varying freely led to a 22 log Q test statistic
of 1.305. This gave a P value of approximately 0.25,
and the null hypothesis of multiplicatively operating se-
lective constraints was thus accepted.

Expected Numbers of Various Types of Substitutions

If we scale the intensities so that the average rate
of substitution per codon at equilibrium equals 1, the
time t between sequences will effectively be measured
as expected numbers of substitutions per codon. Let (s1,
s2, s3), (s4, s5, s6), and (s7, s8, s9) be three consecutive
codons in reading frame I, and consider the septet of
nucleotides s 5 (s1, s2, s3, s4, s5, s6, s7). The scaling is
then obtained by requiring that

4 5 6 1 2 6prob q 5 1,O Os (s ,s ,s ),w zs ,s ,s
s∈S w∈C

where probs denotes the stationary probability of septet
s, and S is the set of all septets. A procedure for cal-
culating probs is given in appendix A.

We can now write the instantaneous rate of syn-
onymous substitutions (that is, substitutions that are syn-
onymous in both reading frames) per codon as

4 5 6 2 3 7r 5 prob q , (8)O Osyn(I),syn(II) s (s ,s ,s ),w zs ,s ,s5 6s∈S w∈M(s)

where the set M(s) consists of those w 5 (w1, w2, w3)
for which the change (s4, s5, s6) → (w1, w2, w3) is syn-
onymous, the change (s2, s3, s4) → (s2, s3, w1) is syn-
onymous, and the change (s5, s6, s7) → (w2, w3, s7) is
synonymous. The expected number of synonymous sub-
stitutions per codon is obtained as rsyn(I), syn(II)t, with the
maximum-likelihood estimates as parameter values. Ex-
pected numbers of other types of substitutions are ob-
tained by restricting the summation in equation (8)
appropriately.

Expected proportions of different kinds of sub-
stitutions per codon under the model with multipli-
catively acting selection factors were calculated by in-
serting the maximum-likelihood estimates in the for-
mulas above. The obtained values are given in table
2. Also given are values for a situation with the same
parameter values of pk, k ∈ {A, C, G, T}, and K, but
with no selective constraints, that is, with fP 5 fS 5
fP/S 5 1.0. Expected numbers of the various types of
substitutions per codon can be obtained by multipli-
cation with t̂. For the maximum-likelihood values un-
der the model with multiplicative selective con-
straints, the ratio of transitional to transversional sub-
stitutions was 0.534/0.466 5 1.146, and that of syn-
onymous to any type of nonsynonymous substitutions
was 0.058/(1 2 0.058) 5 0.062. With respect to read-
ing frame I, the ratio of synonymous to nonsynony-
mous rates was (0.058 1 0.314)/(1 2 0.058 2 0.314)
5 0.592, whereas with respect to reading frame II, it
was (0.058 1 0.439)/(1 2 0.058 2 0.439) 5 0.988.
The corresponding values for the case that was similar
but had no selective constraints (second row of table
2) were 0.848, 0.012, 0.379, and 0.385, respectively.
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Table 2
Expected Proportions of Various Types of Substitutions per Codon Under the
Multiplicative Selectional Constraints Model for Two Sets of Parameter Values:
Maximum-Likelihood Estimators (MLEs) and No Selective Constraints (NSCs)

Transitions Transversions Syna Non(P)b Non(S)c Non(PS)d

MLEse . . . . .
NSCsf . . . . .

0.534
0.459

0.466
0.541

0.058
0.012

0.439
0.266

0.314
0.263

0.189
0.458

a Substitutions that are synonymous in both reading frames.
b Substitutions that are nonsynonymous in the P reading frame only.
c Substitutions that are nonsynonymous in the S reading frame only.
d Substitutions that are nonsynonymous in both reading frames.
e Parameter values equal to MLEs under the multiplicative-selectional-constraints hypothesis.
f fP 5 fS 5 fP/S 5 1.0; remaining parameter values MLEs under the multiplicative-selectional-constraints hypothesis.

As compared with the hypothetical situation with sim-
ilar parameter values but no selective constraints, the
transition/transversion rate ratio was thus raised by a
factor of 1.146/0.848 5 1.351, and the ratio of overall
synonymous to nonsynonymous rates was raised by a
factor of 0.062/0.012 5 5.167. The ratio of synony-
mous to nonsynonymous rates with respect to reading
frames I and II, respectively, were raised by factors
of 0.592/0.379 5 1.562 and 0.988/0.385 5 2.566.
These ratios further establish the stronger degree of
selective constraints for the evolution of the S gene
than the part of the P gene in which the S gene
overlaps.

Model Check

In this section, we present an extension of the mod-
el described in the Methods section and describe a sim-
pler, but approximate, estimation method. We use the
extended model to check the adequacy of the full model
assumed above. In the extended model, all dinucleotide
interactions and position specific nucleotide intensity pa-
rameters are allowed for.

In the extended model, we use the intensities
from equation (2), with the nucleotide in-2 3 1qz ,z̃ zz ,z ,zi i i21 i21 i11

tensity replaced by a more general term which in-p(z̃ )i
cludes position specific nucleotide intensities

j j j j jp , k ∈ {A, G, C, T}, p 1 p 1 p 1 p 5 1, j 5k A G C T

, and dinucleotide interactions. By a dinucleotide1, 2, 3
interaction we mean a function of two neighboring nu-
cleotides. We denote these functions by

3 1 1 2 2 3g (z , z ), g (z , z ), and g (z , z ),1 i21 i 2 i i 3 i i

respectively. Precisely, the extended model is now defined
by using equation (2) with the term replaced byp(z̃ )i

3 1H(z , z̃ z z , z )i i i21 i11

1/2
3 1 1 2 2 3 3 1g (z , z )g (z , z )g (z , z )g (z , z )1 i21 i 2 i i 3 i i 1 i i11 j̃5 p ,(z̃ )i3 1 1 2 2 3 3 15 6g (z , z̃ )g (z̃ , z̃ )g (z̃ , z̃ )g (z̃ , z )1 i21 i 2 i i 3 i i 1 i i11

where j̃ is the position at which z̃i differs from zi (note
that of the eight terms inside the brackets, four terms
cancel because z̃i and zi differ at one position only).

The model considered in the Methods section cor-
responds to the model here with no dinucleotide inter-
actions, that is, with gj(a, b) [ 1, for all (a, b) ∈ {A,

G, C, T}2, and identical position-specific nucleotide in-
tensities, that is, jp 5 p , a ∈ {A, G, C, T}, j 5a a

. A model where the only dinucleotide interac-1, 2, 3
tions are selection against CpG dinucleotides is obtained
when gj 5 1 except for the values gj(C, G), j 5 1, 2,
3. In this model, instantaneous rates of substitution that
generate (respectively, eliminate) a CpG in frame j, j 5
1, 2, 3, are multiplied by (respectively,1/2{1/g (C, G)}j

gj(C, G)1/2) relative to instantaneous rates of substitution
that leave the CpG count unaltered.

In the extended model, the stationary distribution
of a sequence z 5 (z2, . . . , zn21) is

1
3 1 2 3 1P(z) 5 g (z , z )1 (z , z , z )1 1 2 C 1 1 2Z

n21
2 31 1 2 2 3 3 113 p p p g (z , z )g (z , z )g (z , z )2 3P z 2 i i 3 i i 1 i i11z zi i i

i52

2 3 13 1 (z , z , z )C i i i11 (9)

for zi ∈ C for all i. This can be verified by inspection in
a manner similar to that used for the model in the Meth-
ods section. Like the model in the Methods section, the
extended model allows an explicit formula for the nor-
malizing constant to be derived (see eq. A.4 in appendix
A), and that allows expected numbers of various types
of substitutions to be calculated (e.g., eq. 8). For the
latter, stationary probabilities of subsequences under the
extended model are needed—these are derived in ap-
pendix A.

To check the adequacy of the model assumed in
the Methods section, we compare its performance with
that of the extended model. For parameter estimation in
the extended model we use the following simplified pro-
cedure: we first estimate the dinucleotide interactions gj

and the position-specific nucleotide intensities usingjpa

the stationary distribution under the extended model. We
base the estimation on one of the two sequences (we use
ayw2). The full extended model, however, has too many
parameters to be useful. When fitting the extended mod-
el, we will make the dinucleotide interactions as simple
as possible; that is, we will only include those in the
model that increase the fit of the data to the model sig-
nificantly. For this, we use the following stepwise se-
lection procedure: We start by analyzing the conditional
distribution of given ), given in equation1 1 2 3z (z , z , zi11 i i i
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Table 3
Entries Selected in the Stepwise Procedure for Estimating the Interaction Parameters in the Interaction Functions g1(·, ·),
g2(·, ·) and g3(·, ·) Under the Extended Model, Along with the Corresponding Parameter Estimates and Twice the
Increase in Log Likelihood Obtained by Including the Interaction in the Model

g1

Entry g1(·, ·) 2(l2 2 l1)

g2

Entry g2(·, ·) 2(l2 2 l1)

g3

Entry g3(·, ·) 2(l2 2 l1)

CG
GA
Fulla

0.31
3.04

11.0
11.4

4.3

CG
AA, AG

0.086
2.1, 0.57

36.8
11.8

8.1

CG
TC

0.33
3.4

1.11
13.0
12.8

a Twice the increase in log likelihood obtained by including all remaining entries of interactions in the model.

Table 4
Parameter Estimates of the Position-Specific Nucleotide
Intensity Parameters Obtained Under the Extended
Model in which all Selected Interactions Have Been
Included

Posa pj
A pj

G pj
C pj

T

j 5 1 . . . . .
j 5 2 . . . . .
j 5 3 . . . . .

0.19
0.23
0.15

0.31
0.22
0.27

0.34
0.26
0.33

0.16
0.29
0.25

a Codon position in reading frame I.

(A.14) in appendix A, in order to estimate the interaction
g1. We start with the model where g1 [ 1 and thereby
obtain an estimate of (see ap-1 ap r , a ∈ {A, C, G, T}a

pendix A). We next calculate the score function (nu-
merically) for the different entries of g1 and choose the
entry with the largest absolute value. We include this
entry as a parameter in the conditional distribution and
see if this provides a significantly better description of
the distribution. This procedure is continued until a rea-
sonable fit has been obtained (see below). Next, the con-
ditional distributions (A.15) and (A.16) from appendix
A are treated in the same way in order to estimate the
interactions g2 and g3.

The result of the stepwise procedure for estimating
the interaction parameters and the position-specific nu-
cleotide intensities are given in tables 3 and 4. It is clear
from table 3 that there was a significant CG depression
in the data—the sequence considered the first entry to
be included in the interaction gj was the CG entry in all
three positions. The stepwise procedure additionally in-
cludes four types of dinucleotide interactions. Further-
more, the estimates of the position-specific nucleotide
intensities pj varied among the three codon positions
(table 4). The results from this analysis show that the
simpler model does not do well with respect to describ-
ing a single sequence, meaning that the simple model is
only a rough approximation of the true model.

Having estimated the interactions gj and the posi-
tion-specific nucleotide intensities pj in the extended
model using the stationary distribution, we could return
to the MCMC method of the Methods section to esti-
mate the remaining purely evolutionary parameters t, K,
fP, fS, and fP/S. However, we mention here another ap-
proximate estimation method that will allow us to con-
sider the fit of the model as well. We split the observable
changes in the aligned codons in the two sequences into

a number of disjoint groups. In particular, we used the
nine groups obtained by dividing codons into groups
with single and multiple changes and further dividing
the group exhibiting single changes into transition and
transversion groups, and dividing each of these two
groups into groups based on the four combinations of
synonymous and nonsynonymous changes in the two
reading frames. The observed numbers Ng, g 5 1, . . . ,
9, in the nine groups are approximately independent and
Poisson distributed with, say, mean mg. Thus, we form
an approximate likelihood based on the Poisson approx-
imation and use this to estimate the remaining parame-
ters (t, K, fP, fS, fP/S). The means mg can be approximated
by a simple forward simulation of the Markov process
describing the evolution; that is, we must simulate ex-
ponential waiting times and simulate the jump type.

The estimated evolutionary parameters for the ex-
tended model, are t 5 0.476, K 5 1.946, fP 5 0.175, fS
5 0.161, and fP/S 5 0.033. Observed numbers of codons
falling into the nine groups are given in column 3 of
table 5, and expected numbers under the extended model
with corresponding parameter estimates are given in the
fourth column. The expectations under the extended
model fit well with the observed numbers in the nine
categories (22 log Q 5 3.8 ø x(4)). In the fifth column,
results are given for a model that is similar to the ex-
tended model except that the selectional constraints are
assumed to act multiplicatively ( fP/S 5 fP fS). Here, pa-
rameter values identical to those in the column before
are used, except that fP/S 5 0.175 · 0.161 5 0.028. Even
though no fitting of the parameters to the extended mod-
el with multiplicatively operating selection parameters
has been done, the 22 log Q test statistic is only mar-
ginally augmented (to 4.1), and the result of multipli-
catively operating selection factors found in the analyses
based on the simple model of the Methods section are
confirmed. The last column gives the expected number
of codons in the nine categories under the model of the
Methods section using the maximum-likelihood esti-
mates from the subsection above. With a 22 log Q value
of 9.3, the simple model is a good approximation of the
extended model with respect to the evolutionary part, as
measured by the expectations of the various types of
changes.

Discussion

The model presented for the substitution process in
DNA sequences in which two genes are encoded in
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Table 5
Observed and Expected Numbers of Nine Groups of
Codons Under the Three Models ‘‘Ext,’’ ‘‘Ext-Mult,’’ and
‘‘Full,’’ along with Twice the Decrease in Log Likelihood
When Going from the ‘‘Means-Free’’ Model to Each of
These Three Models

NO. OF

CHANGESa GROUPb
OB-

SERVED

EXPECTED

Extc
Ext-
Mult Fulle

1 . . . . . . . . . .

Multiple . . . .

ts, syn(I), syn(II)
ts, syn(I), non(II)
ts, non(I), syn(II)
ts, non(I), non(II)
tv, syn(I), syn(II)
tv, syn(I), non(II)
tv, non(I), syn(II)
tv, non(I), non(II)
Any

6
19
27

7
3

11
14
12
22

5.6
22.2
28.8

9.0
2.9

12.1
18.1
13.2
16.8

5.7
22.4
29.0

8.2
2.9

12.2
18.2
11.7
16.0

5.0
16.0
27.4

9.8
2.2

10.6
20.0
19.9
16.4

22 log Q . . . 3.8 4.1 9.3

a Number of nucleotides differing in the codons in sequences 1 and 2.
b Type of (single-nucleotide) difference (transition [ts] or transversion [tv],

synonymous [syn], or nonsynonymous [non] in either of the two reading frames).
c Extended model, fP and fS free. Parameter estimates obtained from the sim-

ple approximate estimation procedure (tables 3 and 4) are used.
d Extended model, fP/S 5 fPfS. Parameter estimates obtained form the simple

approximate estimation procedure (tables 3 and 4) are used, except for the value
of fP/S, which here is fP/S 5 fPfS 5 0.175 · 0.161 5 0.028.

e The ‘‘full’’ model (see Methods). MLEs are used (table 1).

overlapping reading frames takes into account con-
straints imposed by the genetic code in both of the read-
ing frames. A model for the analyses of sequences with
three genes encoded in overlapping frames, in which
constraints imposed by three overlapping codes are in-
corporated, can be obtained simply by extending the
neighborhood of dependency one nucleotide to the right.
A procedure for calculating the transition probability be-
tween two sequences under such a model can be ob-
tained by minor modifications of the procedure present-
ed here. By combining models of the above types, one
can achieve a model for sequences with combinations
of non-, single-, double-, and triple-coding regions in
which constraints imposed by the various combinations
of overlapping reading frames are allowed for. In the
case of hepatitis B, analyses of the substitution process
in the full genome under such a model should be fea-
sible, given the limited size of the genome (3.2 kb) and
the small number of genes.

The methodology described for calculating the
transition probability between two sequences has two
drawbacks. First of all, it allows for the analysis of pairs
of sequences only. The development of a procedure for
obtaining the likelihood of observing a set of (more than
two) sequences at the tips of a given binary tree under
a model with dependent substitution rates has yet to be
developed. The second drawback is that the methodol-
ogy is computationally very demanding. It should be
possible to reduce the computational time requirements
considerably by parallelizing computations. Computa-
tional requirements of a similar procedure for more than
two sequences related by a tree will be increased due to
the larger number of branch length parameters. It is,

however, possible that the increase due to more param-
eters will be counterbalanced by an increase of infor-
mation in the data regarding the more poorly determined
purely evolutionary parameters, which would allow
transition probabilities to be approximated by smaller
samples of paths.

Given the computational requirements for inference
under the presented model, it would be of considerable
interest to compare results obtained with this model and
methodology to those obtained using the more heuristic
and much quicker models and procedures. Computa-
tional demands, however, seriously limit the possibility
of performing simulation-based bias studies.
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APPENDIX A

In this appendix, we first find the normalizing con-
stants Z in the stationary distributions (3) and (9) of a
sequence. We next turn to a rewriting of the stationary
distribution that allows us to calculate the stationary
probability of a subsequence.

Since the model in equation (3) is a special case of
the model in equation (9), we first state the formulas for
the earlier model. The normalizing constant Z is found
by summing up the equilibrium frequencies over all z2,
. . . , zn21. If we sum first over i 5 2, . . . , n 22 3(z , z ),i i

1, we obtain
3 1 2 3 1 1 1Z 5 g (z , z )1 (z , z , z )V(z , z )O 1 1 2 C 1 1 2 2 3

1 1 1z ,z , . . . ,z2 3 n21

1 1 1 13 V(z , z ) · · · V(z , z ), (A.1)3 4 n21 n

where, for (a, b) ∈ {A, G, C, T}2,
2 3 1 2 2 3V(a, b) 5 p p p g (a, s )g (s , s )2 3O b 2 3s s

2 3 2s ,s ∈{A,G,C,T}

3 2 3 2 33 g (s , b)1 (a, s , s )1 (s , s , b).1 C C (A.2)

To evaluate equation (A.1), we use the eigenvalues and
eigenvectors of the 4 3 4 matrix V. Let l1, . . . , l4 and
v1, . . . , v4 be the eigenvalues and left eigenvectors, re-
spectively, with l1 being the largest eigenvalue. Writing

, we thus haveA G C Tv 5 (v , v , v , v )i i i i i

a bv V(a, b) 5 l v .O i i i
a∈{A,G,C,T}

Let w 5 (wA, wG, wC, wT) be the vector with
a 3 1 2 3w 5 g (z , a)p 1 (z , z , a),1 1 a C 1 1 (A.3)

where a ∈ {A, G, C, T}, and define coefficients c1, . . . ,
c4 by

w 5 c v 1 c v 1 c v 1 c v .1 1 2 2 3 3 4 4

Then we get, from equation (A.1),
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4 11n22 znZ 5 c l v . (A.4)O i i i 11pi51 zn

Let us now specialize equation (A.2) to the simple mod-
el in equation (A.1), corresponding to gj [ 1 and 5jpa

pa. The matrix V from equation (A.2) becomes

a 

 a 
V 5 , (A.5) 

a 
a 2 b 

where the vectors a 5 (aA, aG, aC, aT) and b 5 (bA,
bG, bC, bT) are given by

a 5 (p 2 p p p 2 p p p , pA T A A T G A G

2 p p p , p , p ) andT A G C T

pstop
b 5 (p , p , p , p ) ,A G C T pT

with pstop 5 pTpApA 1 pTpGpA 1 pTpApG. A simple
calculation shows that the eigenvalues are

1
l 5 (1 2 2p 1 Ï1 2 4p ),1 stop stop2

1
l 5 (1 2 2p 2 Ï1 2 4p ),2 stop stop2

l 5 0, l 5 0, (A.6)3 4

with corresponding left eigenvectors

v 5 a 1 g b, v 5 a 1 g b,1 1 2 2

v 5 (1, 21, 0, 0), v 5 (1, 0, 21, 0), (A.7)3 4

where

pTg 5 (21 1 Ï1 2 4p ),1 stop2pstop

pTg 5 (21 2 Ï1 2 4p ). (A.8)2 stop2pstop

The vector w from equation (A.3) becomes
2 3 2 3w 5 (p 1 (z , z , A), p 1 (z , z , G), p , p )A C 1 1 G C 1 1 C T

5 c v 1 c v 1 c v 1 c v ,1 1 2 2 3 3 4 4

and the normalizing constant in equation (A.4) is

111 zn22 z n22 nnZ 5 (c l v 1 c l v ) . (A.9)1 1 1 2 2 2
1pzn

In particular, if is different from (T, A) and (T,2 3(z , z )1 1
G) we find that c1 5 c2 5 1/ 1 2 4pstop.Ï

We next turn to a closer study of the stationary
measure in equations (3) and (9). The stationary mea-
sure can be written as a product of conditional densities.
To this end, we consider the matrix V in equation (A.2)
again and let r 5 (rA, rG, rC, rT) be the positive right
eigenvector corresponding to the largest eigenvalue l1.
For the simple model with V given in equation (A.5),
we find

1
r 5 1, 1, 1, (2p 2 1 1 Ï1 2 4p )/p . (A.10)T stop T1 22

Considering the chain one finds1{z }, i 5 1, 2, . . . ,i

that this is a homogeneous Markov chain with transition
matrix

1 1 b aT(a, b) 5 P(z 5 b z z 5 a) 5 (V(a, b)r )/(l r ),i11 i 1

a, b ∈ {A, G, C, T}.

Since
br

a a a b bv r T(a, b) 5 v V(a, b) 5 v r ,O O1 1 1la a1

the stationary density p0 for this Markov chain is
a av r10 1p (a) 5 P(z 5 a) 5 ,i b bv rO 1

b

a ∈ {A, G, C, T}. (A.11)

Furthermore, the conditional density p231z1 of 2 3(z , z ,i i

given is1 1z ) zi11 i

1zi11r 2 3 1 1 2 2 3 3 11p p p g (z , z )g (z , z )g (z , z )2 31 z 2 i i 3 i i 1 i i11z z i11i izil r1

1 2 3 2 3 13 1 (z , z , z )1 (z , z , z ). (A.12)C i i i C i i i11

Thus, the stationary frequency of the septet (zi, zi11,
) is1zi12

0 1 2 3 1 1 2 3 1 1p (z )p (z , z , z z z )p (z , z , z z z ),i 231 z1 i i i11 i 231 z1 i11 i11 i12 i11

(A.13)

which can be used for evaluating the expected numbers
of various types of substitutions. For the simple model,
we use equation (A.13) with gj [ 1, in equa-jp 5 pa a

tion (A.12), with r given in equation (A.10), and with
v1 given in equation (A.7).

Finally, in connection with finding a suitable ex-
tended model, we use the following conditional distri-
butions:

1 1 2 3 2 3P(z 5 b z (z , z , z ) 5 (a, s , s ))i11 i i i

b 1 3r p g (s , b)b 1 2 35 1 (s , s , b), (A.14)C2 3g(s , s )
3 3 1 2 2P(z 5 s z (z , z ) 5 (a, s ))i i i

32 3 2 3g(s , s )p g (s , s )3 3s 2 35 1 (a, s , s ), (A.15)C2h(a, s )
22 2h(a, s )p g (a, s )2 2s2 2 1P(z 5 s z z 5 a) 5 , (A.16)i i alr

where the functions g and h are normalizing functions,
defined so that equations (A.14) and (A.15) are
densities.

APPENDIX B

We first derive formula (5). From the definition of
we haveq (t ; L),u 11
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P (u , t ) 5 q (t ; L)m (dL)x→y 1 1 E u 1 t1 1
xt1

rt t1 15 q t ; L m (dL),E u 1 t1 21 2 1 2t t2 2xt2

where r is the number of substitutions in the path L. We
then find

P (u , t )x→y 1 1

P (u , t )x→y 2 2

rt t1 1q t ; L m (dL)E u 1 t1 21 2 1 2t t2 2xt2
5

q (t ; L)m (dL)E u 2 t2 2
xt2

t1rt q t ; L1 u 111 2t2 q (t ; L)u 225 m (dL)E t2rt q (t ; L)2 u 2x 2t2 ˜ ˜q (t ; L)m (dL)E u 2 t2 2
xt2

 t1rt q t ; L 1 u 111 2t 2
˜  5 E ,

rt q (t ; L) 2 u 22

where Ẽ is the mean under the measure P̃ defined in
equation (6).

The weight qu(t; L) of a path L with r substitutions
is the product of the densities of r waiting times, times
the product of r jump probabilities, times the probability
that the last waiting time exceeds t. Since the intensities
in these waiting times are the sum over all the positions
of the intensity for an event at this position, one sees
that qu(t; L) becomes a product

n21

q (t; L) 5 q (t, i, 1)q (t, i, 2)q (t, i, 3), (B.1)Pu u u u
i52

where qu(t, i, 1) depends on , and qu(t, i,2 3(L , L , L )i21 i21 i

2) and qu(t, i, 3) depend on (Li, ). To give the exact1Li11

form of these terms, define si to be the total number of
substitutions in the paths .2 3 1 2 3 1L , L , L , L , L , and Li21 i21 i i i i11

Let ui(r) be the time the rth among these substitutions
occurs, and let , and , respec-2 3 1z (r), z (r), z (r) z (r)i21 i21 i i11

tively, be the nucleotide contents of the second and third
positions of codon i 2 1, the three positions in codon
i, and the first position in codon i 1 1 after the rth
substitution. Set

2 3 1 2 3 1(z (0), z (0), z (0), z (0)) 5 (x , x , x , x )i21 i21 i i11 i21 i21 i i11

and

2 3 1 2 3 1(z (s ), z (s ), z (s ), z (s )) 5 (y , y , y , y ).i21 i i21 i i i i11 i i21 i21 i i11

With these definitions, we can write qu(t, i, j) as

q (t, i, j)u

si
j j1(z (r)±z (r21))i i2 3 15 (q )P z (r21),z (r) zz (r21),z (r21),z (r21)i i i21 i21 i115r51

j 2 3 13 exp{2qz (r21) zz (r21),z (r21),z (r21)i i21 i21 i11

3 (u (r) 2 u (r 2 1))}i i 6
j 2 3 13 exp{2q (t 2 s )}z (s ) zz (s ),z (s ),z (s ) ii i i21 i i21 i i11 i

where

j 2 3 1 2 3 1q 5 q .Oz za ,a ,b z,w za ,a ,b
k k{w∈C zw 5z ,k±j}

The term from equation (7) comesq̃ (L z L , L )u i i21 i112

from the conditional distribution of Li given (Li21, Li11)
and is found from equation (B.1) to be

q̃ (L z L , L )u i i21 i112

5 q (t , i 2 1, 2)q (t , i 2 1, 3)q (t , i, 1)u 2 u 2 u 22 2 2

3 q (t , i, 2)q (t , i, 3)q (t , i 1 1, 1).u 2 u 2 u 22 2 2

The term is defined as above, with Liq̃ (L9 z L , L )u i i21 i112

replaced by L9.i
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